
Functorial models of scope-safe syntax

Dima Szamozvancev
Department of Computer Science and Technology

University of Cambridge, UK

EuroProofNet WG6 Meeting
KU Leuven, 4 April 2024

To restate the obvious:
syntax formalisation is hard!

Challenges and choices

Encoding of variables
Atoms, numerals, indices, parameters

Representation of binding
Atom equality, de Bruijn, meta-level

Definition of substitution
Single-variable, simultaneous, explicit, nominal, de Bruijn

Formalisation of syntax
Intrinsic, extrinsic, higher-order, least fixed point

Semantic models

Axiomatisation of syntactic structure
Must account for constructors, variables, and substitution

Initiality proof
Syntax is the initial model

Semantic interpretations
Denotational semantics in any model of the syntax

Recursion and induction principles
Define operations and prove properties
on the syntax by instantiating a model

Example: natural numbers

𝑛 ::= Z | S𝑛 ∈ N

Model is a set 𝐴 with element 𝑧 ∈ 𝐴 and function 𝑠 : 𝐴 → 𝐴

(N,Z, S) is the initial model: JZK = 𝑧 and JS𝑛K = 𝑠J𝑛K
Interpretations in semantic models
(N, 0, (−) + 1) induces N → N, JS(SZ)K = 2 ∈ N

(Set, 1,Maybe) induces N → Set, JS(SZ)K = Maybe (Maybe 1)

Recursion and induction principles
(N → N, id, S ◦ −) induces N → (N → N), JS𝑚 ZK = S𝑛 Z ↦→ S𝑚+𝑛 Z
(Bool, true, not) induces N → Bool, JS𝑚 ZK ⇐⇒ 𝑚 is even

Example(?): simply-typed 𝜆-calculus

𝛼, 𝛽 ::= B | 𝛼 � 𝛽

𝑠, 𝑡 ::= 𝑥 | 𝜆𝑥 : 𝛼. 𝑏 | 𝑡 𝑠

Environment model in sets
Types are sets, contexts are cartesian products,
terms are functions JΓK → J𝛼K

JΓ ⊢ 𝑡 : 𝛼K : JΓK → J𝛼KJ𝑥𝑖K(𝛾) = 𝛾𝑖J𝜆𝑥 : 𝛼. 𝑏K(𝛾) = 𝑎 ↦→ J𝑏K(𝛾, 𝑎)J𝑡 𝑠K(𝛾) = J𝑡K(𝛾) (J𝑠K(𝛾))
This is just a particular model of the STLC!

What are models of syntax?

The signature of the syntax is captured as an endofunctor
Sum-of-products encoding of the constructor argument

The algebraic datatype is the initial algebra
Initiality induces to semantic interpretations

Natural numbers
Z : 1 → N

S : N → N

[Z, S] : (1 + N) → N

[Z, S] : 𝐹N(N) → N

𝐹N : Set → Set
𝐹N ≜ 𝑋 ↦→ 1 + 𝑋

Binary trees

Lf : 𝐴 → Tr𝐴
Br : Tr𝐴 × Tr𝐴 → Tr𝐴

[Lf,Br] : (𝐴 + (Tr𝐴 × Tr𝐴)) → Tr𝐴
[Lf,Br] : 𝐹Tr𝐴 (Tr𝐴) → Tr𝐴

𝐹Tr𝐴 : Set → Set
𝐹Tr𝐴 ≜ 𝑋 ↦→ 𝐴 + (𝑋 × 𝑋)

Does this extend to endofunctors other than Set → Set?

The monadic approach

The monadic approach
Bellegarde and Hook (1994): syntax is a monad
Convenient substitution operation on numeric de Bruijn indices

data Tm : Set → Set where
var : 𝑋 → Tm 𝑋
lam : Tm 𝑋 → Tm 𝑋
app : Tm 𝑋 → Tm 𝑋 → Tm 𝑋

Bird and Paterson (1999): syntax is a scope-safe monad
Nested datatypes allow for “type-level” de Bruijn indices
Monadic structure derived via a generalised fold

data Tm : Set → Set where
var : 𝑋 → Tm 𝑋
lam : Tm (1 + 𝑋) → Tm (𝑋)
app : Tm 𝑋 → Tm 𝑋 → Tm 𝑋

Altenkirch and Reus (1999): syntax is initial algebra in SetSet

Monadic structure derived by structural or well-founded recursion

Intrinsic scoping

The parameter 𝑋 exposes the variable scope of a term
Tm ∅ is the set of closed terms
Tm𝑋 → Tm (1 + 𝑋) is term weakening

Ill-scoped terms can be eliminated
Avoids issues with out-of-scope de Bruijn indices

lam (lam (app (var (some none)) (var none))) ∈ Tm ∅
app (var (some none)) (var none) ∈ Tm (1 + (1 + ∅))

Flexibility over 𝑋 allows for some strange terms
Scope safety only works if we start from the empty set

lam (app (var none) (var (some [var [], lam (var (some (−0.381𝑖))])))
∈ Tm (List (TmC))

Monadic structure

Tm can be shown to have monad structure
Variable embedding 𝑋 → Tm 𝑋 is the unit
Nested term collapsing Tm (Tm𝑋) → Tm 𝑋 is the join

Kleisli extension acts as simultaneous substitution

sub : (𝑋 → Tm 𝑌) → Tm 𝑋 → Tm 𝑌

Defining join or sub directly is not possible
Cannot simply recurse under a binder, as the set is extended

Definition requires functoriality and a lifting operation

map : (𝑋 → 𝑌) → Tm 𝑋 → Tm 𝑌
lift : (𝑋 → Tm 𝑌) → (1 + 𝑋) → Tm (1 + 𝑌)

Lifting can itself be derived from swapping

swap : (1 + Tm 𝑋) → Tm (1 + 𝑋)

map : (𝑋 → 𝑌) → Tm 𝑋 → Tm 𝑌
map 𝑓 (var 𝑥) = var (𝑓 𝑥)
map 𝑓 (lam 𝑏) = lam (map (1 + 𝑓) 𝑏)
map 𝑓 (app 𝑔 𝑎) = app (map 𝑓 𝑔) (map 𝑓 𝑎)

swap : 1 + Tm 𝑋 → Tm (1 + 𝑋)
swap none = var none
swap (some 𝑡) = map some t

lift : (𝑋 → Tm 𝑌) → (1 + 𝑋) → Tm (1 + 𝑌)
lift 𝑓 = swap ◦ map 𝑓

sub : (𝑋 → Tm 𝑌) → Tm 𝑋 → Tm 𝑌
sub 𝑓 (var 𝑥) = 𝑓 𝑥
sub 𝑓 (lam 𝑏) = lam (sub (lift 𝑓) 𝑡)
sub 𝑓 (app 𝑔 𝑎) = app (sub 𝑓 𝑔) (sub 𝑓 𝑎)

join : Tm (Tm 𝑋) → Tm 𝑋
join = sub id

Monad laws
Monad laws established by induction
Lots of subtle helper lemmas needed

lift var = id
sub var = id
(1 + 𝑔) ◦ (1 + 𝑓) = 1 + (𝑔 ◦ 𝑓)
map 𝑔 ◦ map 𝑓 = map (𝑔 ◦ 𝑓)
lift 𝑔 ◦ (1 + 𝑓) = lift (𝑔 ◦ 𝑓)
map (1 + 𝑔) ◦ lift 𝑓 = lift (app 𝑔 ◦ 𝑓)
sub 𝑔 ◦ map 𝑓 = sub (𝑔 ◦ 𝑓)
map 𝑔 ◦ sub 𝑓 = sub (map 𝑔 ◦ f)
lift (sub 𝑔 ◦ 𝑓) = sub (lift 𝑔) ◦ lift 𝑓
sub 𝑔 ◦ sub 𝑓 = sub (sub 𝑔 ◦ 𝑓)

These generalise standard properties of substitution

[𝑠/𝑥]𝑥 = 𝑠 [𝑠/𝑥]𝑡 = 𝑡 if 𝑥 ∉ fv(𝑡)
[𝑟/𝑦] ([𝑠/𝑥]𝑡) = [[𝑟/𝑦]𝑠/𝑥] ([𝑟/𝑦]𝑡)

Models of the monadic approach

Models are built on endofunctors on Set

Tm : Set → Set Tm ∈ [Set, Set] = SetSet

Signatures are encoded as endofunctors Σ : SetSet → SetSet

lam : Tm (1 + 𝑋) → Tm𝑋

app : Tm𝑋 → Tm𝑋 → Tm𝑋

alg = [lam, app] : ΣΛ(Tm)𝑋 → Tm𝑋

ΣΛ : SetSet → SetSet

ΣΛ ≜ 𝑆 ∈ SetSet ↦→ 𝑋 ∈ Set ↦→ 𝑆 (1 + 𝑋) + (𝑆𝑋 × 𝑆𝑋)

Algebraic model is an (Id + Σ)-algebra, syntax is the initial model

[𝜂, 𝑎] : Id + ΣΛ𝑆 → 𝑆 [var, alg] : Id + ΣΛ(Tm) � Tm

Syntactic and substitution structure

The Σ-algebra structure represents constructors,
the monad structure represents substitution

Id
𝑇 Σ𝑇

𝑇𝑇
𝑎

𝜂

𝜇

How do 𝑎 and 𝜇 interact?
Is 𝜇 an Σ-algebra homomorphism?
Is 𝑎 a monad morphism?

Σ(𝑇𝑇) Σ𝑇

𝑇𝑇 𝑇

Σ𝜇

𝑎?

𝜇

Σ𝑇 ◦ Σ𝑇 𝑇𝑇

Σ𝑇 𝑇

𝑎◦𝑎

𝜇?

𝑎

Modules over monads

In general, 𝑇𝑇 is not a Σ-algebra and Σ𝑇 is not a monad
In our case, Σ𝑇 ◦ Σ𝑇 → Σ𝑇 is not a monad morphism

A. Hirschowitz and Maggesi (2010): modules over monads
Axiomatisates the relationship of constructors and substitution

Definition (Module over a monad)
Given a monad (𝑇, 𝜂, 𝜇) on C, a 𝑇 -module is a functor 𝑆 : C → C
and an action compatible with the monad structure:

𝛼 : 𝑆𝑇 → 𝑆

𝑆Id 𝑆𝑇

𝑆

𝑆𝜂

id
𝛼

𝑆𝑇𝑇 𝑆𝑇

𝑆𝑇 𝑆

𝑆𝜇

𝛼𝛼𝑇

𝛼

Modules over monads

Definition (Linear maps)
A linear map between two 𝑇 -modules (𝑅, 𝛼) → (𝑆, 𝛽) is a morphism
𝜑 : 𝑅 → 𝑆 such that

𝑅𝑇 𝑆𝑇

𝑅 𝑅

𝜑𝑇

𝛽𝛼

𝜑

𝑇 -modules and linear maps form a category Mod(𝑇).

Definition (Signature and model)
A signature Σ is a functor mapping a monad 𝑇 to a module
Σ(𝑇) ∈ Mod(𝑇) for the monad. A model is a monad 𝑇 with a
module morphism Σ(𝑇) → 𝑇 .

Modules over monads
Example
The endofunctor 𝛿 : [C, C] → [C, C], 𝛿 (𝐴) (𝑋) ≜ 𝐴(1 + 𝑋) lifts to
modules: given (𝑆, 𝛼 : 𝑆𝑇 → 𝑆), we have

(𝛿 (𝑆)◦𝑇) (𝐴) = 𝑆 (1+𝑇𝐴) 𝑆swap
𝑆 (𝑇 (1+𝐴)) 𝛼1+𝐴

𝑆 (1+𝐴) = 𝛿 (𝑆)(𝐴)

Example
The endofunctor ΣΛ is a signature that maps a monad 𝑇 to
𝛿𝑇 +𝑇 ×𝑇 . A model is a monad 𝑇 with module morphism
[𝑙, 𝑎] : 𝛿𝑇 + (𝑇 ×𝑇) → 𝑇 :

𝛿𝑇 ◦𝑇 𝑇 ◦𝑇

𝛿 (𝑇 ◦𝑇)

𝛿𝑇 𝑇

𝑙◦𝑇

𝛿𝜇

𝑙

𝜇

𝜎𝛿

(𝑇 ×𝑇) ◦𝑇 𝑇 ◦𝑇

(𝑇 ◦𝑇) × (𝑇 ◦𝑇)

𝑇 ×𝑇 𝑇

𝑎◦𝑇

𝜎×

𝜇×𝜇

𝑎

𝜇

Signatures with strength

Structure map Σ𝑇 ◦𝑇 =⇒ Σ𝑇 often given via 𝜇 : 𝑇𝑇 =⇒ 𝑇
Corresponds to recursive multiplication of subterms

Definition
Signature with strength A signature with strength Σ, 𝜎 is an
endofunctor Σ : [C, C] → [C, C] with natural transformation

𝜎𝐴,(𝐵,𝑝) : Σ𝐴 ◦ 𝐵 → Σ(𝐴 ◦ 𝐵) : [C, C] × Id/[C, C] → [C, C]

satisfying unit and associativity axioms.

A signature with strength is a signature in the previous sense

Σ(𝑇) ◦𝑇
𝜎𝑇 ,(𝑇 ,𝜂)

Σ(𝑇 ◦𝑇) Σ𝜇
Σ𝑇

Initial-algebra semantics

We can now show that (Tm, alg) is the initial model for ΣΛ

Theorem
For all models

(
𝑇 ∈ Mon(C), 𝑎 : Σ𝑇 → 𝑇 ∈ Mod(𝑇)

)
, there exists a

unique monad morphism sem : Tm =⇒ 𝑇 satisfying:

Σ(Tm)(𝑋) Tm(𝑋)

Σ(𝑇)(𝑋) 𝑇 (𝑋)

alg𝑋

sem𝑋(Σsem)𝑋

𝑎𝑋

The map is a monad and module homomorphism
Preserves constructors and substitution
Satisfies the semantic substitution lemma

Monadic approach
Mature and well-developed theory
Work on denotational and operational semantics
equations, translations, non-wellfounded syntax, etc.1

Untyped setting easy to implement in functional languages
Laws or typed syntax still needs dependent types

Endofunctors allow for more variation than needed
Context extension enough for most simple syntaxes

Endofunctors on endofunctors, modules, over monads,
application vs. composition can get confusing
Loose hierarchy between levels of contexts, terms, signatures

(𝛿 (𝑆) ◦𝑇)(𝑇𝑋) vs (𝛿 (𝑆𝑇) ◦𝑇) (𝑋) vs 𝛿 (𝑆 ◦𝑇𝑇)(𝑋)
1Ahrens (2016), Ahrens, A. Hirschowitz, et al. (2021), Ahrens and Zsido (2011),

A. Hirschowitz, T. Hirschowitz, and Lafont (2020), A. Hirschowitz and Maggesi (2012), and
Lamiaux and Ahrens (2024)

The presheaf approach

The presheaf approach

Fiore, Plotkin, and Turi (1999): syntax lives in presheaves
Sets varying over a category of contexts and renamings

Definition (Presheaf)
A (covariant) presheaf on a small category C is a functor 𝑃 : C → Set.
Presheaves and natural transformations form the category
C̃ ≜ SetC. 𝑆-sorted presheaves form the 𝑆-indexed category C̃𝑆 .

Example
Tm ∈ F̃ 𝑆 for F the category of contexts over 𝑆 is the family of sets
Tm𝛼 (Γ) ≜ {𝑡 | Γ ⊢ 𝑡 : 𝛼 }, with the variable renaming operation

ren : (Γ → Δ) → Tm𝛼 (Γ) → Tm𝛼 (Δ)

Renaming structure

Like endofunctors, renaming is baked into the definition
Most often instantiated as weakening with Γ → 𝛼 · Γ

Unlike endofunctors, contexts are a lower-class object to terms
Renaming rules are not arbitrary functions between sets

This helps eliminate confusion between context-,
term- and signature-level operations
Presheaves cannot be composed or applied to each other

Presheaves over F are equivalent to finitary endofunctors

SetF ≃ [Set, Set] 𝑓

Intrinsic typing and scoping

Presheaves conveniently capture intrinsic typing and scoping
A term 𝑡 ∈ 𝑇𝛼Γ is well-scoped in context Γ and has type 𝛼

There is a distinguished presheaf of variables
The set is inhabited if 𝜏 appears in Γ

𝑉𝛼Γ ≜

ょ[𝛼] (Γ) = F ([𝛼], Γ) [𝛼] new
𝛼 · Γ old

Γ

Context extension is equivalently presheaf exponentiation by 𝑉
Evaluation corresponds to strengthening

𝛿𝜏 (𝑃)𝛼Γ ≜ 𝑃𝛼 (𝜏 · Γ) � 𝑃𝑉𝜏𝛼 (Γ) 𝛿𝜏 (𝑃)𝛼 ×𝑉𝜏 � 𝑃𝑉𝜏𝛼 ×𝑉𝜏 → 𝑃𝛼

Signatures and models

Constructors combine into signature endofunctor Σ : F̃ 𝑆 → F̃ 𝑆

Matching input and output sorts introduces some complexity

ΣΛ𝑃𝜏 ≜
[∑
𝛼,𝛽∈𝑆

𝛿𝛼𝑃𝛽 × (𝜏 = (𝛼 � 𝛽))
]
+

[∑
𝛼∈𝑆

𝑃𝛼�𝜏 × 𝑃𝛼
]

Algebraic model is a 𝑉 + Σ-algebra, syntax is the initial model

[𝑣, 𝑎] : 𝑉 + ΣΛ(𝐴) → 𝐴 [var, alg] : 𝑉 + ΣΛ(Tm) � Tm

var : 𝑉𝛼Γ → Tm𝛼Γ

alg = [lam : Tm𝛽 (𝛼 · Γ) → Tm𝛼�𝛽 (Γ),
app : Tm𝛼�𝛽 (Γ) × Tm𝛼Γ → Tm𝛽Γ]

Substitution structure
Like endofunctors, substitution amounts to additional structure
Analogous to monad multiplication or bind

Unlike endofunctors, a presheaf cannot be a monad
A ◦ A → A is not defined, since A is not an endofunctor

First solution: a 𝑉 -relative monad structure2

Definition (Relative monad)
For functors 𝐽 , 𝐹 : C → D, 𝐹 is a 𝐽 -relative monad if it comes with a
unit and extension operator satisfying unit and associativity laws:

𝜂𝐴 : 𝐽𝐴 → 𝐹𝐴 (−)† : D(𝐽𝐴, 𝐹𝐵) → D(𝐹𝐴, 𝐹𝐵)

Example
A presheaf with substitution structure is a 𝑉 -relative monad:

𝑣 : 𝑉𝛼Γ → 𝑃𝛼Γ (−)† : Set(𝑉𝛼Γ, 𝑃𝛼Δ) → Set(𝑃𝛼Γ, 𝑃𝛼Δ)

2Altenkirch, Chapman, and Uustalu (2010)

Substitution structure

Second solution: monoid for the substitution tensor product3

Definition (Monoidal category)
A monoidal category C has a unit object 𝐼 ∈ C and a tensor product
(−) ⊗ (=) : C × C → C with natural isomorphisms

𝜆 : 𝐼 ⊗ 𝐵 � 𝐵 𝜌 : 𝐴 � 𝐴 ⊗ 𝐼 𝛼 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 � 𝐴 ⊗ (𝐵 ⊗ 𝐶)

satisfying two coherence laws.

Example
Presheaves have a monoidal structure with unit 𝑉 and tensor

(𝑃 ⊗ 𝑄)𝛼 (Δ) ≜
∫ Γ∈F

𝑃𝛼Γ × 𝑄Γ Δ

where 𝑄Γ Δ =
∏

𝛼∈𝑆 Set(𝑉𝛼Γ, 𝑄𝛼Δ).

3Fiore, Plotkin, and Turi (1999)

Substitution structure

(𝑃 ⊗ 𝑄)𝛼 (Δ) ≜
∫ Γ∈F

𝑃𝛼Γ × 𝑄Γ Δ 𝑄Γ Δ =
∏
𝛼∈𝑆

Set(𝑉𝛼Γ, 𝑄𝛼Δ)

(
Γ, 𝑡 ∈ 𝑃𝛼Γ, 𝜎 : 𝑄Γ Δ

)
∈ (𝑃 ⊗ 𝑄)𝛼 (Δ)

The coend performs a quotienting on the tuples
Enforces an internal renaming-invariance

(Γ, 𝑡, 𝜎 ◦ 𝜌) = (Δ, 𝑃 (𝜌)(𝑡), 𝜎) ∈ (𝑃 ⊗ 𝑄)𝛼Θ for 𝜌 : Γ → Δ, 𝜎 : 𝑄Δ Θ

Essential for the invertibility of structure maps

(Γ, 𝑡, 𝜌) ↦→ 𝑃 (𝜌) (𝑡) ↦→ (Δ, 𝑃 (𝜌) (𝑡), id) = (Γ, 𝑡, 𝜌)

Substitution structure

Definition
A monoid in a monoidal category (C, 𝐼 , ⊗) is an object 𝑀 with unit
𝜂 : 𝐼 → 𝑀 and multiplication 𝑀 ⊗ 𝑀 → 𝑀 satisfying unit and
associativity laws.

Example
A monoid 𝑀 in the category of presheaves comes with a variable
embedding 𝜂 : 𝑉 → 𝑀 and a substitution operation

𝜇 : 𝑀 ⊗ 𝑀 → 𝑀 (𝑀 ⊗ 𝑀)𝛼Δ = {𝑀𝛼Γ × 𝑀Γ Δ → 𝑀𝛼Δ }𝛼∈𝑆,Γ,Δ∈F

natural in Δ and dinatural in Γ:

𝜇 (Γ, 𝑡, 𝑀 (𝜌) ◦𝜎) = 𝑀 (𝜌) (𝜇 (Γ, 𝑡, 𝜎)) 𝜇 (Γ, 𝑡, 𝜎 ◦𝜌) = 𝜇 (Δ, 𝑀 (𝜌) (𝑡), 𝜎)

Models in presheaves

Presheaves with compatible algebra and
monoid structures are semantic models

Definition (Σ-monoids)
Given a strong endofunctor Σ : F̃ 𝑆 → F̃ 𝑆 , a Σ-monoid is a monoid
(𝑀,𝜂, 𝜇) with Σ-algebra structure 𝑎 : Σ𝑀 → 𝑀 satisfying

Σ𝑀 ⊗ 𝑀 Σ(𝑀 ⊗ 𝑀) Σ𝑀

𝑀 ⊗ 𝑀 𝑀

𝜎𝑀,𝑀 Σ𝜇

𝑎⊗𝑀 𝑎

𝜇

The pointed strength 𝜎𝑃,𝑄 : Σ𝑃 ⊗ 𝑄 → Σ(𝑃 ⊗ 𝑄) pushes
substitutions into subterms and under binders

Initial-algebra semantics

We may again show that Tm is the initial ΣΛ-monoid

Involves:

• Equipping Tm with a renaming operation

• Defining the strength ΣTm ⊗ Tm → Σ(Tm ⊗ Tm)
• Deriving the substitution operation Tm ⊗ Tm → Tm

• Proving functoriality, strength, and substitution laws

• Inducing generic semantics Tm → 𝑀 into any Σ-monoid 𝑀

• Proving the semantics preserves Σ-monoid structure

Presheaf approach

Widely extensible mathematical framework
Polymorphism, equational logic, second-order algebraic
theories, linearity, metavariable calculi, etc.4

Contexts, naturality, monoids, etc. easier to keep straight
Clear hierarchy of concepts and properties

Limited work on reduction and operational semantics
No obvious way to incorporate with current models

Mathematically involved and hard/impossible to formalise fully
Complex nesting of categorical structures, quotienting

4Fiore (2008), Fiore and Hamana (2013), Fiore and Hur (2010), Fiore and Mahmoud (2010),
Power (2007), and Tanaka (2000)

The family approach

Presheaf model as formalisation framework

The presheaf model is not amenable to faithful formalisation
Abstract categorical concepts not always constructive

Complex hierarchy of structures computationally expensive
Agda grinds to a halt when checking functoriality and naturality

Requiring presheaf actions everywhere is overkill
Only needed for weakening in capture-avoiding substitution

In some places, renaming is undesirable
Metavariables should not be renamed, but need to conform to setting

The family approach

Fiore and Sz. (2022): indexed families of sets almost enough
Where renaming is needed, it can be requested explicitly

Mathematical basis for common formalisation methods
Puts previously ad-hoc techniques on a formal foundation

Works around the need for quotienting
Weaker structures, more general definitions

Retains the initiality property of syntax
Practically usable framework based on a sound theory

Intrinsically-typed syntax
Instead of presheaves, we work with indexed families of sets
Direct to represent in proof assistants

Fam : 𝑆 → 𝑆∗ → Set

Family of variables and terms are inductive datatypes
Standard dependently-typed formalisation technique

data S : Set where
B : S
� : S → S → S

data Ctx : Set where
∅ : Ctx
· : S → Ctx → Ctx

data I : Fam where
new : I 𝛼 (𝛼 · Γ)
old : I 𝛽 Γ → I 𝛽 (𝛼 · Γ)

data Tm : Fam where
var : I 𝛼 Γ → Tm 𝛼 Γ
app : Tm (𝛼 � 𝛽) Γ → Tm 𝛼 Γ → Tm 𝛽 Γ
lam : Tm 𝛽 (𝛼 · Γ) → Tm (𝛼 � 𝛽) Γ

Renaming structure

Families cannot be renamed a priori
A family is fully determined by its elements

If renaming is needed, it’s axiomatised as a co/algebra structure
Free presheaf monad and cofree presheaf comonad

3𝑋𝛼Δ ≜
∑
Γ∈𝑆∗

𝑋𝛼Γ × (Γ � Δ) 2𝑋𝛼Γ ≜
∏
Δ∈𝑆∗

(Γ � Δ) → 𝑋𝛼Δ

ren :
∏

Γ,Δ∈𝑆∗
(Γ � Δ) → Tm𝛼Γ → Tm𝛼Δ � 3Tm → Tm � Tm → 2Tm

Families with renaming structure are equivalent to presheaves
The structure is only requested when needed

Substitution structure

(𝑋 ⊕ 𝑌)𝛼Δ ≜
∑
Γ∈𝑆∗

𝑋𝛼Γ × 𝑌Γ Δ

Substitution tensor product no longer monoidal
No quotienting to enforce renaming-invariance

Weaker skew-monoidal structure
Structure maps and laws are not invertible

𝜆 : 𝐼 ⊕ 𝑌 → 𝑌 𝜌 : 𝑋 → 𝑋 ⊕ 𝐼 𝛼 : (𝑋 ⊕ 𝑌) ⊕ 𝑍 → 𝑋 ⊕ (𝑌 ⊕ 𝑍)

3-algebras are equivalently modules for 𝐼
3𝑋 combines a term with a substitution of variables for variables

3𝑋 � 𝑋 ⊕ 𝐼 (3𝑋 → 𝑋) � 𝑋 ⊗ 𝐼 → 𝑋

Substitution monoids same as before
May ask for a monoid with compatible 3-algebra structure

Signatures with pointed strength

Signatures are family endofunctors with a pointed 3-strength
Point maps variables to variables, renaming allows weakening

𝜎𝑋,𝑌 : Σ𝑋 ⊕ 𝑌 → Σ(𝑋 ⊕ 𝑌) : Fam × 𝐼/3-Alg → Fam

For context extension 𝛿 , strength is defined via lift
Extends both contexts of a substitution rule

lift(𝑋,𝑝,𝑥) : 𝑌Γ Δ → 𝑌(𝜏 ·Γ)
(𝜏 ·Δ) : 𝐼/3-Alg → Set

lift(𝑋,𝑝,𝑥) 𝜎 new ≜ 𝑝 new

lift(𝑋,𝑝,𝑥 𝜎 (old 𝑣) ≜ 𝑥 (𝜎 𝑣, old)

𝜎𝛿
𝑋,𝑌 (Γ, 𝑡, 𝜎) ≜ (𝜏 · Γ, 𝑡, lift𝜎)

Signatures with pointed strength
Problem: 3-Alg is not monoidal, 𝜎 is not associative
No quotienting to equate reassociated substitutions

Solution: associativity in terms of balanced maps
Functions 𝑓 : 𝑋 ⊕ 𝑌 → 𝑍 that equate quotientable tuples

𝑓 (Γ, 𝑡, 𝜎 ◦ 𝜌) = 𝑓 (Δ, 𝑥 (𝑡, 𝜌), 𝜎)

(Σ𝑊 ⊕ 𝑋) ⊕ 𝑌 Σ(𝑋 ⊕ 𝑌) ⊕ 𝑍 Σ((𝑋 ⊕ 𝑌) ⊕ 𝑍) Σ(𝑋 ⊕ (𝑌 ⊕ 𝑍))

Σ𝑊 ⊕ (𝑋 ⊕ 𝑌) Σ𝑊 ⊕ 𝑍 Σ(𝑊 ⊕ 𝑍)

𝛼Σ𝑊,𝑋,𝑌

id⊕𝑓 𝜎𝑊,𝑍

𝜎𝑋,𝑌 ⊕𝑍 𝜎𝑋⊕𝑌,𝑍 Σ𝛼𝑋,𝑌,𝑍

Σ(𝑋⊕𝑓)

Associativity law for 𝜎𝛿 generalises all the lemmas for lift

lift (𝜍 ◦ 𝜌) = lift 𝜍 ◦ lift𝐼 𝜌

lift (ren 𝜚 ◦ 𝜎) = ren (lift𝐼 𝜚) ◦ lift𝜎

lift (sub 𝜍 ◦ 𝜎) = sub (lift 𝜍) ◦ lift𝜎

Models and initiality

Models are Σ-monoids as before
Monoids are automatically 3-algebras: renaming is
substitution of variables for variables

Family of terms is the initial Σ-monoid
Both renaming and substitution is induced by initiality

The initial model in Fam is provably equivalent to the model in F̃ 𝑆

All the theory faithfully lifts to the presheaf model

The family model

First steps of adapting the presheaf model to a constructive setting
Promising and categorically motivated formulation

Simple formalisation in dependently-typed proof assistants
Code generation tool to go from a syntax description
to an intrinsically-typed metatheoretic framework

Elegantly incorporates second-order features
Metavariables, metasubstitution, equational systems

More complex type theories nontrivial to adapt
Linear substitutions, polymorphism, etc. still heavy to formalise

Syntax description file
syntax Λ

type
N : 0-ary
� : 2-ary

term
app : (𝛼 � 𝛽) 𝛼 → 𝛽
lam : 𝛼.𝛽 → (𝛼 � 𝛽)

Syntactic and semantic operations
wkn : Λ 𝛼 Γ → Λ 𝛼 (𝛽 · Γ)
[_/] : Λ 𝛼 Γ → Λ 𝛽 (𝛼 · Γ) → Λ 𝛽 ΓJ_K : Λ 𝛼 Γ →𝑀 𝛼 Γ

Correctness laws

syn-sub-lemma : [𝑟/]
(
[𝑠/] 𝑡

)
≡
[
[𝑟/] 𝑠 /

] (
[𝑟/] 𝑡

)
sem-sub-lemma : J [𝑠/] 𝑡 K ≡𝑀.sub J𝑠K J𝑡K

Conclusions

Finding models of syntax enables generic metatheory
Derivation of tedious boilerplate code for free

Functorial models make context-dependence explicit
Functoriality highlights importance of renaming

Family model weakens assumptions for the sake of practicality
Also clarifies roles of variables, weakening, etc.

Paper and (currentlybroken) Agda library can be found at

https://tinyurl.com/agda-soas

Thank you!

https://tinyurl.com/agda-soas

References I

Ahrens, Benedikt (2016). “Modules over relative monads for syntax and semantics”. In:
Mathematical Structures in Computer Science 26.1, pp. 3–37. doi:
10.1017/S0960129514000103.

Ahrens, Benedikt, André Hirschowitz, Ambroise Lafont, and Marco Maggesi (2021).
“Presentable signatures and initial semantics”. In: Logical Methods in Computer Science
Volume 17, Issue 2. doi: 10.23638/LMCS-17(2:17)2021.

Ahrens, Benedikt and Julianna Zsido (2011). Initial Semantics for higher-order typed syntax in
Coq. arXiv: 1012.1010 [cs.LO].

Altenkirch, Thorsten, James Chapman, and Tarmo Uustalu (2010). “Monads Need Not Be
Endofunctors”. In: Proceedings of the 13th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS 2010). Ed. by Luke Ong. Lecture
Notes in Computer Science (LNCS). Springer, pp. 297–311. doi:
10.1007/978-3-642-12032-9_21.

Altenkirch, Thorsten and Bernhard Reus (1999). “Monadic Presentations of Lambda Terms
Using Generalized Inductive Types”. In: Proceedings of the 13th International Workshop on
Computer Science Logic (CSL 1999). Vol. 1683. Lecture Notes in Computer Science
(LNCS). Springer, pp. 453–468. doi: 10.1007/3-540-48168-0_32.

Bellegarde, Françoise and James Hook (1994). “Substitution: A Formal Methods Case Study
Using Monads and Transformations”. In: Science of Computer Programming 23.2-3,
pp. 287–311. doi: 10.1016/0167-6423(94)00022-0.

Bird, Richard and Ross Paterson (1999). “De Bruijn Notation as a Nested Datatype”. In:
Journal of Functional Programming 9.1, pp. 77–91. doi: 10.1017/S0956796899003366.

https://doi.org/10.1017/S0960129514000103
https://doi.org/10.23638/LMCS-17(2:17)2021
https://arxiv.org/abs/1012.1010
https://doi.org/10.1007/978-3-642-12032-9_21
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1017/S0956796899003366

References II

Fiore, Marcelo (2008). “Second-Order and Dependently-Sorted Abstract Syntax”. In:
Proceedings of the 23rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2008), pp. 57–68. doi: 10.1109/LICS.2008.38.

Fiore, Marcelo and Makoto Hamana (2013). “Multiversal Polymorphic Algebraic Theories:
Syntax, Semantics, Translations, and Equational Logic”. In: Proceedings of the 28th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013). IEEE Computer
Society, pp. 520–529. doi: 10.1109/LICS.2013.59.

Fiore, Marcelo and Chung-Kil Hur (2010). “Second-Order Equational Logic (Extended
Abstract)”. In: Proceedings of the 24th International Workshop on Computer Science Logic
(CSL 2010). Ed. by Anuj Dawar and Helmut Veith, pp. 320–335. doi:
10.1007/978-3-642-15205-4_26.

Fiore, Marcelo and Ola Mahmoud (2010). “Second-Order Algebraic Theories”. In: Proceedings
of the 35th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2010). Ed. by Petr Hliněný and Antonín Kučera. Vol. 6281. Lecture Notes in
Computer Science (LNCS). Springer, pp. 368–380. doi:
10.1007/978-3-642-15155-2_33.

Fiore, Marcelo, Gordon Plotkin, and Daniele Turi (1999). “Abstract Syntax and Variable
Binding”. In: Proceedings of the 14th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 1999), pp. 193–202. doi: 10.1109/LICS.1999.782615.

Fiore, Marcelo and Dmitrij Szamozvancev (2022). “Formal Metatheory of Second-Order
Abstract Syntax”. In: Proceedings of the ACM on Programming Languages 6.POPL,
53:1–53:29. doi: 10.1145/3498715.

https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1145/3498715

References III

Hirschowitz, André, Tom Hirschowitz, and Ambroise Lafont (2020). “Modules over Monads
and Operational Semantics”. In: Proceedings of the 5th International Conference on Formal
Structures for Computation and Deduction (FSCD 2020). Ed. by Zena M. Ariola. Vol. 167.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 12:1–12:23. doi:
10.4230/LIPICS.FSCD.2020.12.

Hirschowitz, André and Marco Maggesi (2010). “Modules over Monads and Initial Semantics”.
In: 208.5, pp. 545–564. doi: 10.1016/j.ic.2009.07.003.

Hirschowitz, André and Marco Maggesi (2012). “Initial Semantics for Strengthened
Signatures”. In: Proceedings of the 8th Workshop on Fixed Points in Computer Science
(FICS 2012). Ed. by Dale Miller and Zoltán Ésik. Vol. 77. EPTCS, pp. 31–38. doi:
10.4204/EPTCS.77.5.

Lamiaux, Thomas and Benedikt Ahrens (2024). An Introduction to Different Approaches to
Initial Semantics. arXiv: 2401.09366 [cs.LO].

Power, John (2007). “Abstract Syntax: Substitution and Binders”. In: Electronic Notes in
Theoretical Computer Science 173, pp. 3–16. doi: 10.1016/j.entcs.2007.02.024.

Tanaka, Miki (2000). “Abstract Syntax and Variable Binding for Linear Binders”. In:
Proceedings of the 25th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2000). Ed. by Mogens Nielsen and Branislav Rovan. Vol. 1893.
Lecture Notes in Computer Science (LNCS). Springer, pp. 670–679. doi:
10.1007/3-540-44612-5_62.

https://doi.org/10.4230/LIPICS.FSCD.2020.12
https://doi.org/10.1016/j.ic.2009.07.003
https://doi.org/10.4204/EPTCS.77.5
https://arxiv.org/abs/2401.09366
https://doi.org/10.1016/j.entcs.2007.02.024
https://doi.org/10.1007/3-540-44612-5_62

	References

