Well-typed Music
Does Not Sound Wrong

(Experience Report)
Dmitrij Szamozvancev Michael B. Gale
University of Cambridge University of Warwick
ds709@cam.ac.uk m.gale@warwick.ac.uk

Haskell Symposium 2017
Oxford, United Kingdom
8 September 2017

Does this piece sound good?

PN

f #fbi%r%

R\

Mezzo example

4 e
ST i

import Mezzo

vli=daqgn :[: ¢ qgn :|[: fs gn :|: g en
cl:aen :|: bf gn :|l: a qgn :|: g hn

v2 =d gn :|: ef gn :|: d gn :|:
cl:a_en :|: b_qgn :|: a_qn :|:

main = playLive (vl :-: v2)

Mezzo example

4 e
W

import Mezzo

vli=dgn :|: g qn :|[: fs gn :|: g en
:l: aen :|: bfgn :|l: a qn :[: g hn

v2 =d gn :|: ef gn :|: d gn :|:
cl:a_en :|l: b_qgn :|: a_qn :|:

main = playLive (vl :-: v2)

Mezzo example

ot = |

P

import Mezzo

« Major sevenths are not permitted in harmony:
Bb and B_

« Direct motion 1into a perfect octave 1s forbidden:
Bb and B_, then A and A_

« Parallel octaves are forbidden:
A and A, then G and G_

Mezzo example

éﬂir’fﬁfbi%;%? |

import Mezzo

Mezzo example

b1 T —
T e

import Mezzo

« Direct motion i1nto a perfect octave 1s forbidden:
Bb and B_, then A and A_

« Parallel octaves are forbidden:
A and A, then G and G_

import Mezzo

comp =dgn :-: dgn :|: gqgn :-: ef gqn :|: fs gn :-: d gn
:|: gen :-: bf_en :|: aen :-: a_en :|: bf gn :-: b_ gn
:l:aqgn :-:a_qgn :|l: g hn :-: g_ hn

main = playLive' $ score setRuleSet strict withMusic comp

) 00O N O U1 &~ W N B

1

IDE-Haskell

v Error

Mezzo example

4 e
ST i

import Mezzo

vli=daqgn :[: ¢ qgn :|[: fs gn :|: g en
cl:aen :|: bf gn :|l: a qgn :|: g hn

v2 =d gn :|: ef gn :|: d gn :|:
cl:a_en :|: b_qgn :|: a_qn :|:

main = playLive (vl :-: v2)

Mezzo example

i S=sr=
S T

import Mezzo

vli=daqgn :[: ¢ qgn :|[: fs gn :|: g en
cl:aen :|: bf gn :|l: a qgn :|: g hn

v2 =d gn :|: ef gn :|: d gn :|:
cl:a_en :|: g qgn :|: fs_gn :|:

main = playLive (vl :-: v2)

10

Music theory

Western tonal music is governed by rules:

o What notes sound good together,
Or in sequence

o How voices should interact

o How a piece should be structured

Learning and following rules requires
care, attention, and time

11

Mezzo

A Haskell EDSL for music composition

Maintains a static model of music
A dependently typed music algebra

Converts composition mistakes into type errors

Compiler errors describe the nature and
location of mistakes

12

Behind the scenes

The Mezzo recipe

1. Take the Haskore music algebra

14

The Mezzo recipe

2. Add some dependent types

15

The Mezzo recipe

3. Hide everything under an EDSL

16

The Mezzo recipe
A AAAA

4. Add MIDI export functionality

17

The Haskore music algebra

An algebraic description of music
Primitives and two composition operators

M ::= NOTE | REST | M:--M | M:|: M

Primitive values Harmonic Melodic
composition composition

18

The Haskore music algebra

An algebraic description of music
Primitives and two composition operators

M ::= NOTE | REST | M:--M | M:|: M

Primitive values Harmonic Melodic
composition composition

data Music = Note Pit Dur
Rest Dur

Music :-: Music
Music :|: Music

19

The Haskore music algebra
—
bt =

((D5:]: C5):=:F4):|: (B4 :-: G4)

20

The Haskore music algebra
—
bt =

((D5:]: C5):-:F4):|: (B4 :-: G4)

/\
/\ /
/\

AN
G4

21

The Haskore music algebra

Type level

Term level

:—:///////:lz\\\\\\\\.
N PN

ol F/4 B
\C5

G4

/

D5

22

The Haskore music algebra

D5 C5 Type level

Term level

23

The Haskore music algebra

Intuitive for composition

Unsuitable for verification

24

Pitch matrix

I

o o
> D5 > C5 J B
YA S FE4 J G4

The Haskore music algebra

>D5 | PC5 | JB4
PFL | PF4L | 1G4

Type level

Term level

:—:///////:lz\\\\\\\\.
PN PN

o F/ B4
\C5

G4

/

D5

Pitch matrix

Alternative music format, suitable for verification
Has a clear, rigid, non-hierarchical structure

Reflects the visual layout of the score
Obvious relationship between parallel and successive notes

> D5 > C5 J B

PF4 PEL——J) G4

27

Pitch matrix

Our aim Is to store the pitch matrix on the type level
Enables static verification of the rules

Need to enforce invariance of dimensions
A simple type-level list of lists would not suffice ‘\

Length-
Indexed

> D5 > C5 J B/ vectors?

PF4 PFL J G4

28

Where GHC 8 comes into play

Problem: keeping a size-indexed matrix on
the type level requires GADT promotion

#7961 closed feature request (fixed)

_losed 21 months ago

Remove restrictions on promoting GADT's

Reported by: danharaj
Priority: normal Milestone: e
Component: Compiler Version: 7.6.3
Cc: eir@..., adam.gundry@..., jstolarek,
william.knop.nospam@...
Operating System: Unknown/Multiple Architecture: Unknown/Multiple
Type of failure: None/Unknown Test Case: dependent/should_compile/TypelLevelVec
Related Tickets: #6024 Differential Rev(s): Phab:D808

29

Where GHC 8 comes into play

Problem: keeping a size-indexed matrix on
the type level requires GADT promotion

5 ago
#79 1n 67465497/ghc: ths ago

Rem qg kind equalities to GHC.

R
7 This implements the ideas originally put forward in

Priofit - ngystem FC with Explicit Kind Equality" (ICFP'13).

Comp
There are several noteworthy changes with this patch: e
* We now have casts in types. These change the kind
Opera of a type. See new constructor "CastTy .
Type eLevelVec

* ALl types and all constructors can be promoted.

This includes GADT constructors. GADT pattern matches
Relate take place in type family equations. In Core,
types can now be applied to coercions via the
"CoercionTy constructor.

30

Where GHC 8 comes into play

Problem: keeping a size-indexed matrix on
the type level requires GADT promotion

Solution: upgrade to GHC 8!

With GHC 8, GADTs can be promoted
just like any other type
Enabled by the TypeInType extension

31

Where GHC 8 comes into play

Problem: keeping a size-indexed matrix on
the type level requires GADT promotion

Solution: upgrade to GHC 8!

With GHC 8, GADTs can be promoted
just like any other type
Enabled by the TypeInType extension

data . — —> where

None :: t 0
(: =) 2 t > t (n -1) =

32

t

n

Dependent Haskore algebra

data Music where

Note :: Pi1it — Dur — Music
Rest :: Dur — Music
(:-=:) :: Music = Music — Music

(:]:) :: Music = Music — Music

33

Dependent Haskore algebra

data Music :: v n 1. PitchMatrix n 1 = Type where
Note :: Pit p — Dur d — Music (FromPitch p d)
Rest :: Dur d = Music (FromSilence d)

(:-:) :: Music ml — Music m2 — Music (m1 +-+ m2)
(:]:) :: Music ml — Music m2 — Music (ml1 +[+ m2)

34

Dependent Haskore algebra

data Music :: v n 1. PitchMatrix n 1 — Type where
Note :: Pit p — Dur d — Music (FromPitch p d)
Rest :: Dur d = Music (FromSilence d)
(:-2) Music ml — Music m2 — Music (ml +-+ m2)
(:]:) Music ml — Music m2 — Music (ml +|+ m2)

35

Dependent Haskore algebra

v n L. PitchMatrix n 1 — Type

A vector of vectors of pitches
A promoted GADT

36

Dependent Haskore algebra

Pit p Dur d
Dur d

Promoted musical values:

data =C| D | E | F |..
data = P1itch

Kind-constrained proxies:

data (p ::) = Pit

37

Dependent Haskore algebra

FromPitch p d
FromSilence d

ml +-+ m2
ml +|+ m2

Type families for constructing
and combining pitch matrices

Concatenation respects the matrix dimensions
Made possible by the length-indexing in the kinds

type family (a :: n k) +|+
(b :: n 1)
E n (k + 1) where ..

38

Dependent Haskore algebra

FromPitch D5 » => | »Ds

Dependent Haskore algebra

FromSilence ¢ => ¢

Dependent Haskore algebra

> C5

41

J B/

J G4

D> C5

J B/

J G4

Dependent Haskore algebra

>C5 | JB4

JFL | J G4

42

> C5

J B/

DFEL

DFEL

J G4

Dependent Haskore algebra

FromPitch p d
FromSilence d

ml +-+ m2
ml +|+ m2

Type families for constructing
and combining pitch matrices

Concatenation respects the matrix dimensions
Made possible by the length-indexing in the kinds

43

Musical constraints

data :: v.n L. n 1l — where
Note :: D — d - (FromPitch p d)
Rest :: d - (FromSilence d)
(:=2) =& ml — m2 — (ml +-+ m2)
(:]:) = ml — m2 — (ml +|+ m2)

We have static access to musical
values through type variables

We impose type class constraints to limit
the usage of the constructors

Ly

data Music
Note

Rest ::
=

(:-1)
—

(:1:)

=

Musical constraints

\4

n 1. PitchMatrix n 1 — Type where

ValidNote p d
= Pit p = Dur d = Music (FromPitch p d)

Valic
Dur ¢

Valid

Rest d
— Music (FromSilence d)
HarmComp ml m2

Music ml — Music m2 = Music (m1 +-+ m2)
ValidMelComp ml m2
Music ml — Music m2 — Music (m1l +|+ m2)

We have static access to musical
values through type variables

We impose type class constraints to limit
the usage of the Music constructors

45

Musical constraints

A series of inference rules as class hierarchies

“Axioms” specify valid and invalid intervals

Domain-specific error messages with
GHC’s custom compiler errors feature

class ValidMelInterval (i :: IntervalType)
instance TypeError
(Text "Major sevenths forbidden.")
= ValidMelInterval (Interval Maj Seventh)
instance {-# OVERLAPPABLE #-} ValidMelInterval i

46

Musical constraints

- - il m nen wie o e o nam e - -— e -— -_— . e e n = snaacs e = la o = =

handle overlapping instances. In normal usage closed type classes
would not make much sense as the instances rarely overlap, but a
separate construct acting as a closed type predicate could be useful
for type-level programming and verification. Similarly, we often

47

Musical constraints

handle overlapping instances. In normal usage, closed type classes
would not make much sense as the instances rarely overlap, but a
separate construct acting as a closed type predicate could be useful
for type-level programming and verification. Similarly, we often

« New feature:

Closed type classes

48

Musical constraints

handle overlapping instances. In normal usage, closed type classes
would not make much sense as the instances rarely overlap, but a
separate construct acting as a closed type predicate could be useful
for type-level programming and verification. Similarly, we often

49

Musical constraints

A series of inference rules as class hierarchies

“Axioms” specify valid and invalid intervals

Domain-specific error messages with
GHC’s custom compiler errors feature

class ValidMelInterval (i :: IntervalType)
instance TypeError
(Text "Major sevenths forbidden.")
= ValidMelInterval (Interval Maj Seventh)
instance {-# OVERLAPPABLE #-} ValidMelInterval i

50

Musical constraints

A series of inference rules as class hierarchies

“Axioms” specify valid and invalid intervals

Domain-specific error messages with
GHC’s custom compiler errors feature

Rules propagate the interval axioms to the
pitch matrix verification

class (p ::)
(q ::)
instance (MakeInterval p q)

= P g

51

Musical constraints

Constraints connect the pitch matrix
with the Haskore algebra

The rules are enforced any time
a Music constructor is used

ConstraintkKinds allows us to treat and
manipulate constraints as types

Flexible means of validation, such as
computed or partially applied constraints

The rule system Is extensible and customisable
Constraints are further parameterised by rule sets

52

Rule sets

Allow for customisation of rule-checking
Not all genres of music follow the same rules

class RuleSet t where

type MelConstraints t ml m2 :: Constraint
type NoteConstraints t p d :: Constraint

data Classical = Classical
instance RuleSet Classical where

data Empty = Empty
instance RuleSet Empty where

53

Rule sets

Allow for customisation of rule-checking
Not all genres of music follow the same rules

class RuleSet t where

type MelConstraints t ml m2 :: Constraint
type NoteConstraints t p d :: Constraint

Music values are parameterised by rule sets
Rule-checking behaviour can be modified dynamically

data Score = v rs m. MkScore rs (Music rs m)

MkScore Classical (c gqn :-: b gn) X
MkScore Empty (cgn :-: bgn) v/

54

Also in the paper

Details of the pitch matrix implementation
Treatment of duration and fragmentation

Construction of intervals

Some features of the EDSL
Note, chord and melody input

Reification and MIDI rendering

55

Summary and conclusions

Mezzo Is a music composition library and EDSL
with static rule-checking of musical scores

Exploits the term-type separation to
manipulate two different models of music

No singletons required!

Built on the Haskore algebra, augmented
with dependent types

Makes use of GADT promotion, type families and
constraint kinds

56

Well-typed Music
Does Not Sound Wrong

(Experience Report)

github.com/DimaSamoz/mezzo
hackage.haskell.org/package/mezzo

ds709@cam.ac.uk | m.gale@warwick.ac.uk

57

Advantages of static typing

Static, compile-time verification
Source location of mistakes
Two, distinct views of music
Haskore algebra for composition,

pitch matrix for verification

Simple term-level programming

58

Disadvantages of static typing

Complex type-level programming

But not much harder than doing
the same thing on the term level

Slower compilation
But time Is saved on finding the mistakes

Term-type separation
Can be handled with standard Haskell techniques

59

Musical constraints

Musical constraints are iImplemented as a series of
“Inference rules” via type classes.

GHC’s custom type error feature lets us specify
which Instances are invalid, and provide an explicit,
domain-specific error message.

class (1 ::)

Class with no methods — an open type predicate.
A type is either an instance (a valid melodic
interval) or not (an invalid melodic interval).

60

Musical constraints

Musical constraints are iImplemented as a series of
“Inference rules” via type classes.

GHC’s custom type error feature lets us specify
which Instances are invalid, and provide an explicit,
domain-specific error message.

instance TypeError (
= ()

If 1 1s unified with a major seventh interval, a type
error is encountered (uses GHC.TypelLits).

61

Musical constraints

Musical constraints are iImplemented as a series of
“Inference rules” via type classes.

GHC’s custom type error feature lets us specify
which Instances are invalid, and provide an explicit,
domain-specific error message.

instance 1

Otherwise, the interval 1s valid. We need to handle
overlapping instances, as Haskell type classes are
open and not checked in order.

62

Musical constraints

class ValidMelInterval (i :: IntervalType)

instance TypeError (Text "Major sevenths forbidden.")
= ValidMelInterval (Interval Maj Seventh)

instance {-# OVERLAPPABLE #-} ValidMelInterval i

class ValidMelLeap (p :: PitchType) (g :: PitchType)

instance ValidMelInterval (MakeInterval p q)
= ValidMelLeap p q

class ValidMelAppend (v :: Voice 11) (w :: Voice 12)

instance ValidMelLeap (Last v) (Head w)
= ValidMelAppend v w

class ValidMel (p :: PitchMatrix n k) (g :: PitchMatrix n 1)

instance (ValidMelAppend v w, ValidMelConcat vs ws)
= ValidMelConcat (v :-- vs) (w :-- ws)

63

