Semantics of
temporal type systems

Dima Szamozvancev

Downing College
ds709@cam.ac.uk

Supervised by
Dr Neel Krishnaswami

Interactive programming

Event-driven programming

Event listeners

Callbacks
Asynchronous programming

Event handlers

Pros
Efficient
Widely used

Event loop

Event dispatching thread

Cons
Low-level

Complicated and
error-prone

Functional reactive programming

N

a — d

N

d X d

Q.: withColor c
(stretch (wiggleRange 0.5 1) circle)

where c = red Lbp u blue
Pros cons
Declarative Performance issues

Compositional Violates causality

Pull vs. push-based FRP

Pull-based
(Demand-driven)

Streams

Polling until an
event happens

Latency issues

High-level but
Inefficient

Push-based
(Data-driven)

Callbacks

Asynchronous
event handling

Instantaneous
reactivity

Low-level but
efficient

Can we combine intuitive semantics
with performance and correctness?

N

Efficient FRP Theoretical
Implementations foundations of FRP

Curry-Howard for FRP

Jeffrey (2012), Jeltsch (2012)

LTL
Propositions

modality

& modality
U modality

FRP
Reactive types

Behaviours
Events

Processes

Advantages of LTL

Differentiate constant (stable) and
time-varying (reactive) values

Restrict event handlers to only use
values that are always available

let event ¢ = keyPress 1n
let colour =
1f ¢ = then red else blue 1n
let event shape = selectShape 1n
withColour colour shape

Disadvantages of LTL

Naive inductive Implementation of events
(as an infinite sum) leads to polling

An event happens now, or on the next time step,
or the one after that, ...

Instead, events should be implemented
as an existential type

An event happens after some unkRnown delay.

LLTL can lead to inetfficient
implementations

(OA),, holds iff A; ho
Iff A,, ho
(CA), = uX.A,V (eX),

data ¢A = Now A
Later o(¢A)

case (e :: ©A) of
Now a — .. :
| Later 1 — .. Polling!

10

1C

1C

sforsomei > n

s or (eA), holds
or (e°A), holds...

(CA), = Tk > 0.(e"A),

OA = 2k=0.ek A

case (e :: ©A) of

(k, a) —> ..

Contributions

Categorical model of linear temporal logic
with a non-inductive diamond modality

Formalised high-level language
for reactive programming

Sound categorical semantics of the language

11

Categorical models of
constructive temporal logic

Cartesian closed category C

Cartesian comonad
EA: A— A 5A:

u: T — O ma B:

-strong monad ¢
na: A — OA

Sti,B: AX OB — O

12

A —

AX OB —

A X B)

A

(A X B)

pa: OCA — OA

Category of reactive types

K

——
Set L Set!

_/
G

. Set! — Set O Set! — Set

(OA)n = (KGA)n = [1150 Ak (CA)n = X0 ('kA)n
A function from time to types A pair of a time and delayed value

Box types are always Diamond types are
inhabited eventually inhabited

13

Denotation of types

A:x=Unit| AXB|A+B|A— B| Stable A| Event A

[Unit] =T
|[AXxB] = [A] ® [B
|[A+ B] = [A] @ [B]
A — B = [A] = [B]
|Stable A] = O[A]
[Event A] = O[A]

handleEvt : Event A — Stable (A — Event B) — Event B now
handleEvt = Ax. Ay. let stable f; = y in

event (let evt e = x in (let evt ¢’ = extract f; e in pure ¢'))

14

Future work

Complete categorical semantics

Add temporal recursive types

Stream A = vx.A X Event x

Establish equivalence of ¢ and CPS

OA%—l —|A
(A—> 1) > L

&

Implement the language

15

Summary and conclusions

A high-level reactive language
with events as a primitive type

A concrete categorical model of constructive
temporal logic with an existential ¢ type

A categorical semantics which allows for
an efficient, CPS-like implementation

Combines the abstract semantics of FRP,
temporal properties of LTL and efficiency of CPS

16

Semantics of
temporal type systems

github.com/DimaSamoz/temporal-type-systems

ds709@cam.ac.uk

17

