
Embedded Domain-Specific Languages

CS141 – Functional Programming
University of Warwick

11 March 2019

Dima Szamozvancev
University of Cambridge

ds709@cl.cam.ac.uk

Pop quiz

Guess the domain!

Graphics

Music

Animation

Web server

Web design

Testing

main :: IO ()
main = hspec $ do
 describe "Prelude.head" $ do
 it "returns the first element of a list" $ do
 head [23 ..] `shouldBe` (23 :: Int)

Graphics

Music

Animation

Web server

Web design

Testing
menu !:: Css
menu = header !|> nav ?
 do background white
 color "#04a"
 fontSize (px 24)
 padding 20 0 20 0
 textTransform uppercase

Graphics

Music

Animation

Web design

Testing

hilbert !:: Int !-> Trail
hilbert 0 = mempty
hilbert n = hilbert' (n-1) # reflectY !<> vrule 1
 !<> hilbert (n-1) !<> hrule 1
 !<> hilbert (n-1) !<> vrule (-1)
 !<> hilbert' (n-1) # reflectX
 where
 hilbert' m = hilbert m # rotateBy (1/4)

diagram !:: Diagram B
diagram = strokeT (hilbert 6) # lc silver
 # opacity 0.3

Web server

Graphics

Music

Animation

Web design

Testing

hilbert !:: Int !-> Trail
hilbert 0 = mempty
hilbert n = hilbert' (n-1) # reflectY !<> vrule 1
 !<> hilbert (n-1) !<> hrule 1
 !<> hilbert (n-1) !<> vrule (-1)
 !<> hilbert' (n-1) # reflectX
 where
 hilbert' m = hilbert m # rotateBy (1/4)

diagram !:: Diagram B
diagram = strokeT (hilbert 6) # lc silver
 # opacity 0.3

Web server

Graphics

Music

Animation

Web design

Testing
tricycle !:: Behaviour Shape
tricycle u =
 buttonMonitor u `over`
 withColor (cycle3 green yellow red u)
 (stretch (wiggleRange 0.5 1) circle)
 where
 cycle3 c1 c2 c3 u =
 c1 `untilB` nextUser_ lbp u !!==>
 cycle3 c2 c3 c1

Web server

Graphics

Music

Animation

Web design

Testing
tricycle !:: Behaviour Shape
tricycle u =
 buttonMonitor u `over`
 withColor (cycle3 green yellow red u)
 (stretch (wiggleRange 0.5 1) circle)
 where
 cycle3 c1 c2 c3 u =
 c1 `untilB` nextUser_ lbp u !!==>
 cycle3 c2 c3 c1

Web server

Graphics

Music

Animation

Web design

Testing

Web server

m1 = c' en :|: tripletE g fs g :|:
 start (melody :< a :| g :~| r :| b :| c')
m2 = c_ majD ec :|: pad3 (r hr) :|:
 g!__ dom7 inv inv ec :|: c_ majD ec

comp :: Score
comp = score section "The end"
 setKeySig c_maj
 setTempo 100
 withMusic $ m1 `hom` m2

Graphics

Music

Animation

Web design

Testing main !:: IO ()
main = do
 scotty 3000 $ do
 get "/hello/:name" $ do
 name !<- param "name"
 text ("Hello " !<> name !<> "!")
 get "/users/:id" $ do
 id !<- param "id"
 json (filter (matchesId id) allUsers)

Web server

Why was this so easy?

Domain-Specific Languages

Domain-Specific Languages

A domain-specific language (DSL) is a computer
language specialised to a particular application domain.

If in doubt, quote Wikipedia

This is in contrast to a general-purpose language (GPL),
which is broadly applicable across domains.

(duh)

GPL ~ Jack of all trades DSL ~ Master of one

Examples of DSLs

Examples of DSLs
Markup languages

HTML, Markdown, LaTeX
<html>
 <body>
 <p>Normal text.!</p>
 <p>Bold! text.!</p>
 !</body>
!</html>

Heading

+ List with _italic_ text
 - !**Bold!** text
 - [Link](https:!//commonmark.org)

> Block quote

Examples of DSLs
Markup languages

HTML, Markdown, LaTeX

Modelling languages
UML, Z

Examples of DSLs
Markup languages

HTML, Markdown, LaTeX

Modelling languages
UML, Z

Description languages
Verilog, PostScript

module Sign (A, B, Y1, Y2, Y3);
 input [2:0] A, B;
 output [3:0] Y1, Y2, Y3;
 reg [3:0] Y1, Y2, Y3;
 always @(A or B)
 begin Y1=+A/-B;
 Y2=-A+-B;
 Y3=A*-B; end
endmodule

newpath
100 200 moveto
200 250 lineto
100 300 lineto
closepath
gsave
0.5 setgray
fill
grestore
4 setlinewidth
0.75 setgray
stroke

Examples of DSLs
Markup languages

HTML, Markdown, LaTeX

Modelling languages
UML, Z

Description languages
Verilog, PostScript

Special-purpose languages
SQL, Yacc, MATLAB, Sonic Pi

SELECT Name FROM Customers WHERE EXISTS
 (SELECT Item FROM Orders
 WHERE Customers.ID = Orders.ID
 AND Price < 50)

with_fx :reverb, mix: 0.2 do
 loop do
 play scale(:Eb2, :major_pentatonic,
 num_octaves: 3).choose,
 release: 0.1, amp: rand
 sleep 0.1
 end
end

Examples of DSLs
Markup languages

HTML, Markdown, LaTeX

Modelling languages
UML, Z

Description languages
Verilog, PostScript

Special-purpose languages
SQL, Yacc, MATLAB, Sonic Pi

Other?
Automator, Siri, ZORK > look under the rug

Why use DSLs?

Focus on a particular problem

Higher level of abstraction

Domain-specific expressivity

Optimisation opportunities

Made for domain experts,  
not programmers

Why use DSLs?

Why use DSLs?

Focus on a particular problem

Higher level of abstraction

Domain-specific expressivity

Optimisation opportunities

Made for domain experts,  
not programmers

Why not use DSLs?

Need to learn another language

Need compiler, tooling, support

Lose general expressivity

Cutting out the middleman

CL compiles HL compiles DSLCL compiles HL DSL

CL compiles HL compiles DSL

CL compiles HL DSL

Cutting out the middleman

Domain-Specific Languages

Embedded Domain-Specific Languages

Embedded Domain-Specific Languages

A domain-specific language implemented inside some host language

Usually built as a library or a package, so distinction is not always clear

My rules of thumb:

1. Is the domain recognisable from the syntax?
2. Does the syntax hide the complexities of the host language?

EDSLs vs. DSLs

+
Inherit compiler, tooling, and other
features of the host language

Combine with host language
programs and other EDSLs

Easy to extend

No need to learn another language

Usable without familiarity  
with the host language

–
Constrained by the host language
syntax and features

Possibly less efficient

The cost argument
(John Hughes)

De
ve

lo
pm

en
t c

os
t

Software lifecycle

GPLs

DSLs

EDSLs

Examples of EDSLs

The term appears more frequently in the  
context of functional programming

Closest notion in object-oriented languages: 
fluent programming via method chaining

Fluent interfaces

Simulate “English prose” within the syntactic constraints of the language

Often used with the Builder pattern, and testing and mocking frameworks

public Person getPerson() {
 return Person.builder()
 .name("John")
 .age(27)
 .occupation("Lawyer")
 .build();
}

List<Integer> transactionsIds =
 transactions.stream()
 .filter(t !-> t.getType() !== Transaction.GROCERY)
 .sorted(comparing(Transaction!::getValue).reversed())
 .map(Transaction!::getId)
 .collect(toList());

Fluent interfaces

Simulate “English prose” within the syntactic constraints of the language

Often used with the Builder pattern, and testing and mocking frameworks

IEnumerable<string> query = translations
 .Where (t !=> t.Key.Contains("a"))
 .OrderBy (t !=> t.Value.Length)
 .Select (t !=> t.Value.ToUpper());

Fluent interfaces

Simulate “English prose” within the syntactic constraints of the language

Often used with the Builder pattern, and testing and mocking frameworks

var foo = 'bar'
var beverages = { tea: ['chai', 'matcha', 'oolong'] };

foo.should.be.a('string');
foo.should.equal('bar');
foo.should.have .lengthOf(3);
beverages.should.have.property('tea').with.lengthOf(3);

Fluent interfaces

Simulate “English prose” within the syntactic constraints of the language

Often used with the Builder pattern, and testing and mocking frameworks

Embedded DSLs

Functional Embedded DSLs

Functional Embedded DSLs

Abstractions of functional languages allow for  
a more systematic way of embedding DSLs

Functional Embedded DSLs

Abstractions of functional languages allow for  
a more systematic way of embedding DSLs

type Diagram

Express domain as an abstract type

Functional Embedded DSLs

Abstractions of functional languages allow for  
a more systematic way of embedding DSLs

type Diagram

Express domain as an abstract type and associated operations:

Functional Embedded DSLs

Abstractions of functional languages allow for  
a more systematic way of embedding DSLs

type Diagram
shape !:: Shape !-> Diagram

Express domain as an abstract type and associated operations:
embedding

Functional Embedded DSLs

Abstractions of functional languages allow for  
a more systematic way of embedding DSLs

type Diagram
shape !:: Shape !-> Diagram
onTop !:: Diagram !-> Diagram !-> Diagram
nextTo !:: Diagram !-> Diagram !-> Diagram

Express domain as an abstract type and associated operations:
embedding, combinators

Functional Embedded DSLs

Abstractions of functional languages allow for  
a more systematic way of embedding DSLs

type Diagram
shape !:: Shape !-> Diagram
onTop !:: Diagram !-> Diagram !-> Diagram
nextTo !:: Diagram !-> Diagram !-> Diagram
draw !:: Diagram !-> Svg

embedding, combinators and evaluators
Express domain as an abstract type and associated operations:

Deep and shallow embedding

Dual ways of embedding a domain in the host language

Deep Shallow

Interpret as semantics right away

Type synonym
Embedding: interpreter
Combinators: domain functions
Evaluator: identity function

Intermediate syntactic representation

Algebraic data type
Embedding: constructor
Combinators: constructors
Evaluator: interpreter

type Region
circle !:: Radius !-> Region
outside !:: Region !-> Region
inter !:: Region !-> Region !-> Region
inRegion !:: Point !-> Region !-> Bool

data Region = Circle Radius
 | Outside Region
 | Inter Region Region

circle !:: Radius !-> Region
circle = Circle
outside !:: Region !-> Region
outside = Outside
inter !:: Region !-> Region !-> Region
inter = Inter

Deep Shallow

type Region = Point !-> Bool 
 
 

circle !:: Radius !-> Region
circle r = \p !-> magnitude p !<= r
outside !:: Region !-> Region
outside rg = \p !-> not (rg p)
inter !:: Region !-> Region !-> Region
inter rg1 rg2 = \p !-> rg1 p !&& rg2 p

data Region = Circle Radius
 | Outside Region
 | Inter Region Region

circle !:: Radius !-> Region
circle = Circle
outside !:: Region !-> Region
outside = Outside
inter !:: Region !-> Region !-> Region
inter = Inter

Deep Shallow

type Region = Point !-> Bool 
 
 

circle !:: Radius !-> Region
circle r = \p !-> magnitude p !<= r
outside !:: Region !-> Region
outside rg = \p !-> not (rg p)
inter !:: Region !-> Region !-> Region
inter rg1 rg2 = \p !-> rg1 p !&& rg2 p

inRegion !:: Point !-> Region !-> Bool
inRegion p (Circle r) =
 magnitude p !<= r
inRegion p (Outside rg) =
 not (inRegion p rg)
inRegion p (Inter rg1 rg2) =
 inRegion p rg1 !&& inRegion p rg2

inRegion !:: Point !-> Region !-> Bool
inRegion p rg = rg p

Deep Shallow

Deep vs. shallow embedding
Two dimensions of extensibility: 

adding new operations, and adding new interpretations
e.g. union of two regions e.g. area of a region

Difficult to add a new operation
Extend the data type
Define new combinator
Add new case to every evaluator

Easy to add a new interpreter
Define new evaluator
Pattern-match on the AST

Easy to add a new operation
Define new combinator

Difficult to add a new interpreter
Usually need to change  
the type representation

Deep vs. shallow embedding

This duality is an instance of the expression problem

"The expression problem is a new name for an old problem. The goal
is to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling
existing code, and while retaining static type safety (e.g., no casts)."

Phil Wadler

Still a very active area of research!

Functional EDSLs

Functional EDSLs in Haskell

Functional EDSLs in Haskell

EDSLs are at the intersection of PL research,  
industrial applications, and pet projects

And so is Haskell!

Functional EDSLs in Haskell

Functional EDSLs in Haskell

EDSLs are at the intersection of PL research,  
industrial applications, and pet projects

And so is Haskell!

Designing EDSLs is an interesting programming challenge, and
Haskell provides a huge playground for experimentation

Several reasons why Haskell is a great choice for EDSLs

1. Syntactic flexibility

Very minimalistic syntax
Little boilerplate
Type inference
Application by whitespace

Syntactic sugar
Monadic do-notation
Infix operators and sections
Overloading

Flexible source code layout
Whitespace-insensitive

1. Syntactic flexibility

menu !:: Css
menu = header !|> nav ?
 do background white
 color "#04a"
 fontSize (px 24)
 padding 20 0 20 0
 textTransform uppercase

Very minimalistic syntax
Little boilerplate
Type inference
Application by whitespace

Syntactic sugar
Monadic do-notation
Infix operators and sections
Overloading

Flexible source code layout
Whitespace-insensitive

1. Syntactic flexibility

m1 = c' en :|: tripletE g fs g :|:
 start (melody :< a :| g
 :~| r :| b :| c')
m2 = c_ majD ec :|: pad3 (r hr) :|:
 g!__ dom7 inv inv ec :|: c_ majD ec

comp :: Score
comp = score section "The end"
 setKeySig c_maj
 setTempo 100
 withMusic $ m1 `hom` m2

Very minimalistic syntax
Little boilerplate
Type inference
Application by whitespace

Syntactic sugar
Monadic do-notation
Infix operators and sections
Overloading

Flexible source code layout
Whitespace-insensitive

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

Combination !~> Monoid
Pretty printers, diagrams, music

mconcat [text "foo", space, text "bar"]
square 1 !<> circle 2

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

Combination !~> Monoid

parseString "CS141" !!<|> many integer

Choice !~> Alternative
Parser combinators

Pretty printers, diagrams, music

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

Combination !~> Monoid

("hello",("world","!!!"))^._2._2.to length

Choice !~> Alternative

Composition !~> Category
Lenses

Parser combinators

Pretty printers, diagrams, music

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

Combination !~> Monoid

Choice !~> Alternative

Composition !~> Category

Sequencing !~> Monad
Everything

sat !:: (Char !-> Bool) !-> Parser Char
sat p = do x !<- item
 guard (p x)
 result x

Lenses

Parser combinators

Pretty printers, diagrams, music

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

hilbert !:: Int !-> Trail
hilbert 0 = mempty
hilbert n = hilbert' (n-1) # reflectY !<> vrule 1
 !<> hilbert (n-1) !<> hrule 1
 !<> hilbert (n-1) !<> vrule (-1)
 !<> hilbert' (n-1) # reflectX
 where
 hilbert' m = hilbert m # rotateBy (1/4)

diagram !:: Diagram B
diagram = strokeT (hilbert 6) # lc silver
 # opacity 0.3

2. Powerful abstractions

Type classes
Exploit the formal structure and
properties of the domain
Overloaded functions that work
on all instances of a class
Syntactic sugar, e.g. do-notation

Denotational design
Think of the domain in terms  
of its formal semantics
Implementation follows the  
laws of the semantic domain

main !:: IO ()
main = withSQLite "people.sqlite" $ do
 createTable people
 insert_ people […]

 adultsAndTheirPets !<- query $ do
 person !<- select people
 restrict (person ! #age .!>= 18)
 return (person ! #name :*: person ! #pet)
 liftIO $ print adultsAndTheirPets

3. Type system

Strong typing
Guide EDSL development and use
(Sometimes) good documentation
Error prevention

Domain-specific type systems
Type-level programming features to
precisely model the domain
Custom compiler errors
“Logic” programming with type classes
Term- and type-level embedding

3. Type system

Strong typing
Guide EDSL development and use
(Sometimes) good documentation
Error prevention

Domain-specific type systems
Type-level programming features to
precisely model the domain
Custom compiler errors
“Logic” programming with type classes
Term- and type-level embedding

type UserAPI =
 "user" !:> Capture "userid" Integer
 !:> Get '[JSON] User
 :!!<|> "list-all" !:> "users"
 !:> Get '[JSON] [User]
!-- equivalent to 'GET /user/:userid'
!-- or 'GET /list-all/users'

userAPI !:: Proxy UserAPI
userAPI = Proxy

userDocs !:: String
userDocs = markdown $ docs userAPI

start !:: IO ()
start = do
 run 8000 (serve userAPI userServer)

3. Type system

Strong typing
Guide EDSL development and use
(Sometimes) good documentation
Error prevention

Domain-specific type systems
Type-level programming features to
precisely model the domain
Custom compiler errors
“Logic” programming with type classes
Term- and type-level embedding

score withMusic $ c qn :-: b qn

type error:
 • Major sevenths are not permitted  
 in harmony: C and B
 • In the expression:  
 score withMusic $ c qn :-: b qn

score setRuleSet empty 
 withMusic $ c qn :-: b qn ✓

✘

Conclusions

Conclusions

EDSLs are useful, fun to work with and even more fun to work on

Good exercise in programming, using advanced language
features and even user experience design

Don't be afraid to experiment, break (monad) rules and try weird
hacks – you might end up inventing something cool

Conclusions

EDSLs are useful, fun to work with and even more fun to work on

Good exercise in programming, using advanced language
features and even user experience design

Don't be afraid to experiment, break (monad) rules and try weird
hacks – you might end up inventing something cool

Conclusions

EDSLs are useful, fun to work with and even more fun to work on

Good exercise in programming, using advanced language
features and even user experience design

Don't be afraid to experiment, break (monad) rules and try weird
hacks – you might end up inventing something cool

Also a great for third year projects (ask Michael)

Thank you!
Any questions?

Dima Szamozvancev
University of Cambridge

ds709@cl.cam.ac.uk

