
Categorical models of
second-order abstract syntax

Dmitrij Szamozvancev
Downing College

May 2025

This thesis is submitted for the degree of Doctor of Philosophy

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the preface and specified in the text. It is not
substantially the same as any work that has already been submitted, or, is being concurrently
submitted, for any degree, diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the preface and specified in
the text. It does not exceed the prescribed word limit for the Degree Committee of the Faculty
of Computer Science and Technology.

Published work The content of Chapter 12 (Computer formalisation) is largely derived from
the following paper presented at Principles of Programming Languages 2022 and published in
the corresponding proceedings:

Marcelo Fiore and Dmitrij Szamozvancev (2022)
Formal Metatheory of Second-Order Abstract Syntax
In: Proceedings of the ACM on Programming Languages 6 (POPL), 53:1–53:29.
doi: 10.1145/3498715

http://dx.doi.org/10.1145/3498715

Abstract

Mathematics and computer science increasingly rely on proof assistants to ver-
ify reasoning and ensure program correctness. Yet a persistent obstacle in the
formalisation of programming languages and calculi is the treatment of variables
and the associated operations of 𝛼-renaming and capture-avoiding substitution.
Despite many proposed approaches, none match the flexibility and clarity of in-
formal reasoning on paper. As a result, formalising languages in proof assistants
often demands navigating a cumbersome layer of syntactic metatheory before
any real benefits of mechanisation can be realised.

In parallel, mathematical frameworks offer powerful, reusable tools for work-
ing with syntax – such as type-preserving simultaneous substitution and compo-
sitional semantics via initial algebras. However, their practical impact on formal
verification has been limited, due to their categorical sophistication and the chal-
lenges of encoding them in dependently-typed settings.

This thesis bridges this gap by formally relating the method of intrinsically
typed encodings to the presheaf approach for languages with binding. We intro-
duce the familial model of second-order abstract syntax as a categorical founda-
tion for intrinsic typing, and show its equivalence to the presheaf model both
syntactically and semantically. This places many ad hoc practices on solid mathe-
matical footing, opening up principled paths for abstraction and extension. Along
the way, we develop general tools for weakened monoidal structures and functo-
rial models of syntax, framed by adjoint modalities – laying the groundwork for
scalable and mechanised reasoning about syntax.

Acknowledgements

This work has been a long time in the making, and I am deeply grateful to my super-
visor, Marcelo Fiore, for his patient, dedicated guidance, his generosity with ideas and
research direction, and his unwavering support over many years. Marcelo has been
with me from my very first Discrete Maths lecture, through illuminating seminars
on denotational semantics and category theory, to long and enriching meetings that
sparked years of joyful exploration. I have learned immensely from his teaching and
writing; his emphasis on rigour and abstraction has profoundly shaped how I think
and approach problems within and beyond mathematics.

This thesis would simply not have been possible without Nathanael Arkor, my
other mentor in category theory. Nathanael was my sounding board, personal ency-
clopaedia, and safe space for asking all manner of questions – no matter how basic.
Always generous with his time, he never dismissed or discouraged, and his depth of
knowledge was both inspiring and invaluable. I must also mention the indispensable
tool he created, q.uiver.app, without which this thesis would have taken even longer
and contained far less category theory.

My PhD journey was bookended by research with Neel Krishnaswami and Jeremy
Yallop, whose mentorship helped contextualise my work and gave me essential skills
in type theory and programming languages. Neel introduced me to Agda and the joys
and challenges of language formalisation, and my early struggles with substitution
during my Master’s were a key motivator for this thesis. Jeremy has been incredibly
patient as I balanced writing up with the Modular Macros project. Our meetings, full
of encouragement and insight – even when he was explaining macros for the mth time
– made me feel I was doing truly open-ended research. His kindness and reassurance
have meant a great deal, and I’m excited to see where our collaboration leads.

I also owe a great debt to Robert Harle for believing in me from the very beginning
– fishing me from the 2014 Winter Pool, supporting me as Director of Studies, and
eventually becoming someone I am honoured to call a colleague. He gave me countless
opportunities to grow, and his generosity has more than made up for the times he
teased me about being a theoretician in front of our students.

Downing College and the Department of Computer Science have been my aca-
demic homes for the past 11 years. I’m immensely thankful to the many friends, stu-
dents, lecturers, Fellows, and staff who made this time so rewarding. Special thanks
to Guy Williams for supporting my path to a Fellowship, and to Lise Gough, Joy Rook,
Marketa Green, Karen Basser, Helen Neal, Dinah Pounds, and all the administrative

q.uiver.app

and teaching staff who helped me take part in supervisions, open days, and admis-
sions. I felt truly supported throughout, and am grateful to all who made studying and
working here such a privilege.

Many people have shaped the warm and welcoming Programming, Logic and Se-
mantics Group. I’m especially thankful to Michael Gale, Philip Saville, Hugo Paquet,
and Ohad Kammar for their academic guidance; to the pre-2020 PhD cohort – Ian
Orton, Dylan McDermott, Matthew Daggitt, Sam Ainsworth, Sam Steenkamp, Vikra-
man Choudhury, Adam Ó Conghaile, Andrej Ivašković, Chelsea Edmonds, and Derek
Sorensen – for many lively lunches and seminars; and to the current FS corridor/Vic-
toria Road collective – Jake Bennett-Woolf, Michael Lee, Theo Wang, Yulong Huang,
and Alistair O’Brien – for keeping me grounded and social (and still inviting me to
lunch every week). I’ve also enjoyed working with many talented Master’s students,
especially Gregor Feierabend.

I have made lifelong friends in Downing and CUGCR, and I’m so impressed to see
all the cool things they’re up to in The Real World – Will, Ross, Greg C, Kirstie, Robin,
Alfie, Gloria, Greg T, Nat, Katie, Dan, Stephen, Tom, Callum, Ella, Prannoy, Emma,
Poppy, Alex F, Alex VL, and many others made time in university unforgettably fun
and fulfilling. Robert has been an inspiration and very important friend since first
grade, and I owe him nothing less than igniting my spark of curiosity for knowledge
and learning, and guiding me in the first steps of my academic journey. I also want to
thank all the students I taught the beauty of computer science – meeting and learning
from so many bright, friendly, and deeply passionate people is truly one of the great
joys and privileges of Cambridge teaching.

My parents always told me to keep learning while I can, and although 23 years in
formal education may not be what they had in mind, I cannot be grateful enough for
their support and love. I wouldn’t be where I am without their encouragement and
trust to reach further and try things, and they instilled in me values that I will carry
around forever. I am also lucky to have the greatest and most inspiring big sister and
brother in law, and the most wonderful niece and nephew – I will definitely explain
monads to them one day.

Last but most definitely not least, my wife has been the most loving, caring, sup-
portive, and patient partner I could have hoped for. She champions everything I do
and helped me be excited for who I am and who I can be. I cannot wait to see what
life brings, especially once it finally gallops past this slow, moving, 300-page milestone.
Thank you for everything.

Table of contents

1 Introduction 17
1.1 The challenge . 18
1.2 Our solution . 20
1.3 Outline . 23

2 Background 27
2.1 Intrinsic syntax . 27

2.1.1 Advantages . 28
2.1.2 Challenges . 29
2.1.3 The need for theoretical foundations 34

2.2 The presheaf model . 35
2.3 Related work . 50

2.3.1 Named approaches . 50
2.3.2 Nameless approaches . 52
2.3.3 Presheaves and monoidal substitution 57
2.3.4 Higher-order abstract syntax . 58
2.3.5 Locally nameless representation . 61
2.3.6 Representation-generic . 62

I Mathematical foundations 63

3 Lifting of algebras 65
3.1 Distributive laws and liftings . 65

3.1.1 Distributive laws . 65
3.1.2 Liftings . 66
3.1.3 Equivalence . 67

3.2 Adjunctions . 70
3.3 Initial algebras . 73
3.4 Free distributive laws . 75

4 Powering and enrichment 79
4.1 Biclosed modular categories . 79
4.2 Powered clone monad . 84
4.3 Powered monad morphisms . 89

II Skew constructions 93

5 Skew-monoidal closed structure 95
5.1 Skew categories . 95

5.1.1 Skew-monoidal closed categories . 95
5.1.2 Skew-monoidal closed modular categories 99

5.2 Monoids and modules . 108
5.2.1 Modules . 110
5.2.2 Parametrised maps . 114
5.2.3 Modules over the unit . 118

6 Synthetic constructions 125
6.1 Synthetic monoidal categories . 125
6.2 Synthetic modular categories . 128
6.3 Synthetic liftings . 132

7 Warped constructions 137
7.1 Skew warpings . 137

7.1.1 Monoidal warpings . 137
7.1.2 Closed warpings . 139
7.1.3 Adjoint warpings . 141

7.2 Warped adjoint triples . 142
7.2.1 Warpings and co/monads . 142
7.2.2 Monadic warpings . 144

III The familial model 149

8 Presheaves 151
8.1 Calculus of categories . 151

8.1.1 Co/ends . 152
8.1.2 Kan extensions . 156

8.2 Categorical structures . 158
8.2.1 Bicartesian closure . 158
8.2.2 Monoidal closure . 159

8.3 Nerves and realisations . 163

9 Substitution 167
9.1 Substitution through universality . 168
9.2 Substitution from first principles . 169

9.2.1 Skew-monoidal structure . 169
9.2.2 Strong monoidal structure . 173

9.3 Substitution through warping . 174
9.3.1 Adjoint modalities . 174
9.3.2 Warped substitution . 177

9.3.3 Rebased substitution . 178

10 Discrete families 181
10.1 Families as a model of syntax . 181

10.1.1 Contexts and variables . 181
10.1.2 Substitution structure . 182
10.1.3 Renaming structure . 184
10.1.4 Monoids . 186

10.2 Skew parametrisation . 187
10.2.1 Multilinear maps . 187
10.2.2 Synthetic monoidal structure . 189
10.2.3 Strength and algebraic monoids . 191

10.3 Convolutional structure . 193
10.3.1 Context extension . 193
10.3.2 Pointed strength . 198
10.3.3 Convolutional powering . 203
10.3.4 Algebraic monoids . 207

11 Abstract syntax 213
11.1 Second-order abstract syntax and its models 213

11.1.1 Signatures . 213
11.1.2 Presheaf and familial models . 215

11.2 Metatheory by initiality . 217
11.2.1 Syntactic algebras . 219
11.2.2 Free substitution structure . 223

11.3 Second-order syntax . 232
11.3.1 Metasubstitution . 232
11.3.2 Equational logic . 237

IV Applications 243

12 Computer formalisation 245
12.1 Familial model . 245

12.1.1 Contexts, families, and variables . 245
12.1.2 Renaming and substitution . 247
12.1.3 Models . 251

12.2 Initial algebra semantics . 254
12.2.1 Free algebraic monoid structure . 255
12.2.2 Second-order features . 259

12.3 Generic signatures . 261
12.3.1 Signature endofunctor . 262
12.3.2 Term syntax . 263
12.3.3 Code generation . 266

13 Examples 269
13.1 Formal systems and second-order calculi . 269

13.1.1 Semantics of the simply-typed 𝜆-calculus 269
13.1.2 Modular theories . 271
13.1.3 Partial differentiation . 274

13.2 Generic operations . 276
13.2.1 Free variables . 276
13.2.2 Pretty-printing . 277

14 Conclusions 283
14.1 Summary of contributions . 283
14.2 Future directions . 285

14.2.1 Advanced type theories . 285
14.2.2 Structural generalisations . 287

14.3 Final remarks . 289

Appendices 315
A Detailed proofs . 315

List of Definitions

3.1.1 Elevator . 65
3.1.2 Distributive law . 66
3.1.3 Strong lifting . 66
3.1.4 Strict lifting . 66
3.1.5 Lifting to algebras . 66
3.4.1 Free objects . 75

4.1.1 Strong monoidal category . 79
4.1.2 Left modular category . 79
4.1.3 Biclosed categories . 80
4.1.4 Powered functor . 82
4.1.5 Powered monad . 83
4.1.6 Enriched Kleisli triple . 84
4.1.7 Algebra for enriched Kleisli triple . 84
4.2.1 Clone functor . 84
4.2.2 Clone evaluation map . 84

5.1.1 Skew-monoidal category . 96
5.1.2 Skew-closed category . 97
5.1.3 Skew-monoidal functor . 98
5.1.4 Skew-closed functor . 98
5.1.5 Skew-monoidal modular category . 99
5.1.6 Skew-monoidal bimodular category . 99
5.1.7 Skew-closed modular category . 101
5.1.8 Skew-closed bimodular category . 101
5.1.9 Skew-monoidal modular functor . 102
5.1.10 Skew-monoidal modular functor . 102
5.1.11 Skew-closed modular functor . 103
5.1.12 2-categories of categories with skew structure 103
5.2.1 Monoid in a skew-monoidal closed category 108
5.2.2 Monoid morphism . 109
5.2.3 Skew-monoidal module object . 110
5.2.4 Monoidal bimodule object . 111
5.2.5 Closed module object . 111
5.2.6 Closed bimodule object . 111

5.2.7 Linear parametrised maps . 114
5.2.8 𝐹 -linear maps . 117
5.2.9 Algebraic module and monoid . 118
5.2.10 Pointed modules . 119
5.2.11 Invariant module . 119
5.2.12 Pointed parametrised map . 121
5.2.13 Multi-parametrised map . 121
5.2.14 Multi-middle-linearity . 121
5.2.15 Multilinear map . 122

6.1.1 Synthetic monoidal category . 126
6.1.2 Synthetic monoidal functor . 126
6.1.3 Synthetic monoidal natural transformation 127
6.1.4 Synthetic monoid . 128
6.2.1 Synthetic modular category . 129
6.2.2 Synthetic modular functor . 129
6.2.3 Synthetic monoidal natural transformation 129
6.2.4 Synthetic module . 131
6.2.5 Synthetic algebraic module and monoid . 132
6.2.6 Synthetic multilinear map . 132

7.1.1 Skew-monoidal warping . 137
7.1.2 Skew-closed warping . 139

8.1.1 Presheaf . 151
8.1.2 Yoneda embedding . 151
8.1.3 Dinatural transformation . 152
8.1.4 Wedge . 152
8.1.5 End . 152
8.1.6 Co/power . 154
8.1.7 Kan extension . 156
8.2.1 Presheaf exponential . 158
8.2.2 Day convolution tensor . 159
8.2.3 Day convolution hom . 159
8.2.4 Monoidally cocomplete category . 161
8.3.1 Realisation and nerve . 163

9.2.1 Extension . 169
9.2.2 Substitution operator . 170
9.2.3 Substitution bracket . 170
9.2.4 Presheaf of embeddings . 171
9.3.1 Rebased substitution structure . 179

10.1.1 Category of contexts and lists . 181
10.1.2 Categories of presheaves and families . 182
10.1.3 Variables and indices . 182

15

10.1.4 Context-wise product . 182
10.1.5 Substitution operations in families . 183
10.1.6 Co/free presheaf co/monads . 185
10.1.7 Presheaf co/algebras . 185
10.1.8 Pointed presheaf co/algebras . 185
10.1.9 Substitution monoid . 186
10.1.10 Invariant substitution monoid . 186
10.2.1 Multilinear maps . 187
10.2.2 Algebraic monoids . 192
10.3.1 Context extension . 193
10.3.2 Day convolution and hom . 194
10.3.3 Family of names . 194
10.3.4 Left and right Day homs . 198
10.3.5 Diagonal transformation . 198
10.3.6 Glueing of substitution rules . 199
10.3.7 Powering over Day convolution structure 204
10.3.8 Compatibility of strength and powering . 204

11.1.1 Second-order signature . 213
11.1.2 Second-order signature endofunctor . 214
11.1.3 First-order syntactic algebra . 214
11.1.4 Second-order syntactic algebra . 214
11.2.1 Total category of second-order syntactic algebras 220
11.2.2 Meta-unit . 228
11.3.1 External metasubstitution . 232
11.3.2 Internal metasubstitution . 233
11.3.3 internal meta-extension . 235
11.3.4 Second-order equational theory . 237
11.3.5 Model for equational axiom . 239
11.3.6 Second-order model for an equational theory 239

16

c h a p t e R 1

Introduction

A technical argument by a trusted author, which is hard to check and looks
similar to arguments known to be correct, is hardly ever checked in detail.

— Vladimir Voevodsky (2014)

The increasing complexity of modern mathematical and theoretical work has exposed the limi-
tations of informal reasoning. Influential results have occasionally been undermined by subtle
but critical errors; technical arguments often span many pages, pushing the bounds of human
comprehension; and detailed proofs frequently go unverified by the broader community. In
many cases, confidence is placed in the reputation of the author rather than the rigour of the
argument itself. Identifying a mistake may cast doubt over an entire body of work, leaving
it unclear whether the fault lies in the proof, the theorem, or the counterexample. As a dis-
cipline that progresses by building on the results of the past, mathematics must grapple with
the uncomfortable reality that even widely accepted results can rest on fragile foundations.

Computer verification offers a promising solution. Increasingly, mathematics embraces
proof assistants to formalise both historical work and new research (Paulson, 2023; Tao, 2025).
With their reliance on small, trusted cores, flexible syntax, and well-understood logical foun-
dations, proof assistants have opened new avenues for exploration and collaboration. The
benefits are clear: formally verified proofs guarantee correctness; light automation handles
“tedious but straightforward” details that would otherwise fill pages with mechanical symbol-
pushing; and the open-source nature of formalised mathematics promotes collaboration, com-
partmentalisation, and peer review.

That said, there are good reasons a mathematician might hesitate to use a proof assistant
at the start of a project: the steep learning curve, limited expressivity compared to informal
reasoning, and the strict requirement for rigour introduce a kind of viscosity that familiar pen-
and-paper methods do not. Nevertheless, proponents argue that it is precisely this stubborn
demand for precision that gives proof assistants their greatest strength: no longer can we
gloss over trivial-looking steps, forget obscure assumptions, or leave key arguments to the
imagination of the “interested reader.”

Research in theoretical computer science poses a slightly different challenge, both for hu-
mans and computers. Due to the inductive nature of most aspects of programming languages

18 intRoduction

– grammar of expressions, typing relation, evaluation, etc. – recursive definitions and induc-
tive proofs are the primary way of interfacing with the metatheory of a syntax. Induction
over the structure of a grammar or a typing derivation is notoriously tedious, often involving
dozens of similar but subtly different cases, complex induction hypotheses, finicky constraints,
and delicate bookkeeping. Using a proof assistant to streamline such work quickly reveals an
additional difficulty: syntax involving variable-binding operators is far more intricate than
pen-and-paper proofs tend to acknowledge. Subtle issues easily glossed over by human intu-
ition become major obstacles during formalisation.

The primary culprits are notions of scope, variables, binding, and capture-avoiding substi-
tution, all silently interacting with the following fundamental principle:

Variable names do not matter, as long as binding relationship match.

Humans naturally apply this principle and consciously avoid situations where variable names
introduce confusion. Good practice dictates stating and following naming conventions, being
explicit about changes of variables, and avoiding the reuse or overloading of names where
ambiguity might arise. Proof assistants, however, must deal with the fluidity of variable names,
resulting in challenges such as:

• 𝑓 (𝑥) = 𝑥2 and 𝑓 (𝑦) = 𝑦2 define the same function, as does 𝑔(𝑧) = 𝑧2 but with a different
name which may or may not matter depending on the context;

• 𝑓 (𝑥,𝑦) = 𝑥2 + 𝑦 and 𝑓 (𝑦, 𝑥) = 𝑦2 + 𝑥 are the same, 𝑓 (𝑥, 𝑥) = 𝑥2 + 𝑥 is not a valid definition,
but it is a valid predicate over 𝑥 ;

• 𝑓 (𝑥) = 𝑥2 + 𝑎 and 𝑓 (𝑦) = 𝑦2 + 𝑏 may be different or the same depending on the context:

– they can be made equal by replacing 𝑎 and 𝑏 with the same term 𝑡 : e.g. 𝑓 (𝑥) = 𝑥2 + (3+𝑐)
the same as 𝑓 (𝑦) = 𝑦2 + (3 + 𝑐) for any 𝑐;

– except if 𝑡 has occurrences of 𝑥 or𝑦: e.g. 𝑓 (𝑥) = 𝑥2+(3+𝑦) differs from 𝑓 (𝑦) = 𝑦2+(3+𝑦);
– except if they’re bound occurrences: e.g. 𝑓 (𝑥) = 𝑥2 + ((𝜆𝑦. 3 + 𝑦) 𝑐) is the same function

as 𝑓 (𝑦) = 𝑦2 + ((𝜆𝑦. 3 + 𝑦) 𝑐).

A researcher in programming languages may initially turn to proof assistants to expedite the
long and tedious inductive proofs of properties like progress and type preservation, only to find
themselves trapped instead in the minutiae of syntax representation, structural lemmas, and
the definition and well-typedness of substitution – technicalities that informal proofs often
gloss over with a few words or a footnote. Worse, because syntactic metatheory is often
tailored to each specific language, this painstaking infrastructure must be rebuilt for every
new formalisation project, with little opportunity for reuse.

1.1 The challenge

A comprehensive study of a language often involves analysing its computational behaviour
and semanticmeaning, expecting a close alignment between the two. One describes the former
using operational semantics, and the latter via denotational semantics; their correspondence
is proved using soundness, adequacy, and abstraction results. Operational metatheory for a
language could involve:

the challenge 19

Reduction A reduction relation 𝑠 ⇝ 𝑡 defining how expressions are computed.
Equivalence Two terms are contextually equivalent if they reduce to the same value in the

same evaluation context.
Determinacy The reduction relation is deterministic: if 𝑠 ⇝ 𝑡1 and 𝑠 ⇝ 𝑡2, then 𝑡1 = 𝑡2.
Progress Every closed well-typed term is either a value, or takes a reduction step.
Preservation Reduction preserves the typing and variable context of a term.
Safety Well-typed programs don’t get stuck.
Closure If 𝑠 ⇝ 𝑡 , then 𝑠 reduces to a value iff 𝑡 reduces to a value.
Normalisation Every well-typed closed term reduces to a value.

On the other hand, denotational metatheory addresses both the mathematical meaning of
programs and its relationship to operational behaviour:

Semantics Every term Γ ` 𝑡 : 𝛼 determines a morphism J𝑡K : JΓK � J𝛼K.
Compositionality For all evaluation contexts C[−], J𝑠K = J𝑡K iff JC[𝑠]K = JC[𝑡]K.
Soundness If Γ `𝑠, 𝑡 : 𝛼 and 𝑠 ⇝ 𝑡 then J𝑠K = J𝑡K : JΓK � J𝛼K.
Adequacy If two terms are denotationally equivalent, they are contextually equivalent.
Full abstraction If two terms are contextually equivalent, they are denotationally equivalent.

These informal lists illustrate the kinds of deep and often challenging properties one might
wish to prove for a given language. Since many of these results are established via structural
induction on syntax, proof assistants would appear to be a natural fit: they can automate
routine arguments and manage the complex web of assumptions, variables, and hypotheses
involved in more intricate proofs.

In practice, however, the path to such results is frequently obstructed by a mountain of
syntactic overhead. Before one can reach the interesting theorems, one must first tackle an
array of uninteresting but necessary properties about the syntax and its associated operations.
Some of these are familiar and straightforward, while others arise unexpectedly mid-proof,
interrupting progress with yet another tedious induction. Worse still, these properties often
have little to do with the semantics or computational content of the language under study
– they stem instead from the choice of syntactic representation and its inherent complexity:
variable binding, scoping, and other structural constraints.

Regardless of the formalisation strategy adopted, syntactic concerns are all but guaranteed
to surface at inopportunemoments. Unlike informal proofs –where handwaving and intuition
can often fill in the gaps – a proof assistant demands full rigour. The resulting metasyntactic
metatheory involves the following kinds of foundational properties:

𝛼-renaming Changing the name of binding and bound occurrences in parallel.
Substitution [𝑠/𝑥]𝑡 replaces every free occurrence of 𝑥 in 𝑡 , avoiding variable capture.
Well-scoping If Γ ` 𝑡 : 𝛼 , then fv(𝑡) ⊆ dom(Γ).
Weakening If Γ ` 𝑡 : 𝛽 , then Γ, 𝑥 : 𝛼 ` 𝑡 : 𝛽 .
Exchange If Γ, 𝑥 : 𝛼,𝑦 : 𝛽 ` 𝑡 : 𝛾 , then Γ, 𝑦 : 𝛽, 𝑥 : 𝛼 ` 𝑡 : 𝛾 .
Substitution typing If Γ, 𝑥 : 𝛼 ` 𝑡 : 𝛽 and Γ `𝑠 : 𝛼 , then Γ ` [𝑠/𝑥]𝑡 : 𝛽 .

20 intRoduction

Substitution invariance If 𝑥 ∉ fv(𝑡), then [𝑠/𝑥]𝑡 = 𝑡 .
Syntactic substitution lemma For all terms 𝑟, 𝑡, 𝑠 , [𝑟/𝑦] ([𝑠/𝑥]𝑡) = [[𝑟/𝑦]𝑠/𝑥] ([𝑟/𝑦]𝑡).
Semantic substitution lemma For all terms 𝑡 and 𝑠 , J[𝑠/𝑥]𝑡K = J𝑡K ◦ 〈id, J𝑠K〉.
These properties can be surprisingly intricate to prove in a formal setting – often more so than
the high-level results they support. Naïvely following the structure of informal proofs may fail
due to quirks of the syntax representation, or be finicky without the crutch of intuition and
syntactic conventions. A successful formalisation typically requires abstracting and generalis-
ing beyond the original statement, introducing auxiliary lemmas, or rethinking the encoding
of syntax entirely. In many cases, significant effort is required merely to reproduce what once
seemed a triviality on paper.

1.2 OuR solution

A number of techniques and frameworks exist to formalise languages with variable binding
in proof assistants. One of the most critical design decisions concerns the representation of
variables. Below, we outline some approaches, leaving a more detailed survey to Section 2.3.

Textual variables Variables are represented as strings (or, more generally, atoms with decid-
able equality), mirroring conventional notation. This offers human-readability, but does not
provide any static enforcement of binding structure. Capture-avoiding substitution requires
explicit string comparison and either limits substitution to closed terms or necessitates a
separate mechanism for generating fresh variable names.

de Bruijn indices Variables are encoded as natural numbers indicating their binding depth.
This nameless representation avoids the need for 𝛼-conversion or quotienting, but terms
become less readable, and metatheoretic manipulations of indices can be subtle and error-
prone.

Intrinsic syntax Terms are defined in such a way that only well-scoped and well-typed ex-
pressions can be represented. This integrates typing directly into the term structure, uni-
fying term definitions with well-formedness properties. For instance, defining substitution
simultaneously proves that substitution preserves typing. While this approach offers strong
invariants, it also requires a nontrivial foundation of general-purpose syntactic operations
and lemmas that must be derived from first principles.

Among these options, we adopt an intrinsic, nameless representation of syntax, owing to the
strong static guarantees it provides in dependently-typed settings. This choice ensures that
syntactic ill-formedness is excluded by construction, making subsequent semantic develop-
ment more robust. However, we also recognise the significant up-front effort that intrinsic
representations demand: much of the groundwork must be formalised before any high-level
results can be established. Accordingly, our research aims to place this groundwork on a solid
theoretical foundation, clarifying the structure of syntax, its mathematical underpinnings, and
its role in categorical semantics.

ouR solution 21

Our starting point is the presheaf model of abstract syntax, developed by Fiore, Plotkin,
and Turi 1999. In this framework, terms with variable binding are elements of presheaves
– functors from a category of contexts and renamings to the category of sets. A term in a
presheaf indexed by a context Γ is, by construction, well-scoped with respect to Γ. By building
additional structure on the presheaf category, one can axiomatise substitution, variables, and
binding structure in categorical terms.

While the presheaf model provides a conceptually clean and general account of syntax, it
is not directly amenable to formalisation in dependently-typed proof assistants, particularly
due to its reliance on quotient constructions and other mathematical tools. To address this,
we develop a new, formalisable model that retains the key strengths of the presheaf approach
while being suitable for mechanised formalisation.

Our approach is based on indexed families of sets, without assuming renaming as a prim-
itive. By examining the presheaf model from the ground up, we isolate the minimal use of
renaming and reconstruct the theory around a simpler foundation. The resulting model is
both expressive and amenable to formalisation in Agda, enabling the automatic derivation of
rich syntactic metatheory for a wide class of binding-aware languages. Concretely, we make
the following contributions:

• A new categorical model of abstract syntax based on indexed families of sets, rather than
presheaves over cocartesian categories. In this model, renaming is treated as additional,
rather than intrinsic, structure. This results in a simplified formulation of substitution and
binding, while retaining compatibility with existing theory.

– We present a systematic account of categorical structures associated with syntax, includ-
ing skew-monoidal closed categories, actions, modules, strength, and linearity, clarifying
the relationships between multiple definitions in the literature.

– We introduce the notion of synthetic monoidal categories, applicable in contexts where
skew-monoidal structure is lost when objects are equipped with additional object-level
structure (e.g. algebraic or semantic).

– To bridge the gap between indexed families and presheaves, we prove general results for
lifting categorical structures and universal constructions along forgetful functors.

• A formalisation framework in Agda built on the familial model. This framework provides
a near end-to-end solution for defining syntactic structures and deriving their metatheory
from a high-level specification. Key features include:

– A generic metatheoretic development over arbitrary signatures, using initial algebra se-
mantics rather than recursion on a fixed syntax.

– An intrinsically-typed, structurally recursive syntax implementation, overcoming com-
mon issues of positivity and termination that affect other generic syntactic frameworks.

Our decision to pursue an abstract, category-theoretic foundation is motivated by a desire to
uncover the deeper mathematical structure of syntax and to guide the design of formalisation
tools in a principled way. In doing so, we aim not only to support the formalisation of simply-
typed languages, but to lay the groundwork for modular, adaptable techniques applicable to

22 intRoduction

polymorphic, linear, or dependently-typed languages. A more ad hoc, problem-specific devel-
opment would have likely obscured these general patterns and limited the reusability of results.
By contrast, our approach aspires to connect the rich body of categorical semantics with prac-
tical mechanisation strategies, and to offer a framework extensible to future developments in
the semantics of programming languages.

The formalisation framework is furthermore equipped with a lightweight code generation
pipeline, enabling users to transition from a concise and human-readable syntax specification
to a complete Agda formalisation via a single command. Users provide a high-level textual de-
scription of a typed language with variable binding and an optional equational theory. For in-
stance, the following specification defines the simply-typed lambda calculus (STLC) extended
with natural numbers (type N) and a function type constructor (�):

term
app : 𝛼 � 𝛽 𝛼 → 𝛽

lam : 𝛼.𝛽 → 𝛼 � 𝛽

ze : → N
su : N → N
nrec : N 𝛼 (𝛼,N).𝛼 → 𝛼

theory
(𝜆𝛽) b:𝛼.𝛽 a:𝛼 ⊲ app(lam(x. b[x]), a) = b[a]
(𝜆𝜂) f:𝛼 � 𝛽 ⊲ lam(x. app(f, x)) = f
(z𝛽) z:𝛼 s:(𝛼,N).𝛼 ⊲ nrec(ze, z, rm. s[r,m]) = z
(s𝛽) n:N z:𝛼 s:(𝛼,N).𝛼 ⊲ nrec(su(n), z, rm. s[r,m]) =

s[nrec (n, z, rm. s[r,m]), n]
Our system generates Agda code for:

• a grammar of types and an intrinsically-typed data type of terms;
• operations of weakening and substitution together with their correctness properties;
• a record that, when instantiated with a mathematical model, induces a semantic interpreta-
tion of the syntax in the model that preserves substitution;

• a term constructor for parametrisedmetavariables and their associated operation of capture-
permitting metasubstitution; and

• an equational/rewriting theory that can be instantiated with the axioms of the syntax to ob-
tain a library for second-order equational/rewriting reasoning. For example, the equational
proof that 1 + 2 = 3 looks as follows:

1+2 : ■ ▷ ∅ ` plus $ su ze $ su (su ze) ≈ su (su (su ze))
1+2 = begin

plus $ su ze $ su (su ze) ≈〈 thm 𝜆𝛽2 with〈〈 nrec x1 x0 (su x0) ⊳ su ze ⊳ su (su ze) 〉〉 〉
nrec (su ze) (su (su ze)) (su x0) ≈〈 ax s𝛽 with〈〈 ze ⊳ su (su ze) ⊳ su x0 〉〉 〉
su (nrec ze (su (su ze)) (su x0)) ≈〈 cong

[
ax ze𝛽 with〈〈 su (su ze) ⊳ su x0 〉〉

]
inside su ,ᵃ 〉

su (su (su ze)) ■

where plus is the primitive recursive encoding of addition, 𝜆𝛽2 is a derived equation for two-
argument 𝛽-reduction, and thm, ax and cong are helper operations for applying axioms and
proved theorems inside subexpressions to construct explicit equational proofs.

outline 23

1.3 Outline

Following this introductory chapter and a discussion of theoretical background and related
work in Chapter 2, the thesis is organised into four main parts.

Part I introduces the mathematical tools used in the main development.

• Chapter 3 establishes the equivalence between distributive laws and liftings, a recurring
tool used to extend functors to categories with added structure. In particular, Section 3.3
proves one of the central theorems of the thesis: that the family of syntactic terms generated
by a signature gives rise canonically to a presheaf of terms, i.e. the renaming structure is
determined by recursion on syntax.

• Chapter 4 develops the theory of biclosed modular categories over monoidal categories, in-
cluding strong functors and the clone (double-dualisation) monad construction. This struc-
ture underpins the metasubstitution operation, which is shown to be a strong monad mor-
phism between the term monad and the clone monad, with the relevant axioms derived
from this general theory.

Part II explores the substitution structure of indexed families in a setting where monoidal
coherence laws are relaxed, leading to skew-monoidal structure.

• Chapter 5 develops a systematic theory of skew-monoidal closed structures in categories
and modular categories, including the formulation of monoid and module objects, and prop-
erties of parametrised morphisms.

• Chapter 6 considers categories that embed into skew-monoidal categories while possessing
internal analogues of the unit and tensor. These synthetic monoidal categories support a
theory of synthetic monoidal and module functors, as well as monoid and module objects,
and are essential to formalising constructions over families that do not carry over directly
from presheaves, such as pointed strength.

• Chapter 7 revisits the notion of skew-monoidal warpings, which allow the generation of
new monoidal structures from existing ones. Skew-closed warpings are introduced, along
with sufficient conditions for lifting categorical structure along warpings. The key result is
an equivalence between algebraic monoids and lifted structures, which ultimately yields an
equivalence between syntactic models in the presheaf and familial settings.

Part III introduces the familial model, relates it to the presheaf model, and demonstrates its
use in establishing initiality and freeness theorems for second-order abstract syntax.

• Chapter 8 surveys the theory of presheaves and related constructions such as co/ends, Kan
extensions, Day convolution, nerves, and realisations.

• Chapter 9 synthesises substitution structure for presheaves and families in three ways: via
universal properties, from first principles, and through an adjoint warping. This last formu-
lation yields the canonical skew substitution tensor on families, providing a formal bridge
to the presheaf model.

24 intRoduction

• Chapter 10 presents the familial model in full detail, emphasising differences from the
presheaf approach. Notably, it employs Day convolution for variable binding and meta-
substitution, module structure for renaming, skew-monoidal structure for substitution, and
synthetic monoidal structure to capture strength and algebraic behaviour.

• Chapter 11 applies this theory to reproduce and generalise the initiality and freeness results
of the presheaf model in the familial setting. The new proofs are more efficient, leveraging
internal homs to better accommodate the skew structure. The chapter also derives a second-
order metasubstitution theory and sound equational reasoning.

Part IV explores the practical advantages of the familial model in formalisation, highlighting
its computational tractability in contrast with the more abstract presheaf approach.

• Chapter 12 describes the Agda formalisation framework developed from the familial model.
Families are naturally represented as functions into Set, offering a simpler and more us-
able foundation than fully functorial encodings. With modest adaptations, the framework
faithfully implements the core model and syntactic metatheory without quotient types.

• Chapter 13 presents example applications of the framework, including generic syntactic
constructions and concrete encodings of various syntaxes and equational systems.

Finally, Chapter 14 summarises the main contributions and outlines future directions for ex-
tending this work in both theory and practice.

Practicalities

Most of the relevant categorical notation is introduced as part of the text. Equational and
diagrammatic proofs are annotated with references implying an equality step or the commu-
tativity of a certain cell. We collect the main conventions for diagram labelling below – they
are intended to be more indicative than fully rigorous, and in some cases the same label is used
for a class of laws, with identification of the exact property left to the reader.

• Equalities appear as double lines without arrowheads, and no label.

• Isomorphisms appear without arrows at either end, and often without a label when the
transformation is clear. The direction is also omitted if it is inferable or unimportant.

• A cell is not labelled if the edges are identical composites, or it commutes by functoriality.

• A cell is labelled 𝑜≜ if it commutes by definition of the operator 𝑜 .

• A cell is labelled 𝜑 if it commutes by naturality of𝜑 . If a natural transformation is multi-ary,
𝜑
𝑘
indicates naturality in the 𝑘 th component.

• A natural transformation 𝜑 preserving an operation 𝑜 is generally notated as 𝜑 b𝑜e.
• An 𝐹 -co/algebra homomorphism axiom for 𝑓 is labelled 𝑓 b ®𝐹 e.
• Monad laws (unit or associativity) for 𝑇 will simply be labelled by the monad name itself,
and laws of a monad algebra 𝑎 : 𝑇𝐴→ 𝐴 by ®𝑇 .

• Adjunction zig-zag identities will be denoted a.

outline 25

When working with several adjunctions, we will avoid using 𝜀 and 𝜂 (and labelled/renamed
variants) for the co/units in favour of explicitly referencing the natural isomorphism of
hom-sets 𝜏 : D(𝐹𝐴, 𝐵) � C(𝐴,𝐺𝐵) associated with the particular adjunction. We will write
𝜏 : 𝐹 a 𝐺 : C → D for such an adjunction. Then the unit 𝜏 (id𝐹𝐴) : 𝐴 → 𝐺𝐹𝐴 and counit
𝜏 (id𝐺𝐵) : 𝐹𝐺𝐵 → 𝐵 will be denoted as 𝜏𝐴 and 𝜏𝐵 , respectively; this will not lead to ambiguity
as we will not be referring to specific components of 𝜏 as a natural isomorphism.

26 intRoduction

c h a p t e R 2

Background

We begin by motivating and contextualising the technical developments of this thesis through
a detailed exposition of the two main strands of research it aims to unify: intrinsically-typed
language formalisation and the presheaf model of abstract syntax. Section 2.1 introduces the
intrinsic encoding of syntax, highlighting both its intuitive appeal and the often counterintu-
itive, piecemeal nature of developing its metatheory, which is prone to ad hoc constructions
and subtle pitfalls. In addressing these challenges, we identify opportunities for abstraction
that recent work has touched upon but not yet grounded in a coherent theoretical frame-
work. Section 2.2 then develops the classical (cartesian) presheaf model of Fiore et al. (1999),
extending it to encompass second-order features. In particular, we provide a more compre-
hensive treatment of second-order features that of Fiore (2008), offering a principled account
of metasubstitution and meta-interpretation. Finally, Section 2.3 presents an in-depth survey
of existing literature on the formal foundations of syntax and its mechanised implementation.

2.1 IntRinsic syntax

Intrinsic syntax, also called type- and scope-safe encoding, embraces the “illegal phrases are
unrepresentable” principle in unifying the term grammar with the typing judgment. Every
encoded term is well-typed and well-scoped by construction: types and contexts are assigned
“at construction”, and respected by all operations, such as substitution and reduction, with
correctness statically enforced by the type checker. This stands in contrast with the usual ex-
trinsic style, where a raw term grammar is defined independently of the typing judgment, and
operations are defined independently of their type-preservation proofs. Since most metatheo-
retic properties – progress, safety, normalisation, etc. – require a well-typedness assumption,
intrinsic syntax avoids redundancy and administrative overhead inherent in duplicating the
term grammar and type system.

28 bacKgRound

2.1.1 Advantages

Intrinsic encodings operate over sets of the form {𝑡 | Γ ` 𝑡 : 𝛼 }, containing only well-typed,
well-scoped terms. Defining and manipulating such families requires dependently-typed in-
ductive families (Dybjer, 1994), which proof assistants like Agda and Rocq support natively.
For example, an intrinsic encoding of the simply typed lambda calculus (STLC) in Agda defines
four components: sorts, contexts, variables, and terms:

data S : Set where
B : S
� : S→ S→ S

data Ctx : Set where
∅ : Ctx
· : S→ Ctx→ Ctx

data V : S→ Ctx→ Set where
new : V 𝛼 (𝛼 · Γ)
old : V 𝛽 Γ→ V 𝛽 (𝛼 · Γ)

data Λ : S→ Ctx→ Set where
var : V 𝛼 Γ→ Λ 𝛼 Γ
app : Λ (𝛼 � 𝛽) Γ→ Λ 𝛼 Γ→ Λ 𝛽 Γ
lam : Λ 𝛽 (𝛼 · Γ)→ Λ (𝛼 � 𝛽) Γ

Contexts are lists of sorts, and variables are type- and scope-safe de Bruijn indices. Each term
constructor enforces its typing rule statically: variables select a context entry, applications
combine terms of matching function and argument types, and 𝜆-abstractions extend the con-
text and bind a new variable. As examples, consider the SKI combinator terms:

I : Λ (𝛼 � 𝛼) Γ K : Λ (𝛼 � 𝛽 � 𝛼) Γ
I = lam (var new) K = lam (lam (var (old new)))

S : Λ ((𝛼 � 𝛽 � 𝛾) � ((𝛼 � 𝛽) � 𝛼 � 𝛾)) Γ
S = lam (lam (lam (app (app (var (old (old new))) (var new))

(app (var (old new)) (var new)))))

Although verbose due to explicit de Bruijn manipulations, these terms encode type- and scope-
safe syntax trees: any change to the expressions will result in a type error. Agda can even
synthesize parts of these definitions automatically, owing to the rigid type and context depen-
dencies enforced by the constructors. Such static guarantees would not be enforced if one
used untyped terms, numeric de Bruijn indices, or textual variables. Operations like weaken-
ing, substitution, and reduction are naturally typed to preserve well-typedness:

wkn : Λ 𝛼 Γ→ Λ 𝛼 (𝛽 · Γ)
sub : Λ 𝛼 Γ→ Λ 𝛽 (𝛼 · Γ)→ Λ 𝛽 Γ

⇝ : Λ 𝛼 Γ→ Λ 𝛼 Γ→ Set

For instance, weakening explicitly shifts variables in the syntax tree, with the type system
ensuring correctness. Substitution encapsulates the single-variable substitution lemma; re-
duction expresses type-preserving evaluation steps. In each case, type preservation is not
merely a theorem but is embedded directly into the recursive definition of the operations.

intRins ic syntax 29

2.1.2 Challenges

Intrinsic typing has some very compelling properties, but fully committing to it also means
accepting its idiosyncrasies. Namely, it forces us to prove more things upfront than other ap-
proaches, and will forbid us from continuing with the development until Agda’s type checker
is happy – prototyping, experimentation and testing are all blocked by the “boring bits”. In
this section we give a flavour the familiar frustrations of defining the innocuous top-variable
substitution operation sub : Λ 𝛼 Γ → Λ 𝛽 (𝛼 ∙ Γ) → Λ 𝛽 Γ that forms the basis of the opera-
tional semantics of the STLC. In an intrinsically-typed setting, the definition should parallel
the usual proof of the well-typedness of substitution, which rarely causes difficulties on paper:
it proceeds by induction on 𝑡 , pushing the term 𝑠 under constructors until a free occurrence
of the last variable in the context is reached. Agda requires the utmost rigour however, so
deriving single-variable substitution will take us through some meandering workarounds.

First attempt: top substitution We define sub 𝑠 𝑡 by induction on 𝑡 : Λ 𝛽 (𝛼 ∙ Γ). The key
cases are variables and abstractions, where contexts change nontrivially. In the variable case,
if 𝑡 = var𝑥 , pattern-matching on 𝑥 distinguishes two subcases:
• If 𝑥 = new : V 𝛼 (𝛼 ∙ Γ), corresponding to the top variable, we return 𝑠 .
• If 𝑥 = old (𝑦 : V 𝛽 Γ), a lower variable, we leave it unchanged as var 𝑦 : Λ 𝛽 Γ.
In application nodes, substitution recurses structurally:

sub : Λ 𝛼 Γ→ Λ 𝛽 (𝛼 ∙ Γ)→ Λ 𝛽 Γ

sub 𝑠 (var new) = 𝑠
sub 𝑠 (var (old 𝑦)) = var 𝑦
sub 𝑠 (app 𝑓 𝑎) = app (sub 𝑠 𝑓) (sub 𝑠 𝑓)

The abstraction case, however, reveals a difficulty. If 𝑡 = lam 𝑏 : Λ (𝛽 � 𝛾) (𝛼 ∙ Γ), the body
𝑏 has type Λ 𝛾 (𝛽 ·𝛼 ∙ Γ). Informally, the substitution [𝑠/𝑥] (𝜆𝑦 : 𝛽. 𝑏) recurses into the body
of the binding, avoiding variable shadowing and capture by renaming the bound variable 𝑦
if needed. This is not immediately possible in Agda, since freshness of the new variable in 𝑏
is explicitly represented by context extension, and its type 𝛽 “covers” the free variable 𝛼 that
we are substituting for. The recursive call to sub is therefore not general enough, since it only
substitutes for the last variable in the context.

sub 𝑠 (lam 𝑏) = lam
(
sub (: Λ 𝛼 (𝛽 ∙ Γ)) (: Λ 𝛾 (𝛼 · 𝛽 ∙ Γ)) : Λ 𝛾 (𝛽 ∙ Γ)

)
In a pen-and-paper proof of the syntactic substitution lemma, we would use the structural
rules of exchange to swap 𝛼 and 𝛽 in the context of 𝑏, and weakening to weaken 𝑠 : Λ 𝛼 Γ to
Λ𝛼 (𝛽 ∙ Γ) before applying the induction hypothesis – again, very standard properties that are
rarely dwelt upon. Sadly, to define wkn : Λ 𝛼 Γ → Λ 𝛼 (𝜏 ∙ Γ) leads to the same problem as
before: the recursive call is impossible since we would need to add the 𝜏 variable under the
newly bound one, weakening 𝑏 : Λ 𝛽 (𝛼 ∙ Γ) to Λ 𝛽 (𝛼 · 𝜏 ∙ Γ) without disturbing 𝛼 .

wkn (lam (𝑏 : Λ 𝛽 (𝛼 ∙ Γ))) = lam
(
wkn (: Λ 𝛽 (𝛼 ∙ Γ)) : Λ 𝛽 (𝛼 · 𝜏 ∙ Γ)

)
Perhaps all will be solved if we define exch : Λ 𝛼 (𝛽 ·𝛾 ∙ Γ) → Λ 𝛼 (𝛾 · 𝛽 ∙ Γ)? No luck – once
again, the recursive call only accounts for the top of the context which gets extended in binding
terms. We evidently need to strengthen our induction hypothesis.

30 bacKgRound

Second attempt: middle substitution An easy way to generalise the substitution function is
to allow substituting for an arbitrary variable, surrounded by any two contexts:

sub : (Γ : Ctx)→ Λ 𝛼 (Γ + Δ)→ Λ 𝛽 (Γ + (𝛼 ∙Δ))→ Λ 𝛽 (Γ + Δ)

This is strong enough to make the recursive call in the lam, instantiating Γ with (𝛽 ∙ Γ). How-
ever, lam (sub 𝑠 𝑏) doesn’t typecheck yet since 𝑠 has to be weakened from Λ 𝛼 (Γ + Δ) to
Λ 𝛼 (𝛽 · (Γ + Δ)). We can do this using a generalised middle-weakening map

wkn : Λ 𝛼 (Γ + Δ)→ Λ 𝛼 (Γ + (𝜏 ∙Δ))

which is now definable, assuming we also establish weakening for variables:

wkn-var : (Γ : Ctx)→ V 𝛼 (Γ + Δ)→ V 𝛼 (Γ + (𝜏 ∙Δ))
wkn-var ∅ 𝑥 = old 𝑥
wkn-var (𝛼 ∙ Γ) new = new
wkn-var (𝛼 ∙ Γ) (old 𝑥) = old (wkn-var Γ 𝑥)

wkn : (Γ : Ctx)→ Λ 𝛼 (Γ + Δ)→ Λ 𝛼 (Γ + (𝜏 ∙Δ))
wkn Γ (var 𝑥) = var (wkn-var Γ 𝑥)
wkn Γ (app 𝑓 𝑎) = app (wkn Γ 𝑓) (wkn Γ 𝑎)
wkn Γ (lam {𝛾 } 𝑏) = lam (wkn (𝛾 ∙ Γ) 𝑏)

Though the abstraction case of sub is solved, we are now unable to complete the variable case:

sub : (Γ : Ctx)→ Λ 𝛼 (Γ + Δ)→ Λ 𝛽 (Γ + (𝛼 ∙Δ))→ Λ 𝛽 (Γ + Δ)
sub ∅ s (var new) = 𝑠
sub ∅ s (var (old 𝑥)) = var 𝑥
sub (𝛼 ∙ Γ) s (var x) = var new
sub (𝛼 ∙ Γ) s (var (old 𝑥)) = var (old (: V 𝛽 (Γ + Δ)))
sub Γ s (app 𝑓 𝑎) = app (sub Γ 𝑠 𝑓) (sub Γ 𝑠 𝑎)
sub Γ s (lam {𝛾 } 𝑏) = lam (sub (𝛾 ∙ Γ) (wkn ∅ 𝑠) 𝑏)

The hole expects a variable V 𝛽 (Γ + Δ), but 𝑥 has type V 𝛽 (Γ + (𝛼 ∙Δ)) and can’t generally
be “strengthened” to the required form. Despite the promising initial steps, no amount of
pattern-matching will let us close the hole and complete the definition of sub.

Third attempt: simultaneous substitution We need to step back and consider the most gen-
eral form of the substitution operation: simultaneous substitution. Instead of substituting a
single term 𝑠 of type 𝛼 for a single free variable of type 𝛼 in 𝑡 , we replace every free variable in
𝑡 with different terms of appropriate types, all of which must be in the same context. For exam-
ple, applying the simultaneous substitution 𝜎 = [𝑥1 ↦→ (𝑦 : 𝛽 ` 𝑠1 : 𝛼1), 𝑥2 ↦→ (𝑦 : 𝛽 ` 𝑠2 : 𝛼2)]
to the term 𝑥1 : 𝛼1, 𝑥2 : 𝛼2 ` 𝑡 : 𝜏 results in the term 𝑦 : 𝛽 ` [𝜎]𝑡 : 𝜏 . There are two ways to
represent a simultaneous substitution rule 𝜎 in Agda: as an inductive data type containing
a sequence of terms, or as a dependent function space that maps variables in one context to
terms in another. For the purposes of formalising substitution laws the function space repre-
sentation is more convenient.

intRins ic syntax 31

Sub : Ctx→ Ctx→ Set
Sub Γ Δ = {𝜏 : S}→ V 𝜏 Γ→ Λ 𝜏 Δ

The simultaneous substitution operation now has the type sub : Sub Γ Δ→ Λ 𝛼 Γ → Λ 𝛼 Δ,
easily specialised to single-variable substitution using Sub (𝛽 ∙Δ) Δ that maps the existing
variables to themselves and the new variable to a termΛ 𝛽 Δ. In the definition of sub, variables
are looked up using the substitution rule without any case analysis, and application recurses
into subterms. More work is needed for abstraction, since the body binds a new variable which
must be left undisturbed by the substitution. We need to “lift” a substitution Sub Γ Δ over a
binder, resulting in a map Sub (𝜏 ∙ Γ) (𝜏 ∙Δ); intuitively, it maps the new variable to itself, and
old variables to the original terms, weakened by 𝜏 :

lift : Sub Γ Δ→ Sub (𝜏 ∙ Γ) (𝜏 ∙Δ)
lift 𝜎 new = var new
lift 𝜎 (old 𝑥) = wkn (𝜎 𝑥)

The operation wkn : Λ 𝛼 Γ → Λ 𝛼 (𝜏 ∙ Γ) is derived from the centre-weakening of the previous
attempt. With this, we can finally implement the remaining cases of substitution, and derive
single-variable substitution by mapping the last variable of the context to 𝑠:

sub : Sub Γ Δ→ Λ 𝛼 Γ→ Λ 𝛼 Δ

sub 𝜎 (var 𝑥) = 𝜎 𝑥
sub 𝜎 (app 𝑓 𝑎) = app (sub 𝜎 𝑓) (sub 𝜎 𝑎)
sub 𝜎 (lam 𝑏) = lam (sub (lift 𝜎) 𝑏)

[_/] : Λ 𝛼 Γ→ Λ 𝛽 (𝛼 ∙ Γ)→ Λ 𝛽 Γ

[𝑠 /] = sub 𝜆{ new ↦→ 𝑠 ; old 𝑥 ↦→ var 𝑥 }

This approach works well, and it scales to terms that bind any number of variables – just need
to apply lift several times. Nevertheless, it is worth pondering if there are further opportunities
for abstraction that may clean up the definitions, especially of wkn-var and wkn. Indeed there
are: structural lemmas – weakening, exchange, etc. – can all be expressed as renaming the
variables of a term according to some renaming rule between contexts. A renaming rule Ren
Γ Δ is a mapping from variables in Γ to variables in Δ, and the renaming operation applies the
rule Ren Γ Δ to a term Λ 𝛼 Γ to obtain a term Λ 𝛼 Δ.

Ren : Ctx→ Ctx→ Set
Ren Γ Δ = {𝜏 : S}→ V 𝜏 Γ→ V 𝜏 Δ

ren : Ren Γ Δ→ Λ 𝛼 Γ→ Λ 𝛼 Δ ext : Ren Γ Δ→ Ren (𝛾 ∙ Γ) (𝛾 ∙Δ)
ren 𝜌 (var 𝑥) = var (𝜌 𝑥) ext 𝜌 new = new
ren 𝜌 (app 𝑓 𝑎) = app (ren 𝜌 𝑓) (ren 𝜌 𝑎) ext 𝜌 (old 𝑥) = old (𝜌 𝑥)
ren 𝜌 (lam 𝑏) = lam (ren (ext 𝜌) 𝑏)

Here, ext – the analogue of lift for variables – lifts a renaming over a binder bymapping a newly
bound variable to itself, and “weakening” the existing variables using old. The weakening map
wkn : Λ 𝛼 Γ→ Λ 𝛼 (𝛾 ∙ Γ) used in the definition of lift above is then defined as ren old.

32 bacKgRound

While we are not making full use of renaming here, the abstraction is valuable as it lifts
any context transformation to the level of terms. Instead of one structurally recursive defini-
tion for every structural property with inductive correctness laws, we have a single renaming
operation, a few general laws involving renaming, and as many instances of the structural
lemmas – weakening, exchange, contraction, permutation, etc. – as we want.

With much trial and error, we were able to define the substitution operation for the simply-
typed lambda calculus. Examining the approach, wemake twomain observations: both renam-
ing and substitution are required, but their definitions and the auxiliary functions (weakening,
lifting) they depend on are quite similar. Perhaps this can be generalised even further?

Fourth attempt: syntactic traversal Since ren is needed for wkn, lift and subsequently sub,
renaming cannot be derived from substitution. But McBride (2005) showed that there is a
way to generalise both operations into a single traversal function that, with the appropriate
instantiations, specialises to renaming and substitution. A traversal recurses into a term and
replaces every free variable with “stuf”, for a suitable notion of “stuf”: if it is a variable,
the traversal acts as a renaming, and if it is a term, we get substitution. A type-preserving
mapping from variables to a type- and context-indexed family of sets generalises the Sub and
Ren constructs defined above:

Map : (S→ Ctx→ Set)→ Ctx→ Ctx→ Set
Map X Γ Δ = {𝜏 : S}→ V 𝜏 Γ→ X 𝜏 Δ

A term traversal trav : Map X Γ Δ→ Λ 𝛼 Γ→ Λ 𝛼 Δ can be defined generically if we assume
some structure on the family X, axiomatised in a record that McBride calls a Kit. The record
supports the translation of variables into stuff, translation of stuff into terms, and weakening
of stuff. Every Kit instance supports a lifting operation on traversal rules.

record Kit (X : S→ Ctx→ Set) : Set where
field var : V 𝛼 Γ → X 𝛼 Γ

trm : X 𝛼 Γ→ Λ 𝛼 Γ
wkn : X 𝛼 Γ→ X 𝛼 (𝜏 ∙ Γ)

lift : Map X Γ Δ→Map X (𝜏 ∙ Γ) (𝜏 ∙Δ)
lift 𝜎 new = var new
lift 𝜎 (old 𝑥) = wkn (𝜎 𝑥)

With an instance of Kit X, the traversal operation is defined as follows:

trav : Map X Γ Δ→ Λ 𝛼 Γ→ Λ 𝛼 Δ

trav 𝜎 (var 𝑥) = trm (𝜎 𝑥)
trav 𝜎 (app 𝑓 𝑎) = app (trav 𝜎 𝑓) (trav 𝜎 𝑎)
trav 𝜎 (lam 𝑏) = lam (trav (lift 𝜎) 𝑏)

Renaming and substitution can be extracted by defining Kit instances for variables and terms.
Crucially, this is a two-step process: the renaming operation derived from Kit V is used to
instantiate wkn in Kit Λ.

V-Kit : Kit V ren : Map V Γ Δ→ Λ 𝛼 Γ→ Λ 𝛼 Δ

V-Kit = { var = id ; trm = var ; wkn = old } ren = V-Kit.trav

Λ-Kit : Kit Λ sub : Map Λ Γ Δ→ Λ 𝛼 Γ→ Λ 𝛼 Δ

Λ-Kit = { var = var ; trm = id ; wkn = ren old } sub = Λ-Kit.trav

intRins ic syntax 33

Finally, having waded through some messy definitions and ad hoc generalisations, we arrived
at a satisfying conclusion: an abstract term traversal operation that encompasses both re-
naming and substitution, but maintains their conceptual separation through a dependency
relationship. This invites yet another opportunity for abstraction.

Fifth attempt: semantic traversals McBride’s syntactic traversal approach was extended by
Allais et al. (2017) to arbitrary semantic traversals. The key insight is that the Kit.tm field
can more generally return a family that supports the operations of the 𝜆-calculus, i.e. a model
of STLC. An Allais-style semantic kit is thus parametrised by two type- and context-indexed
families, and requires conversion maps V var

X
trm

M, weakening on X, and analogues
of the application and 𝜆-abstraction (presented in terms of extension) operations on M.

record Traversal (X M : S→ Ctx→ Set) : Set where
field var : V 𝛼 Γ → X 𝛼 Γ

trm : X 𝛼 Γ→M 𝛼 Γ

wkn : X 𝛼 Γ→ X 𝛼 (𝜏 ∙ Γ)
A : M (𝛼 � 𝛽) Γ→M 𝛼 Γ→M 𝛽 Γ

L : M 𝛽 (𝛼 ∙ Γ)→M (𝛼 � 𝛽) Γ

The traversal function acts as a semantic interpretation of STLC terms in an arbitrary model,
additionally incorporating a mapping into a new context.

trav : Map X Γ Δ→ Λ 𝛼 Γ→M 𝛼 Δ

trav 𝜎 (var 𝑥) = trm (𝜎 𝑥)
trav 𝜎 (app 𝑓 𝑎) = A (trav 𝜎 𝑓) (trav 𝜎 𝑎)
trav 𝜎 (lam 𝑏) = L (trav (lift 𝜎) 𝑏)

Renaming and substitution are recovered from instances Traversal V Λ and Traversal Λ Λ, but
the construction is far more general: Allais et al. (2021) show how to use it for pretty-printing,
normalisation-by-evaluation, CPS transformation, desugaring, and many other applications.
Considering how systematic the structure of Traversal and trav is, a natural question arises:
can this construction be syntax-generic, operating over an arbitrary second-order signature?

Sixth attempt: signature-generic traversals Generically encoding the constructors of a
second-order syntax can be done in several ways. One, using algebras for signature endo-
functors, is the main topic of this thesis. Another, a technique based on generic programming
(Weirich and Casinghino, 2012), is to encode the second-order syntax as a universe of codes
(Chapman et al., 2010), and generalise the Traversal record to arbitrary syntax encodings. In-
troduced by Allais et al. (2021), this is a powerful but quite technical solution, and forces the
user into a particular term representation. While their approaches served as an important
inspiration to our work, the Agda-heavy implementation obscures some fruitful paths of in-
vestigation that present themselves quite naturally when looking at the categorical model.

34 bacKgRound

2.1.3 The need for theoretical foundations

The definitions of renaming, substitution, and other traversals are only half the story: we also
rely on their correctness properties, beyond simple type preservation. These typically take the
form of compatibility laws that express how traversals can be combined, commuted, or sim-
plified. Examples are the substitution associativity law [𝑟/𝑦] ([𝑠/𝑥]𝑡) = [[𝑟/𝑦]𝑠/𝑥] ([𝑟/𝑦]𝑡),
the substitution identity law [𝑥/𝑥]𝑡 = 𝑡 , or the semantic substitution lemma J[𝑠/𝑥]𝑡K =J𝑡K ◦ 〈id, J𝑠K〉. As with substitution itself, formalising these laws in a proof assistant is far
more intricate than it first appears, and the challenges are rarely discussed in the literature.
Nevertheless, they are unavoidable: such laws regularly surface in proofs of important theo-
rems like soundness and normalisation.

Attempting to prove a special case of a law is typically hopeless: the induction hypotheses
will not be strong enough to handle variable or binding cases. Consequently, the laws must be
formulated for simultaneous substitution, which in turn depends on corresponding laws for
lift, themselves requiring a sequence of auxiliary lemmas about renaming, and so on. Working
with intrinsic typing demands considerable patience and determination: once we recognise a
required property of substitution, we must be prepared for a cascade of technical lemmas that
must first be established. Benton et al. (2012) list twelve such correctness properties – cover-
ing all the identity and composition laws for renaming and substitution, together with their
associated lifting lemmas – that must be proved sequentially, each one building on previous
results, in order to establish substitution associativity. There are four “unit” laws:

ext id = id : V 𝛼 (𝜏 ∙ Γ) → V 𝛼 (𝜏 ∙ Γ) (e-id)

ren id = id : Λ 𝛼 Γ → Λ 𝛼 Γ (r-id)

lift var = var : V 𝛼 (𝜏 ∙ Γ) → Λ 𝛼 (𝜏 ∙ Γ) (l-v)

sub var = id : Λ 𝛼 Γ → Λ 𝛼 Γ (s-v)

and eight “fusion” laws, for all renaming rules 𝜌 : Ren Γ Δ, 𝜚 : Ren Δ Θ, and substitution rules
𝜎 : Map Λ Γ Δ, 𝜍 : Map Λ Δ Θ:

ext (𝜚 ◦ 𝜌) = ext 𝜚 ◦ ext 𝜌 : V 𝛼 (𝜏 ∙ Γ) → V 𝛼 (𝜏 ∙Θ) (e-e)

ren (𝜚 ◦ 𝜌) = ren 𝜚 ◦ ren 𝜌 : Λ 𝛼 Γ → Λ 𝛼 Θ (r-r)

lift (𝜍 ◦ 𝜌) = lift 𝜍 ◦ ext 𝜌 : V 𝛼 (𝜏 ∙ Γ) → Λ 𝛼 (𝜏 ∙Θ) (l-e)

sub (𝜍 ◦ 𝜌) = sub 𝜍 ◦ ren 𝜌 : Λ 𝛼 Γ → Λ 𝛼 Θ (s-r)

lift (ren 𝜚 ◦ 𝜎) = ren (ext 𝜚) ◦ lift𝜎 : V 𝛼 (𝜏 ∙ Γ) → Λ 𝛼 (𝜏 ∙Θ) (re-l)

sub (ren 𝜚 ◦ 𝜎) = ren 𝜚 ◦ sub𝜎 : Λ 𝛼 Γ → Λ 𝛼 Θ (r-s)

lift (sub 𝜍 ◦ 𝜎) = sub (lift 𝜍) ◦ lift𝜎 : V 𝛼 (𝜏 ∙ Γ) → Λ 𝛼 (𝜏 ∙Θ) (sl-l)

sub (sub 𝜍 ◦ 𝜎) = sub 𝜍 ◦ sub𝜎 : Λ 𝛼 Γ → Λ 𝛼 Θ (s-s)

Allais et al. (2021) take a more general approach, considering a notion of simulation between
traversals, and fusion of two traversals into one; while powerful, their method employs an
advanced logical relations framework to prove results that, conceptually, should stem from
straightforward (albeit tedious) structural inductions on the grammar.

the pResheaf model 35

The central aim of ourwork, then, is to place the tradition of intrinsic encodings on a formal
foundation, where the abstractions outlined above can be properly captured. Our starting
point is the presheaf model of abstract syntax developed by Fiore et al. (1999), which, despite
its parallel evolution alongside much of programming language formalisation, has yet to be
adopted directly as a basis for ametatheoretic verification framework. This is likely due both to
themodel’s abstract mathematical nature –which does not lend itself easily to implementation
– and a prevailing attitude of “I’m just doing Rocq/Agda; I don’t need abstract category theory.”
Indeed, Allais et al. (2021, Section 10.3) express a somewhat dismissive sentiment about the
presheaf model, arguing that by avoiding commitment to an external mathematical semantics,
their framework remains more flexible and less encumbered by type-theoretic assumptions.

Our belief is that the presheaf model provides an efficient and robust encapsulation of
intrinsic encoding, along with many of its generalisations, extensions, and pragmatic adapta-
tions developed through years of trial and error. The adjustments required to fit the presheaf
model into a practical, working implementation are all mathematically justified. Moreover, by
committing to the full rigour of the theory, we are able to exploit its full categorical strength.

2.2 The pResheaf model

We set the scene for the work by giving a high-level, but concrete summary of the presheaf
model of second-order abstract syntax (Fiore et al., 1999; Fiore, 2002, 2008). To give context
for the abstract constructions, we use the simply-typed 𝜆-calculus as our running example,
notationally mirroring the intrinsically-typed formalisation of the previous section.

Sorts and contexts The grammar of STLC sorts below generates the set 𝑆 :

𝛼, 𝛽 ∈ 𝑆 ::= B | 𝛼 � 𝛽

The category of contexts is the free cocartesian category generated by 𝑆 , F [𝑆]. Its objects are
lists of sorts, morphisms are renaming rules Γ � Δmapping elements of Γ to elements ofΔ, and
the coproduct is context concatenation Γ+Δ, with injections 𝜄Γ,Δ2 : Γ � Γ+Δ and 𝜄Γ,Δ1 : Δ � Γ+Δ,
and copairing of renaming rules 𝜌 : Γ � Θ and 𝜚 : Δ � Θ to [𝜌, 𝜚]Γ,ΔΘ : Γ + Δ � Θ.

Category of presheaves A sorted presheaf P = {P𝛼Γ }𝛼∈𝑆,Γ∈F [𝑆] ∈ (SetF [𝑆])𝑆 is a sort- and
context-indexed family of sets with an associated renaming structure that maps Γ � Δ to a
function P𝛼Γ → P𝛼Δ for all 𝛼 . Elements 𝑡 ∈ P𝛼Γ of a presheaf are intrinsically typed and
scoped, representing a term 𝑡 of type 𝛼 in context Γ. Sorted presheaves and natural transfor-
mations between them form the category PSh𝑆 ≜ (SetF [𝑆])𝑆 .

Syntactic signature A binding signature lists the operators of the syntax, along with their
type signatures which explicitly specify when an operator binds a variable in its argument.

app : (𝛼 � 𝛽) × 𝛼 → 𝛽 lam : (𝛼.𝛽) → (𝛼 � 𝛽)

The signature of a second-order syntax gives rise to a signature endofunctor Σ : PSh𝑆 → PSh𝑆 ,
mapping a presheaf to the coproduct of the operator parameters. The context extension oper-

36 bacKgRound

ator 𝛿𝜏 (P)𝛼Γ = P𝛼 (𝜏 · Γ) can be used to express binding terms, and equality constraints are
used to specialise the output sort. For the STLC, this would be

ΣΛP𝜏 ≜
[∑
𝛼,𝛽∈𝑆

P𝛼�𝛽 × P𝛽 × (𝜏 = 𝛽)
]
+

[∑
𝛼,𝛽∈𝑆

𝛿𝛼P𝛽 × (𝜏 = (𝛼 � 𝛽))
]

As the definition only involves products, coproducts, and the context extension endofunctor
𝛿𝜏 : PSh𝑆 → PSh𝑆 , the output is indeed a presheaf over F [𝑆].

Variables The presheaf of variables V ∈ (SetF [𝑆])𝑆 is defined as the Yoneda embedding
F [𝑆]op → SetF [𝑆] precomposed with the singleton list embedding [−] : 𝑆 → F [𝑆]:

V𝛼Γ ≜

ょ[𝛼] (Γ) ≜ F [𝑆] ([𝛼], Γ)

This corresponds to the Var type in Agda, as a morphism in F [𝑆] ([𝛼], Γ) selects an occurrence
of 𝛼 in Γ, whose index may be encoded as a well-typed de Bruijn index.

Terms The presheaf of terms is the initial (V+Σ)-algebra, whose object part is the inductive
definition of terms above. Concretely, it is a family Twith natural transformations var : V→ T
(the “V-algebra” part) and alg : ΣT → T (the Σ-algebra part). The first corresponds to the
constructor for variables, while the Σ-algebra is a copairing of the term constructors. Initiality
of the term presheaf gives rise to definitions by structural recursion: for any (V + Σ)-algebra
(A, 𝑣 : V → A, 𝑎 : ΣA → A), there exists a unique morphism sem : T → A satisfying the
homomorphism conditions of (V + Σ)-algebras:

V

T A

var 𝑣

sem

ΣT ΣA

T A

Σsem

𝑎alg

sem

For the signature of the STLC, we therefore get natural transformations in PSh = SetF [𝑆]

var : V𝛼 → T𝛼 lam : 𝛿𝛼T𝛽 → T𝛼�𝛽 app : T𝛼�𝛽 × T𝛼 → T𝛽

for all 𝛼, 𝛽 ∈ 𝑆 . The initial homomorphism conditions state that given any ΣΛ-endofunctor
(A, 𝑣, 𝑎, 𝑙), we have an interpretation map sem : T → A that satisfies the following composi-
tionality laws, which can equivalently be seen as the definition of sem by structural recursion
on the syntax encoded in the initial algebra:

sem (var𝑥) = 𝑣 𝑥

sem (lam𝑏) = 𝑙 (sem𝑏)
sem (app (𝑓 , 𝑡)) = 𝑎 (sem 𝑓 , sem 𝑡)

Renaming and substitution rules Context maps PΓ Δ are products P×Γ (Δ) ≜
∏
𝛼∈Γ P𝛼Δ,

mapping a variable of type 𝛼 in Γ to a P-term of type 𝛼 in Δ. They are called renaming rules

the pResheaf model 37

for P = V and denoted simply as Γ � Δ as they are isomorphic to morphisms in F [𝑆]. For
P = T, these will be denoted Γ T Δ and called substitution rules.

Renaming under a binder Given a renaming rule Γ � Δ, the lifting of 𝜌 is the action of the
context extension endofunctor 𝛿𝜏𝜌 : (𝜏 · Γ) → (𝜏 ·Δ) defined as id[𝜏] +𝜌 : ([𝜏] + Γ) → ([𝜏] +Δ).
In the presheaf model, the context extension endofunctor has an equivalent characterisation
as exponentiation by the presheaf of variables: 𝛿𝜏𝑃 � (V𝜏 ⊃ 𝑃), and for arbitrary contexts,
𝛿Θ𝑃 �

ょ

Θ ⊃ 𝑃 . This follows from the Yoneda lemma via the following calculation:

(ょΘ ⊃ 𝑃) (Γ) � PSh
(ょ

Γ × ょ

Θ, 𝑃
)
� PSh

(ょ(Θ + Γ), 𝑃) � 𝑃 (Θ + Γ) � 𝛿Θ𝑃 (Γ)
Simultaneous renaming Since the initial (V + Σ)-algebra is a presheaf, its functorial action
maps Γ � Δ to T𝛼 (𝜌) : T𝛼Γ → T𝛼Δ and corresponds to renaming. The algebra structure map
(V + Σ)T = V + ΣT → T is a natural transformation between presheaves, and its naturality
decomposes as the following compatibility conditions between functoriality and constructors:

T(𝜌) (var𝑥) = var (𝜌 𝑥)
T(𝜌) (lam𝑏) = lam (T([𝛼] + 𝜌) 𝑏)
T(𝜌) (app (𝑓 , 𝑡)) = app (T(𝜌) 𝑓 ,T(𝜌) 𝑡)

These, of course, correspond to the structural recursive definition one would use to equip the
underlying family of the initial algebra with the functorial action.

Weakening The single-variable weakening of a term wkn : T𝛼Δ → T𝛼 (𝜏 · Δ) is derived as
renaming by the injection 𝜄 [𝜏],Δ1 : Δ � [𝜏] + Δ. Of course, this works for any presheaf 𝑃 , and an
arbitrary extending context Θ:

wkn ≜ 𝑃 (𝜄Θ,Γ1) : 𝑃 (Γ) → 𝑃 (Θ + Γ)

Substitution under a binder Given a substitution rule 𝜎 : Γ T Δ, we can extend both the
domain and codomain of 𝜎 to lift𝜎 : Θ + Γ T Θ + Δ by the copairing

T
[
var ◦ 𝜄Θ,Γ2 , wkn ◦ 𝜎

]Θ,Γ
Θ+Δ : Θ + Γ

T Θ + Δ

The lifting extends into a more general operation constructed in terms of the substitution tensor
product ⊗ of presheaves, defined through the substitution action � as

(𝑃 � Q) (Δ) ≜
∫ Γ∈F [𝑆]

𝑃 (Γ) × QΓ Δ (P ⊗ Q)𝛼 ≜ P𝛼 � Q

The substitution tensor product contains equivalence classes of tuples (Γ, 𝑡 ∈ P𝛼Γ, 𝜎 : QΓ Δ) ∈
(P ⊗ Q)𝛼Δ of a context, a term and a substitution, quotiented by the equivalence relation
generated from the following condition: for all 𝜌 : Γ � Δ, 𝜎 ∈ QΔ Θ, and terms 𝑡 ∈ P𝛼Γ, we
identify the (componentwise unequal) tuples

(Δ, P(𝜌)𝑡, 𝜎) ∼ (Γ, 𝑡, 𝜎 ◦ 𝜌)

38 bacKgRound

Being a tensor product, we have natural isomorphisms 𝜆
Q
: V ⊗ Q � Q, 𝜌

P
: P ⊗ V � P and

𝛼
P,Q,R : (P⊗Q)⊗R � P⊗(Q⊗R), whichmake use of functoriality and the quotienting. The “lift-

ing” is then expressed as a pointed tensorial strength transformation for the context extension
endofunctor 𝛿Θ, operating on a presheaf 𝑃 ∈ PSh and pointed presheaf (Q ∈ PSh𝑆, 𝜂 : V→ Q):

(𝛿Θ𝑃) � Q→ 𝛿Θ(𝑃 � Q)

This maps equivalence classes of tuples (Γ, 𝑡 ∈ 𝑃 (Θ + Γ), 𝜎 : QΓ Δ) ∈ (𝛿Θ𝑃 � Q)Δ to the
equivalence class of

(Θ + Γ, 𝑡, lift𝜎) ∈ 𝛿Θ(𝑃 � Q)Δ

where lift𝜎 : QΘ+Γ
Θ+Δ is the generalised lifting for the context map 𝜎 : QΓ Δ

Q

[
𝜂 ◦ 𝜄Θ,Γ2 , wkn ◦ 𝜎

]Θ,Γ
Θ+Δ : QΘ+Γ

Θ+Δ

The strength for 𝛿Θ forms part of the strength for the signature endofunctor Σ : PSh𝑆 → PSh𝑆

str : Σ(P) ⊗ Q→ Σ(P ⊗ Q)

which is responsible for “pushing” substitutions into constructor arguments and under binders.
While the strength may not exist for arbitrary functors, it can always be derived when Σ is
constructed from a second-order signature: since ΣP is a sum-of-products-of-deltas, and we
have the strength 𝛿Θ𝑃 � (R) → 𝛿Θ(𝑃 � R), and isomorphisms and transformations

(𝑃 +𝑄) � R � (𝑃 � R) + (𝑄 � R) (𝑃 ×𝑄) � R→ (𝑃 � R) × (𝑄 � R)

we use these repeatedly to push (−) � R deeper into the signature. For the STLC,(
𝛿𝛼P𝛽 + (P𝛼�𝛽 × P𝛼)

)
� R � (𝛿𝛼P𝛽 � R) +

(
(P𝛼�𝛽 × P𝛼) � R

)
→ 𝛿𝛼 (P𝛽 � R) +

(
(P𝛼�𝛽 � R) × (P𝛼 � R)

)
which, as explicit mappings on constructor components, amounts to[(

Γ, 𝑏 ∈ 𝛿𝛼P𝛽Γ, 𝜎 ∈ QΓ Δ

)]
↦→

[(
𝛼 · Γ, 𝑏 ∈ P𝛽 (𝛼 · Γ), lift 𝜎 : Q𝛼 ·Γ

𝛼 ·Δ
)][(

Γ, (𝑓 ∈ P𝛼�𝛽Γ, 𝑡 ∈ P𝛼Γ), 𝜎 ∈ QΓ Δ

)]
↦→

(
[(Γ, 𝑓 , 𝜎)], [(Γ, 𝑡, 𝜎)]

)
The pointed strength also allows us to generalise initiality of the presheaf of terms T to
parametrised initiality, using the closed structure: for any pointed presheaf (P, 𝑣 : V → P)
– taking the role of the parameter – and (P + Σ)-algebra (A, 𝑝 : P → A, 𝑎 : ΣA → A), there
exists a unique (Σ + V)-algebra homomorphism trav : T ⊗ P→ A satisfying

V ⊗ P V ⊗ A

T ⊗ P A

V⊗𝑝

𝜆Avar⊗P

trav

ΣT ⊗ P Σ(T ⊗ P) ΣA

T ⊗ P A

str Σtrav

alg⊗P 𝑎

trav

the pResheaf model 39

For the STLC, the axioms for this traversal operation become the recursive specifications

trav (var𝑥, 𝜎) = 𝑝 (𝜎 𝑣)
trav (lam𝑏, 𝜎) = 𝑙 (trav (𝑏, lift𝜎))
trav (app (𝑓 , 𝑡), 𝜎) = 𝑎 (trav 𝑓 , 𝜎, trav 𝑡, 𝜎)

The naming is not coincidental – trav generalises the traversal maps of McBride (2005) (see
Section 2.1.2) and behaves similarly to the semantics operation of Allais et al. (2021).

Simultaneous substitution The simultaneous substitution operation for presheaves can be
expressed as a monoid multiplication for the substitution tensor product, turning T into a
monoid object in PSh𝑆 :

var : V→ T sub : T ⊗ T→ T

It maps a term 𝑡 ∈ T𝛼Γ and a substitution rule 𝜎 : Γ T Δ to a term sub (Γ, 𝑡, 𝜎) : T𝛼Δ. The
substitution operation sub : T ⊗ T → T is an instance of a traversal operation induced by
parametrised initiality, with the pointed presheaf P instantiated with (T, var) and (P + Σ)-
algebra with (T, id : T→ T, alg : ΣT→ T). The axioms of traversal maps then become

V ⊗ T

T ⊗ T T

var⊗T 𝜌T

sub

ΣT ⊗ T Σ(T ⊗ T) ΣT

T ⊗ T T

str Σsub

alg⊗T alg

sub

expanding for the STLC to the expected recursive specification of substitution:

sub (var𝑥, 𝜎) = 𝜎 𝑣

sub (lam𝑏, 𝜎) = lam (sub (𝑏, lift𝜎))
sub (app (𝑓 , 𝑡), 𝜎) = app (sub (𝑓 , 𝜎), sub (𝑡, 𝜎))

Single-variable substitution The single-variable substitution operation is a natural transfor-
mation [−/] : T𝛼 × 𝛿𝛼T𝛽 → T𝛽 , that performs a substitution with a rule T𝛼 ·Γ

Γ :

[𝑠 /] 𝑡 ≜ sub
(
𝛼 · Γ, 𝑡, T[𝑡, var] [𝛼],ΓΓ

)
An algebraic description of this operation is the subject of Fiore et al. (1999, Section 3) and,
more recently, Fiore and Ranchod (2024, Section 4).

Simultaneous substitution laws The categorical presheaf model makes laws an essential
part of the structures, rather than an afterthought. We do the hard work upfront – in sufficient
generality – from which valuable corollaries are easily derived, rather than having to work
backwards to figure out the general properties needed to derive the specific laws one seeks.
Of the 12 laws in the previous section, the ones concerning ext and lift follow from the strength
laws for the endofunctor 𝛿Θ:

ext id = id lift (𝑥 ↦→ (Γ, 𝜎 𝑥, 𝜍)) 𝑦 = (Δ, lift𝜎 𝑦, lift 𝜍)

40 bacKgRound

The ones concerning sub and ren are the unit, naturality and associativity laws of the monoid
multiplication sub : T ⊗ T→ T – establishing them is part of showing that T is a monoid.

Any signature endofunctor has a strength transformation which satisfies the required ax-
ioms (which are straightforward for products and sums, and reduce to the two axioms above for
𝛿𝜏), fromwhich themain theorem is proved: the initial (V+Σ)-algebra is amonoid. Themonoid
multiplication – substitution – is extracted as a traversal as above, and its laws use the unique-
ness of parametrised-initial interpretations. For example, the unit law sub (var ◦ 𝜌) 𝑡 = T 𝜌 𝑡
expresses the equality of the two morphisms

T ⊗ V
T⊗var T ⊗ T sub T T ⊗ V

𝜆T T

which, if shown to be homomorphisms of (V+Σ)-algebras, must be equal to the unique traver-
sal trav : T ⊗ V → T induced by parametrised initiality on the pointed presheaf (V, id) and
(V + Σ)-algebra (T, var, alg). Similarly, the associativity law sub (sub 𝜍 ◦ 𝜎) = sub 𝜍 ◦ sub𝜎 is
the equality of the composites

T ⊗ (T ⊗ T)
𝛼T,T,T (T ⊗ T) ⊗ T sub⊗T T ⊗ T sub T

T ⊗ (T ⊗ T) T⊗sub T ⊗ T sub T

which are both (V + Σ)-algebra homomorphisms and therefore equal the traversal map
trav : T ⊗ (T ⊗ T) → T induced by parametrised initiality with pointed presheaf parameter
(T ⊗ T,V � V ⊗ V

var⊗var T ⊗ T) and ((T ⊗ T) + Σ)-algebra (T, sub, alg).

Models and interpretations A model for the syntax is nothing but a (V + Σ)-algebra M: a
presheaf which supports variables and the operators of the syntax. The initiality theorem char-
acterising T as the initial such model gives rise to compositional interpretations int : T → M

directly, satisfying the expected recursive equations. The notion can be further strengthened
to also incorporate substitution. A Σ-monoid is therefore a monoid (M, 𝜂, 𝜇) with a Σ-algebra
structure 𝑎 : ΣM→M that is compatible with the monoid multiplication:

ΣM ⊗M Σ(M ⊗M) ΣM

M ⊗M M

str Σ𝜇

𝑎⊗M 𝑎

𝜇

The traversal axioms for sub exhibit T as a Σ-monoid. In fact, it is initial in the category of
Σ-monoids, meaning that any model M with a substitution operation that commutes with the
constructors in the appropriate way is equipped with a compositional interpretation int : T→
M which automatically satisfies the semantic substitution lemma:

int (sub (𝑡, 𝜎)) = 𝜇 (int 𝑡, int ◦ 𝜎)

Consequently, the soundness of substitution is established as soon as we show that the model
is a Σ-monoid, removing the need for proving the inductive compatibility laws between int
and renaming, weakening, etc. We will refer to this result as the initiality theorem.

the pResheaf model 41

Metavariables Metavariables are a feature not generally addressed by formalisation, but they
appear quite naturally as part of the presheaf model. Above we argued that the initial (Σ+V)-
algebra T is an initial Σ-monoid, which allowed us to define compositional interpretations in
models that support substitution. A natural question to ask is whether there is a free con-
struction that turns any presheaf into a Σ-monoid, just how the list constructor turns any set
into a free set-theoretic monoid. A free monoid on P in the monoidal category of presheaves
(PSh𝑆,V, ⊗) would be a presheaf 𝐿P with a natural transformation 𝜂 : P → 𝐿P such that for
any monoid M ∈ PSh𝑆 and map 𝜑 : P → M, there exists a unique monoid homomorphism
𝜑♯ : 𝐿P→M factorising 𝜑 = 𝜑♯ ◦ 𝜂:

P 𝐿P

M

𝜂

𝜑 𝜑♯

A list object (Cockett, 1990; Fiore and Saville, 2017), if it exists, is a free monoid: on a presheaf
P, it consists of morphisms var : V→ 𝐿P and cons : P⊗𝐿P→ 𝐿P such that for all objects Q,M
with 𝑛 : Q→ M and 𝑐 : P ⊗M→ M, there exists a unique map iter : 𝐿P ⊗ Q→ M satisfying
the parametrised-initiality condition:

V ⊗ Q 𝐿P ⊗ Q (P ⊗ 𝐿P) ⊗ Q

P ⊗ (𝐿P ⊗ Q)

Q M P ⊗M

var⊗Q cons⊗Q

𝑒 𝑐

iter

𝛼

P⊗iter

𝜆

To generalise this to a list object with algebraic structure, we also ask for an algebra constructor
alg : Σ𝐿P → 𝐿P; since this, with the “empty list” constructor var : V → 𝐿P, makes 𝐿P into a
(Σ + V)-algebra, we are justified in thinking of the object as the presheaf of terms TP with an
additional constructor cons : P ⊗ TP→ TP, which we will write as mvar from now on.

The intuitive interpretation of the constructor mvar : P ⊗ TP→ TP was first suggested by
Hamana (2004): the opaque, non-syntactic termm ∈ P𝜏Π is ametavariable, and the associated
substitution rule assigning types in Π to syntactic terms in context Γ is ametavariable environ-
ment. Parametrised metavariables mvar (m, 〈𝑡1, . . . , 𝑡𝑛〉), also denoted m〈𝑡1, . . . , 𝑡𝑛〉, allow one
to construct syntactic terms with holes that stand for arbitrary expressions, with the holes
having a predefined number of slots that can be populated with terms of a predefined type.
The type and number of the metavariable slots is predetermined by the metavariable context
Π. For example, for elements m ∈ P𝛽 [𝛼] and n ∈ P𝛼 [], standing for metavariables m : [𝛼]𝛽
and n : []𝛼 with one and zero parameters respectively, we can construct T-terms

app
(
lam (mvar (m, 〈var new〉)),mvar(n, 〈〉)

)
mvar (m, 〈mvar (n, 〈〉)〉)

that encode the syntax of the informal meta-terms (𝜆𝑥 : 𝛼.m{𝑥})(n) andm{n}. Metavariables
provide a formal way to refer to abstract terms that can be instantiated with concrete syntac-
tic expressions, and parametrised metavariables are further associated with an environment
of terms that are substituted for the free variables of the instantiating expression. For exam-

42 bacKgRound

ple, instantiating m{𝑦} above with 𝑓 (𝑦) for some term 𝑓 : 𝛼 � 𝛽 results in (𝜆𝑥 : 𝛼. 𝑓 (𝑥)) (n)
and 𝑓 (n): in the first, the actual parameter 𝑥 bound to the 𝜆 is plugged into the 𝑦 formal
parameter of the metavariable; in the second, we replace 𝑦 with the term consisting of the
metavariable n. It is worth emphasising that instantiation is not standard substitution, as it is
capture-permitting: given a second-order term

m : [N] (N � N) ⊲ 𝑓 : 𝛼 � N ` 𝜆𝑥 : 𝛼. (m{𝑓 𝑥}) (𝑓 𝑥) : N

and the instantiation m{𝑥} ↦→ 𝜆𝑦 : N. 𝑥 + 𝑦, the resulting term is

∅ ⊲ 𝑓 : 𝛼 � N ` 𝜆𝑥 : 𝛼. (𝜆𝑦 : N. (𝑓 𝑥) + 𝑦) (𝑓 𝑥) : N

and the bound variable 𝑥 maintains the binding to 𝑓 𝑥 .
One application of metavariables and instantiation is the specification of second-order

equational systems (Fiore and Hur, 2010), which construct a sound and complete equational
logic from a set of second-order axioms, namely a pair of terms with metavariables which
abstract over all instantiations of the axiom. For example, the 𝛽 and 𝜂-rules of STLC and the
first-order universal-conjunction equivalence can be represented as the axioms

m : [𝛼]𝛽, n : []𝛼 ⊲ ∅ ` (𝜆𝑥 : 𝛼. m{𝑥})(n) ≡ m{n} : 𝛽

f : [] (𝛼 � 𝛽) ⊲ ∅ ` 𝜆𝑥 : 𝛼. f 𝑥 ≡ f : 𝛼 � 𝛽

p : []B, q : [N]B ⊲ ∅ ` p ∧ (∀𝑛 ∈ N. q{𝑛}) ≡ ∀𝑛 ∈ N. (p ∧ q{𝑛}) : B

Note that parametrised metavariables give us a clear control over what variables are free and
bound in each metavariable: for the 𝜂-rule, the metavariable f has no parameters and therefore
does not bind the 𝑥 , and for the FOL axiom, only q refers to the quantified variable as p has no
parameters it can connect to.

As shown in Corollary 4 of Fiore (2008) and Lemma 5.6 of Fiore and Saville (2017), the
initial (Σ + V + P⊗)-algebra – the syntax of terms that support constructors, variables, and
metavariables – is a Σ-list object, which is furthermore the free Σ-monoid: for all Σ-monoids
M with interpretation 𝜑 : P → M, there is a unique Σ-monoid homomorphism 𝜑♯ : TP → M

such that 𝜑 = 𝜑♯ ◦ emb, where emb : P→ TP maps m ∈ P𝜏Π to mvar(m, var). In other words,
given a model of the syntax M, and an interpretation for the metavariables 𝜑 : P→ M, there
is a unique extension 𝜑♯ = int𝜑 : TP→M which satisfies

V

TP M

var
𝜂

int𝜑

ΣTP ΣM

TP M

Σint𝜑

𝑎alg

int𝜑

P ⊗ TP M ⊗M

TP M

𝜑⊗int𝜑

𝜇mvar

int𝜑

int𝜑 (var𝑥) = 𝜂 𝑥

int𝜑 (alg 𝑡) = 𝑎 (Σ int𝜑 𝑏)
int𝜑 (mvar (m, 𝜀)) = 𝜇 (𝜑 m, int𝜑 ◦ 𝜀)

the pResheaf model 43

We will refer to this as the freeness theorem; it can be instantiated to the initiality theorem on
page 40 with P ≜ ⊥ and the initial map ⊥ → M, which extends to T⊥ → M, the compo-
sitional interpretation of terms without any metavariables. When metavariables are present,
they are mapped to elements of the model into which the interpretation of the metavariable
environment is substituted.

One subtle question is the categorical representation of the metavariable family in the
presheaf model. Every presheaf admits renaming, but this works against our intention to
rigidly enumerate the metavariables featured in an equation or theory. For example, we may
want to collect every metavariable in the examples above into a single family:

m : P𝛽 [𝛼] n : P𝛼 [] f : P𝛼�𝛽 [] p : PB [] q : PB [N]

To fit in the presheaf model, we also need to define the arrow mapping of the presheaf P, but
it is not at all clear how to do this for the elements above; and even if we did, the use for such
a renaming operation would be uncertain. The mvar operator is defined in terms of ⊗ and
therefore performs the usual quotienting:

(P𝜌m)〈𝜀〉 = m{𝜀 ◦ 𝜌}

but again, the meaning and utility of this is not clear as it introduces a malleability to metavari-
ables that we would rather avoid.

Hamana’s (2004) suggestion is to keep metavariables in indexed families of sets Fam𝑆 ≜
(SetF [𝑆])𝑆 , but freely equip this family (henceforth denoted A,B) with a presheaf structure

A𝛼Δ ≜
∑
Γ∈𝑆∗

F (Γ,Δ) × A𝛼Γ

This associates a metavariable with a renaming rule, and the presheaf action of A simply alters
the renaming rule rather than altering the context of the metavariable. Thus, the family A

can be embedded into the presheaf framework without a significant change to its role as an
enumeration of metavariables. Composing the free presheaf and free Σ-monoid functors gives
the free Σ-monoid on sorted families A ↦→ TA (which we still denote T : Fam𝑆 → Σ-Mon)
computed on A as the initial (Σ + V + A⊗)-algebra.

Metasubstitution The instantiation of metavariables – the metasubstitution operation –
combines a term in TP with a mapping of metavariables in P to terms in TQ to obtain a term
in TQ. It operates in a way very similar to object-level substitution, but one level up: the meta-
substitution rule P → TQ is lifted to a mapping TP → TQ. However, since the category of
presheaves is closed, the operation has an external and internal form (introduced by Hamana
(2004) and Fiore (2008), respectively), with important practical differences between the two.

The external metasubstitution rule is the hom-set PSh𝑆 (P,TQ), and the external metasubsti-
tution operation is the Kleisli extension

PSh𝑆 (P,TQ) → PSh𝑆 (TP,TQ)

Concretely, given a Σ-monoid M, the freeness of the free Σ-monoid functor T amounts to

44 bacKgRound

a bijection between natural transformations 𝜑 : P =⇒ M, and Σ-monoid homomorphisms
int𝜑 ∈ Σ-Mon(TP,M) which, for M = TQ, induces the metasubstitution operation. In ad-
dition, for P = TQ, the extension of the identity TQ → TQ is the monad multiplication
join = intid : T(TQ) → TQ, exhibiting T as a monad, as expected:

join (var𝑥) = var𝑥

join (alg 𝑡) = alg (Σ join𝑏)
join (mvar (𝑡, 𝜀)) = sub (𝑡, join ◦ 𝜀)

The external metasubstitution operation is too limited for the intended purpose. An exter-
nal metasubstitution rule P → TQ assigns every metavariable m ∈ P𝜏Π to a term TQ𝜏Π,
so the target of the rule may only refer to variables in the parameter context; in particular,
metavariables with no parameters may only be instantiated with closed terms. For example,
inm : [N]𝛼 ⊲ 𝑥 : N, 𝑦 : N ` m{𝑦} : 𝛼 , we cannot instantiatem{𝑦} with 𝑥 +𝑦 as the target term
of the metasubstitution can only refer to the 𝑦 parameter of m. This is restrictive considering
𝑥 is in scope throughout the whole term.

The solution is to internalise the metasubstitution operation as a natural transformation
between presheaf exponentials, rather than a function between homsets – this is the key con-
tribution of the two-level substitution calculus of second-order abstract syntax as developed
by Fiore (2008). Temporarily moving to the unsorted setting of the paper, an internal meta-
substitution rule is the presheaf exponential 𝑃 ⊃ T𝑄 ∈ PSh, and the internal metasubstitution
operation is a natural transformation between exponentials

(𝑃 ⊃ T𝑄) =⇒ (T𝑃 ⊃ T𝑄) ∈ PSh

also presentable, in uncurried form, as T𝑃 × (𝑃 ⊃ T𝑄) =⇒ T𝑄 . The presheaf exponen-
tial 𝑃 ⊃ T𝑄 is defined at all Γ as the hom-set PSh

(ょ

Γ × 𝑃,T𝑄
)
, which can be curried to

PSh
(
𝑃,

ょ

Γ ⊃ T𝑄
)
� PSh(𝑃, 𝛿ΓT𝑄). Thus, the type of the metasubstitution operator at com-

ponent Γ expands as

T𝑃 (Γ) ×
(∏
Π∈F

𝑃 (Π) → T𝑄 (Γ + Π)
)
→ T𝑄 (Γ)

As intended, the ambient context Γ is available in the T𝑄-terms in the target of the rule, along-
side the metavariable parameter contexts Π: in m : [N]𝛼 ⊲ 𝑥 : N, 𝑦 : N ` m{𝑦} : 𝛼 , we can
now instantiate m{𝑦} with 𝑥 : N, 𝑦 : N ` 𝑥 +𝑦 : N. Note that we’re only extending the parame-
ter context with the overall context of the term, not the particular variable scope at the point
of instantiation: with m : [N]𝛼 ⊲ 𝑦 : N ` 𝜆𝑥 : N. m{𝑦} : 𝛼 , we still cannot instantiate m{𝑦}
with 𝑥 + 𝑦, even though 𝑥 is in scope under the binder. This is the intended behaviour for
constraining variables to not be free in metavariables, otherwise nothing would stop us from
instantiating the 𝜂 rule 𝜆𝑥 : 𝛼. (f) 𝑥 ≡ f with f ↦→ 𝑥 and deduce that (𝜆𝑥 : 𝛼. 𝑥 𝑥) ≡ 𝑥 .

The reintroduction of sorts requiresmore care: we cannot simply quantify over sorts across
the whole metasubstitution operation, as the sorts of the metavariables are different from the

the pResheaf model 45

sort of the host term. The operation becomes, for all 𝛼 ∈ 𝑆 and Γ ∈ F [𝑆]:

TP𝛼Γ ×
(∏

𝜏∈𝑆,Π∈F [𝑆]
P𝜏Π → TQ𝜏 (Γ + Π)

)
→ TQ𝛼Γ

By writing 〈P,Q〉 ∈ PSh for the product of exponentials 〈P,Q〉 ≜
∏
𝜏∈𝑆∗ P𝛼 ⊃ Q𝛼 and

(−) ∗ (=) : PSh𝑆 × PSh → PSh𝑆 for the action (P ∗ 𝑄)𝛼 ≜ P𝛼 × 𝑄 , the type is concisely ex-
pressed as the natural transformation

TP ∗ 〈P,TQ〉 =⇒ TQ

Alternatively, we can take PSh𝑆 as PSh-enriched, with 〈P,Q〉 above defining the hom-presheaf
of two sorted presheaves. Denoting it as PSh𝑆 〈P,Q〉, the metasubstitution operation then takes
the form of the hom-presheaf morphism (natural transformation)

PSh𝑆 〈P,TQ〉 =⇒ PSh𝑆 〈TP,TQ〉 ∈ PSh

which resembles the type of the external metasubstitution, but now in the presheaf-enriched
setting. Generalising the target TQ to an arbitrary Σ-monoid M, and specialising the presheaf
of metavariables P to the free presheaf A generated from a metavariable family A, we have
the equivalent specifications of meta-extension as

TA ∗ 〈A,M〉 =⇒M PSh𝑆 〈A,M〉 =⇒ PSh𝑆 〈TA,M〉

Of these, the second one (together with the unit PSh𝑆 〈A,TA〉) exhibits T : Fam𝑆 → Σ-Mon as
a (·)-relative PSh-enriched monad, which also informs the laws the operation must satisfy.

How exactly is the internal/enriched metasubstitution defined? We present both the
derivation given by Fiore (2008), and an alternative derivation focusing on the enriched setting.

To construct the (uncurried) metasubstitution operation

TP ∗ 〈P,TQ〉 → TQ

we induce the cartesian strength for the free Σ-monoid monad T: for all P ∈ PSh𝑆 and𝑄 ∈ PSh,

cstr : TP ∗𝑄 → T(P ∗𝑄)

From this, we internalise the functorial action of T as the meta-renaming map

mren : TP ∗ 〈P,Q〉 cstr T(P ∗ 〈P,Q〉) Teval TQ

and from here, derive internal metasubstitution via join:

msub : TP ∗ 〈P,TQ〉 mren T(TQ) join
TQ

A cartesian strength for the signature endofunctor ΣP ∗ 𝑄 → Σ(P ∗ 𝑄) can be extended to a
cartesian strength TP ∗ 𝑄 → T(P ∗ 𝑄). This is induced by cartesian-parametrised initiality:
given a presheaf𝑄 and a (Σ+V+(P∗𝑄)⊗)-algebra (A, [𝑎, 𝑣,𝑚]), there exists a unique cartesian
traversal operation ctrav : TP ∗𝑄 → A satisfying

46 bacKgRound

Σ(TP ∗𝑄)

Σ(TP) ∗𝑄 ΣA

TP ∗𝑄 A

cstr Σctrav

alg∗𝑄 𝑎

ctrav

V ∗𝑄 V

TP ∗𝑄 A

𝜋1

𝑣var∗𝑄

ctrav

(P ∗𝑄) ⊗ (TP ∗𝑄)

(P ⊗ TP) ∗𝑄 (P ∗𝑄) ⊗ A

TP ∗𝑄 A

dist id⊗ctrav

mvar∗𝑄 𝑚

ctrav

Here, the sorted version of a map dist : (𝑃 � Q) × 𝑅 → (𝑃 × 𝑅) � (Q ∗ 𝑅) for a pointed
presheaf (Q, 𝜂 : V→ Q) encompasses a distributivity property between the cartesian product
and substitution tensor, implemented with a combination of weakening, copairing of (Q ∗ 𝑅)-
valued substitution rules, and variable embedding:

dist
(
(Γ, 𝑡 ∈ 𝑃 (Γ), 𝜎 : PΓ Δ), 𝑟 ∈ 𝑅Δ

)
≜ ((Δ + Γ), (𝑃 〈𝜄Γ,Δ1 〉 𝑡, 𝑅〈𝜄

Γ,Δ

2 〉 𝑟),
Q∗𝑅[𝑥 ↦→ (𝜂 𝑥, 𝑟), 𝑦 ↦→ (𝜎 𝑦, 𝑟)]Δ,ΓΔ ∈ (Q ∗ 𝑅)Δ+Γ

Δ)

Instantiating this traversal withA = T(P∗𝑄), with𝑚 = mvar : (P∗𝑄) ⊗T(P∗𝑄) → T(P∗𝑄),
we get the cartesian strength cstr : TP ∗𝑄 → T(P ∗𝑄) for the syntax monad T; the unit and
associativity axioms depend on those of the cartesian strength for Σ, and similar laws for dist.
To show that T is furthermore a strong monad, we require the strengths for Σ to be compatible:

(ΣP ⊗ Q) ∗ 𝑅 Σ(P ⊗ Q) ∗ 𝑅 Σ((P ⊗ Q) ∗ 𝑅)

(ΣP ∗ 𝑅) ⊗ (Q ∗ 𝑅) Σ(P ∗ 𝑅) ⊗ (Q ∗ 𝑅) Σ((P ∗ 𝑅) ⊗ (Q ∗ 𝑅)
dist

cstr⊗id str

str⊗𝑅 cstr

Σdist

From there, meta-renaming and metasubstitution follow:

msub : TP ∗ 〈P,TQ〉 cstr T
(
P ∗ 〈P,TQ〉

) T eval T(TQ) join
TQ

Moreover, one can show that the forgetful functor Σ-Mon→ PSh𝑆 is monadic, establishing an
isomorphism between Σ-monoids and T-algebras Σ-Mon � T-Alg. With this, the metasubsti-
tution operation is an instance of the meta-interpretation operation mint : TP ∗ 〈P,M〉 → M

that internalises int𝜑 : TP → M for M a Σ-monoid (equivalently a T-algebra 𝑐 : TM → M)
and 𝜑 : P→M a metavariable interpretation:

mint : TP ∗ 〈P,M〉 cstr T
(
P ∗ 〈P,M〉

) T eval TM 𝑐
M

Equivalently, mint can be induced via parametrised initiality immediately: instantiating the
traversal with 𝑄 ≜ 〈P,M〉 and (A, 𝑎, 𝑣,𝑚) ≜ (M, 𝑎, 𝜂,𝑚), with the metavariable operation

𝑚 : (P ∗ 〈P,M〉) ⊗M
eval⊗M

M ⊗M
𝜇

M

The corresponding recursive specification gives a clearer idea of the sequence of actions that
metasubstitution performs on metavariables:

the pResheaf model 47

mint (var𝑥, 𝜁) = 𝜂 𝑥

mint (alg 𝑡, 𝜁) = 𝑎 (Σmint (cstr (𝑡, 𝜁)))
mint (mvar (m, 𝜀), 𝜁) = 𝜇

(
𝜁 (m), [𝜂, 𝑦 ↦→ mint (𝜀 𝑦, 𝜁)]Γ,ΠΓ

)
First, m : P𝜏 (Π) is looked up in the meta-interpretation rule 𝜁 : 〈P,M〉Γ to obtain a term
𝜁 (m) : M𝜏 (Γ + Π). Then we perform an object-level substitution to populate the metavari-
able parameter variables in Π with terms given in the metavariable environment 𝜀, while
mapping the existing variables in Γ to themselves with 𝜂. Since the metavariable envi-
ronment terms may themselves contain metavariables, we need to apply 𝜁 to them recur-
sively. As an example, take the open term in object context 𝑥 : N and metavariable context
A = m : [N,N]N, n : [N]Np : []N, and metasubstitution rule from A to terms in B ≜ q : [N]N:

⊲ 𝑥 : N ` (𝜆𝑦 : N. m{𝑥 + 1, n{𝑦}}) p : N
𝜁 = (m{𝑚,𝑛} ↦→ q{𝑚} × 𝑛, n{𝑚} ↦→ q{𝑚 + 𝑥}, p ↦→ 2)

The metasubstitution is calculated as follows:

msub
(
(𝜆𝑦 : N. m{𝑥 + 1, n{𝑦}}) p, 𝜁

)
= msub(𝜆𝑦 : N. m{𝑥 + 1, n{𝑦}}, 𝜁) (msub(p, 𝜁)) 1⃝
= (𝜆𝑦 : N. msub(m{𝑥 + 1, n{𝑦}},wkn 𝜁)) 2 2⃝
=
(
𝜆𝑦 : N. sub (q{𝑚} × 𝑛, [𝑚 ↦→ 𝑥 + 1, 𝑛 ↦→ msub (n{𝑦},wkn 𝜁)])

)
2 3⃝

=
(
𝜆𝑦 : N. sub (q{𝑚} × 𝑛, [𝑚 ↦→ 𝑥 + 1, 𝑛 ↦→ sub (q{𝑚 + 𝑥}, [𝑚 ↦→ 𝑦])])

)
2 4⃝

=
(
𝜆𝑦 : N. sub (q{𝑚} × 𝑛, [𝑚 ↦→ 𝑥 + 1, 𝑛 ↦→ q{𝑦 + 𝑥}])

)
2 5⃝

=
(
𝜆𝑦 : N. q{𝑥 + 1} × q{𝑦 + 𝑥}

)
2 6⃝

In steps 1⃝- 2⃝ we push the metasubstitution rule into the application and under the binder. A
crucial component of this step is the weakening of the terms in the metasubstitution rule 𝜁 ,
since the local context changes from 𝑥 : N to 𝑦 : N, 𝑥 : N. In step 2⃝we also apply 𝜁 to p, which
simply replaces it with 2 without any changes as p has no parameters. In step 3⃝ we look
up the mapping from m to the term q{𝑚} × 𝑛, substituting the contents of m’s metavariable
environment for𝑚 and 𝑛, and recursively metasubstituting wkn 𝜁 into n{𝑦}. Steps 4⃝ and 5⃝
evaluate the recursive calls, applying an object-level substitution to q{𝑚 +𝑥} that replaces the
parameter𝑚 with the variable 𝑦. The final substitution is evaluated at step 6⃝.

The enriched view of metasubstitution considers 〈P,Q〉 as the hom-presheaf in PSh𝑆 en-
riched over PSh, and the meta-interpretation as the enriched free extension:

mint : PSh𝑆 〈A,M〉 → PSh𝑆 〈TA,M〉

This, withM ≜ TB, specialises to metasubstitution msub : PSh𝑆 〈A,TB〉 → PSh𝑆 〈TA,TB〉 and,
with the unit unit : PSh𝑆 〈A,TA〉, it exhibits T : Fam𝑆 → Σ-Mon as a (·)-relative PSh-enriched
monad. This characterisation also suggests the appropriate laws of metasubstitution and meta-
interpretation, provable using freeness:

msub unit = id mint 𝜁 ◦ unit = 𝜁 mint 𝜉 ◦msub 𝜁 = mint (mint 𝜉 ◦ 𝜁)

48 bacKgRound

The enriched hom PSh𝑆 〈P,Q〉 at context Γ expands as∏
𝛼

PSh
(ょ

Γ × P𝛼 ,Q𝛼
)
�
∏
𝛼

PSh
(
P𝛼 ,

ょ

Γ ⊃ Q𝛼
)
�
∏
𝛼

PSh(P𝛼 , 𝛿ΓQ𝛼) = PSh𝑆 (P, 𝛿ΓQ)

Furthermore, when P is a free presheaf A, we have the hom-set isomorphism

PSh𝑆 (A, 𝛿ΓQ) � Fam𝑆 (A, |𝛿ΓQ|)

where |−| : PSh𝑆 → Fam𝑆 is the underlying family functor. Altogether, the components of
msub are equivalently a family of functions

msub : Fam𝑆 (A, |𝛿ΓM|) → PSh𝑆 (TA, 𝛿ΓM)

To construct this, it is sufficient to show that 𝛿Γ lifts to Σ-monoids, and use the free extension
to induce a map from TA into the Σ-monoid 𝛿ΓM:

A |TA|

|𝛿ΓM|

emb

𝜁
|msub 𝜁 |

Since Σ-Mon � T-Alg, the lifting of 𝛿Γ can be equivalently induced by a distributive law
T𝛿Γ =⇒ 𝛿ΓT, which constructs a T-algebra structure (𝛿ΓM,T(𝛿ΓM) → 𝛿ΓTM → 𝛿ΓM)
for the T-algebra M. Then, as 𝛿ΓQ �

ょ
Γ ⊃ Q (where we overload notation for sorted and

semi-sorted exponentials (𝑃 ⊃ Q)𝜏 ≜ 𝑃 ⊃ Q𝜏) the distributive law equivalently has components
T(ょΓ ⊃ Q) → (ょΓ ⊃ TQ) which is an instance of the exponential strength, equivalent to the
cartesian strength TP ∗𝑄 → T(P ∗𝑄) constructed above.

T(𝑃 ⊃ Q) → (𝑃 ⊃ TQ)

Equational logic Using the two-level substitution theory of second-order abstract syntax,
Fiore and Hur (2010) introduce second-order equational logic, building on the abstract theory
of equational systems by Fiore and Hur (2008) and further generalised by Fiore (2013). It
allows one to concisely define an equational theory for a particular syntax, only specifying
the interesting axioms, from which a congruent equivalence relation is generated.

Given a set of axioms of the form A ⊲ Γ ` 𝑠 = 𝑡 : 𝛼 , we generate an equational theory built
on the set of axioms with the following inductive definition:

ax
A ⊲ Γ ` 𝑠 = 𝑡 : 𝛼
A ⊲ Γ ` 𝑠 ≡ 𝑡 : 𝛼

Refl
A ⊲ Γ ` 𝑠 ≡ 𝑠 : 𝛼

sym
A ⊲ Γ ` 𝑠 ≡ 𝑡 : 𝛼
A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼

tRans
A ⊲ Γ ` 𝑠 ≡ 𝑡 : 𝛼 A ⊲ Γ ` 𝑡 ≡ 𝑢 : 𝛼

A ⊲ Γ ` 𝑠 ≡ 𝑢 : 𝛼

msub
A ⊲ Δ ` 𝑠 ≡ 𝑡 : 𝛼 𝜁 , 𝜉 : A→ 𝛿Γ (TB) ∀m ∈ A𝜏Π. B ⊲ Γ + Π ` 𝜁 (m) ≡ 𝜉 (m) : 𝜏

B ⊲ Γ + Δ ` msub 𝜁 𝑠 ≡ msub 𝜉 𝑡 : 𝛼

the pResheaf model 49

The first rule lifts axioms into equivalences, while the middle rules make it into an equivalence
relation. The key rule is msub, which allows for an arbitrary instantiation of an equivalence
with metavariables, given equivalent metasubstitution rules. In particular, this enables instan-
tiation of axioms with arbitrary terms that fit the type and context of metavariables:

msub

ax
m : [N]N, n : []N ⊲ ∅ ` (𝜆𝑥 : N. m{𝑥})n = m{n} : N
m : [N]N, n : []N ⊲ ∅ ` (𝜆𝑥 : N. m{𝑥})n ≡ m{n} : N 𝜁 = m{𝑥} ↦→ 𝑥 + 1, n ↦→ 5

⊲ ∅ ` (𝜆𝑥 : N. 𝑥 + 1) 5 ≡ 5 + 1 : N

Another use of the msub rule is encoding the congruence of the equivalence relation: if 𝑠 ≡
𝑡 : 𝛼 , then m{𝑠} ≡ m{𝑡} for any metavariable m : [𝛼]𝛽 , which may represent an arbitrarily
complex evaluation context. The equational theory then allows us to build a library for second-
order equational reasoning, populating it with admissible rules that are proved abstractly. For
example, 𝛽-reduction with three arguments is derivable as follows:

(𝜆𝑥 : 𝛼. 𝜆𝑦 : 𝛽. 𝜆𝑧 : 𝛾 . m{𝑥,𝑦, 𝑧}) n p q
= (𝜆𝑦 : 𝛽. 𝜆𝑧 : 𝛾 . m{n, 𝑦, 𝑧}) p q (𝛽 with m{−} ↦→ m{−, 𝑦, 𝑧}, n ↦→ n in context (−) p q)

= (𝜆𝑧 : 𝛾 . m{n, p, 𝑧}) p q (𝛽 with m{−} ↦→ m{n,−, 𝑧}, n ↦→ p in context (−) q)

= m{n, p, q} (𝛽 with m{−} ↦→ m{n, p,−}, n ↦→ q)

A model of an equational theory is a Σ-monoid M that, for all axioms A ⊲ Γ ` 𝑠 = 𝑡 : 𝛼 and
metavariable interpretation rules 𝜔 : 〈A,M〉, satisfies the equation mint(𝑠, 𝜔) = mint(𝑡, 𝜔) in
M. We then establish the soundness of the equational logic: if A ⊲ Γ ` 𝑠 ≡ 𝑡 : 𝛼 is a derivable
equivalence in the equational theory, then their interpretations in any model of the theory are
equal as well. The proof is by induction on the rules of the equational logic: for the ax case we
use the fact that M satisfies the axioms by assumption, and for the msub case we argue using
the associativity law of metasubstitution:

mint(msub(𝑠, 𝜁), 𝜔) = mint(𝑠,m ↦→ mint(𝜁 m, 𝜔)) (relative monad associativity)

= mint(𝑠,m ↦→ mint(𝜉 m, 𝜔)) (induction with 𝜁 m ≡ 𝜁 m and 𝜔)

= mint(𝑡,m ↦→ mint(𝜉 m, 𝜔)) (induction with 𝑠 ≡ 𝑡 and m ↦→ mint(𝜉 m, 𝜔))

= mint(msub(𝑡, 𝜉), 𝜔) (relative monad associativity)

Thegeneric theory of second-order equational logic also proves that the logic is not only sound,
but complete too: if an equivalence is satisfied by every model of the equational presentation,
it is also derivable in the logic.

To summarise the presheaf model, we list the main steps of the development:

1. A set of sorts 𝑆 and second-order signature induces the category of (sorted) presheaves
and a signature endofunctor Σ : PSh𝑆 → PSh𝑆 , constructed from products, coproducts, and
context extension 𝛿Γ𝑃 ≜ 𝑃 (Γ + −).

2. The category of presheaves is monoidal, with variables V as the unit and the substitution
tensor ⊗ as the product. Σ is pointed-strong with respect to this monoidal structure.

50 bacKgRound

3. The category of presheaves is cartesian closed, and exponentiation by representables ょ

Γ ⊃ 𝑃
is isomorphic to context extension 𝛿Γ𝑃 . Σ is strong with respect to the cartesian structure.

4. A Σ-monoid M is a monoid V → M ← M ⊗ P with Σ-algebra structure ΣM → M: a
presheaf with substitution structure, variables, and term constructors.

5. Given a presheaf of metavariablesP, the initial (Σ+V+P⊗)-algebraTP encodes the syntax of
the languagewith terms, variables, and parametrisedmetavariables. It comeswith recursion
and induction principles arising from initiality TP → A, monoidal-parametrised initiality
TP ⊗ Q→ A and cartesian-parametrised initiality TP ∗𝑄 → A.

6. TP is the free Σ-monoid on P: given a Σ-monoid M and interpretation of metavariables
𝜑 : P→M, there is a unique Σ-monoid homomorphism TP→M factoring 𝜑 .

7. Freeness makes T : PSh𝑆 → PSh𝑆 into a monad, and induces an external meta-interpretation
operation PSh𝑆 (P,M) → PSh𝑆 (TP,M) in any Σ-monoid M.

8. Using cartesian-parametrised initiality, we show that T is a strong monad, and meta-
interpretation thus internalises to a natural transformation 〈P,M〉 =⇒ 〈TP,M〉 between
presheaf exponentials.

9. Second-order axioms in the syntax induce a sound and complete equational logic with re-
spect to Σ-monoids that satisfy the axioms.

The familial model introduced in this thesis will address each of these points, adapting the
well-understood techniques of the presheaf approach to an implementation-friendly theory.

2.3 Related woRK

The study of abstract syntax and variable binding is rich and extensive, yet surprisingly young.
Although the foundational notions of variables, substitution, and binding permeate all of math-
ematics, it was not until Church’s (1936) 𝜆-calculus that a formal systemwas explicitly devised
to study abstraction and variable binding. Efforts to place these concepts on rigorous math-
ematical foundations only gained traction in the 1990s, largely due to the challenges of for-
malising capture-avoiding substitution – especially for computer-based implementations. In-
triguingly, many core themes of the field trace back to its earliest publications: Church (1932,
Section 4) invokes an intuitive notion of substitution (presumably capture-avoiding) without
defining it; Barendregt (1985, Moral 2.1.14) adopts 𝛼-equivalence and the variable convention
as blanket remedies for renaming, capture, and shadowing; and de Bruijn (1972) introduces
his de Bruijn indexing scheme precisely to handle the practical difficulties of renaming and
substitution in implementations.

In this section, we provide an overview of major approaches to abstract syntax formalisa-
tion. For further surveys that complement this account, see Aydemir et al. (2005), Kmett (2015),
Cockx (2021), Popescu (2023), and Lamiaux and Ahrens (2025).

2.3.1 Named approaches

Named-variable formalisation seeks to mirror traditional mathematical practice, where bind-
ing is represented by matching variable names. While appealing in its naturalness, this ap-

Related woRK 51

proach introduces several technical challenges for formalisation, such as dealing with string
equality, shadowing, and explicit 𝛼-conversion. Nevertheless, a major development came with
the axiomatisation of permutation models in Fraenkel–Mostowski set theory, applied to syn-
tax by Gabbay and Pitts (1999, 2002) and later developed into nominal logic by Pitts (2003, 2013).
Gabbay and Pitts observed that essential notions such as freshness, capture, and 𝛼-equivalence
could be defined purely in terms of atom swapping, with finite support – the property that each
term contains only finitely many atoms – serving as a central concept. These foundations en-
able the introduction of a freshness quantifier N𝑎 ∈ A. 𝜑 and name abstraction [A]𝑋 .

Nominal techniques have since found broad applicability across logic and computer sci-
ence, including equational theories and unification (Urban et al., 2003; Clouston and Pitts, 2007;
Gabbay and Mathijssen, 2009; Clouston, 2010), structural induction and recursion (Pitts, 2006,
2011), rewriting systems (Fernández and Rubio, 2012; Domínguez and Fernández, 2019), game
semantics (Abramsky et al., 2004; Murawski and Tzevelekos, 2016), probabilistic programming
(Sabok et al., 2021), and even cubical type theory (Pitts, 2014, 2015). Nominal syntax has been
implemented in practical systems such as FreshML (Pitts and Gabbay, 2000; Shinwell et al.,
2003) and FreshOCaml (Shinwell, 2006), enabling the definition of datatypes with binding. It
also underpins the Nominal Isabelle framework (Urban, 2008; Huffman and Urban, 2010; Ur-
ban and Kaliszyk, 2011), which has been successfully applied in numerous formalisation efforts
(Urban and Norrish, 2005; Bengtson and Parrow, 2007; Tobin-Hochstadt and Felleisen, 2008;
Urban et al., 2011; Paulson, 2015).

Adapting nominal methods to dependently typed settings is nontrivial, as they often de-
pend on classical axioms and set-theoretic reasoning. Constructive implementations have
been explored via several routes, including an experimental Rocq axiomatisation (Aydemir et
al., 2007), an initial setoid-based Agda development (Choudhury, 2015), a Rocq implementa-
tion using type classes and rewriting to manage equivalence without descending into “setoid
hell” (Paranhos, 2022; Paranhos and Ventura, 2022), and an ongoing Agda project modelling
permutations as bijections (Pagano and Solsona, 2023).

Other significant named approaches include the following.

• The locally named approach of Randy Pollack et al. (2012) separates the syntactic constructs
for free (global) and bound (local) variables, making use of nominal predicates in the meta-
syntactic operations.

• A line of work continues on the Agda formalisation of named binders in the syntax of the
STLC using ideas from nominal techniques, Stoughton’s (1988) parallel substitution, and
explicit 𝛼-conversion (Tasistro et al., 2015; Copello et al., 2016, 2017, 2018b; Urciuoli et al.,
2020; Copello et al., 2021), extended to generic signatures by Copello (2017) and Copello
et al. (2018a).

• Gheri’s (2019) general theory of syntax with bindings defines the 𝛼-equivalence class of
syntax-generic quasi-terms using nominal swapping and substitution, using bounded natu-
ral functors (Blanchette et al., 2019) to construct complex binding patterns.

• Renaming-enriched sets or rensets (Popescu, 2023) associate every term in the set with a
renaming operator that generalises the swapping operation on nominal sets, simplifying
the freshness predicate and recursion principles;

52 bacKgRound

• Wan and Cao (2024) develops Rocq formalisation of a syntax-driven, decidable 𝛼-
compatibility relation that traverses terms in parallel and compares variable names in iden-
tical positions directly, taking variable shadowing into account.

• Anand and Rahli (2014) presents a Rocq axiomatisation of context-free grammars annotated
with variable-binding information (CFGV), along with a term language and named syntactic
metatheory parametrised by such a CFGV.

For a broad comparison of named and nameless frameworks, see Berghofer and Urban (2007);
recursion principles for nominal representations are also discussed in Popescu (2024). Overall,
named approaches are theoretically rich and flexible but present obstacles in constructive and
dependently-typed contexts. Formalisations in Agda remain in early stages or are hindered
by the need for setoid-based reasoning (Choudhury, 2015; Pagano and Solsona, 2023). Even
more complete efforts, such as Copello et al.’s (2021), involve low-level name manipulations
that can be difficult to scale and use.

2.3.2 Nameless approaches

Nameless representations encode binding without using variable names, enabling simpler
mechanisation at the expense of readability. The main example is de Bruijn indices (de Bruijn,
1972), where variables are represented as natural numbers relative to their binding depth.

§ Numeric de Bruijn indices

De Bruijn indices are compact and sidestep 𝛼-conversion entirely. They are widely used in
compilers and interpreters and are straightforward to use in a datatype declaration:

data Tm : Set where
var : N→ Tm
lam : Tm→ Tm
app : Tm→ Tm→ Tm

However, they lack static guarantees: indices may refer outside the scope of binders, and
such errors are not syntactically evident. Terms are also difficult to read and debug, so
such errors are not as readily evident as in named approaches. For instance, the expression
𝜆𝑓 . 𝑓 (𝜆𝑥𝑔. 𝑓 (𝑔, 𝑥)) translates to 𝜆0(𝜆𝜆2(01)), where the variable 𝑓 is encoded as both 0 and 2,
and the de Bruijn index 0 encodes both 𝑓 and 𝑔.

Formalising substitution with de Bruijn indices is error-prone, requiring delicate shifting
operations and strengthened induction hypotheses. This complexity has been widely noted
in the literature (Shankar, 1988; Altenkirch, 1993; Huet, 1994; Berghofer and Urban, 2007;
Matache, 2017), with some authors reflecting on the tediousness of such work:

“It is annoying to spend so much time on uninteresting details.” – (Rasmussen, 1995)

Although criticised by the PoplMaRK challenge (Aydemir et al., 2005), several authors have
defended the practicality of de Bruijn indices (Vouillon, 2011; Berghofer, 2012), showing their
viability for formalisation despite the arithmetic overhead and fragility of implementation.

Related woRK 53

Recent theoretical work attempts to formalise de Bruijn indices more abstractly.
Hirschowitz et al. (2022) define de Bruijn monads – sets 𝐴 equipped with variables N → 𝐴,
substitution 𝐴 × 𝐴N → 𝐴, and syntax algebra Σ𝐴 → 𝐴 – in a manner similar to the presheaf
model. De Bruijn monads are simplified (“extrinsic”) representations of abstract clones (Taylor,
1993; Arkor and McDermott, 2021), though the authors do not make this connection clear.

Another significant development is the calculus of explicit substitutions. Originally intro-
duced in the 𝜆𝜎-calculus (Abadi et al., 1991; Rose, 1996), substitutions become part of the
syntax with terms for composition and de Bruijn shifting operations, allowing controlled ap-
plication of simultaneous substitutions. This approach improves implementation efficiency
but adds complexity to the metatheory, as substitution is no longer a meta-operation and
must be handled in all definitions and proofs.

A practical application of this idea is the Autosubst framework for Rocq. Its first version
(Schäfer et al., 2015) generates substitution operations and lemmas from annotated syntax.
Autosubst 2 (Kaiser et al., 2017; Stark, 2020) compiles an expressive higher-order syntax repre-
sentation to Rocq code with well-scoped terms, modularity, first-class renamings and traversal
(Kaiser et al., 2018; Forster and Stark, 2020). While powerful, these systems still rely on nu-
meric indices, which limits the static guarantees that dependently typed systems can provide.

Other frameworks that use de Bruijn indices include:

• Pottier’s (2014) DBLib uses Rocq’s type classes to generate lifting, substitution, and other
definitions and lemmas from a user-supplied datatype for the syntax, a traversal operation,
and six easily dischargeable lemmas.

• Polonowski (2013) introduces a grammar called de Bruijn with Explicit Binding (DBEB) to ex-
press syntaxes with binding and generic infrastructure operations and lemmas thereon, and
the tool DBGen for augmenting annotated Rocq declarations with a variety of metatheoretic
definitions up to and including the substitution lemma.

• Keuchel et al. (2016) present Knot, an expressive specification language for syntaxes with
binders and accompanying specification-generic syntactic metatheory (shifting, substitu-
tion, well-scopedness, interaction lemmas), and Needle, a code generation tool turning
Knot specifications into de Bruijn-encoded Rocq terms and their metatheoretic boilerplate.

All in all, while numeric de Bruijn indices remain a popular and practical choice – particularly
in the Rocq community – and have been successfully deployed in large-scale formalisation
projects, their use can feel somewhat uneasy. When working in a dependently typed setting,
where one typically enjoys rich static guarantees, the reliance on natural numbers to represent
something as fundamental as variable binding can feel precarious – much like reaching into
unsafe code in a language like C. The mismatch between the rigid structure of syntax, and the
flexibility (or flimsiness) of natural numbers motivates the investigation of well-scoped syntax.

§ Endofunctors and monadic substitution

The integration of monads into computer science originated with Moggi (1991) and his com-
putational 𝜆-calculus, later popularised by Wadler (1990, 1992) within the functional program-
ming community. A key insight came from Bellegarde and Hook (1994), who proposed defin-
ing syntax as a monad Tm : Set→ Set, parametrised uniformly by a variable set:

54 bacKgRound

data Tm : Set→ Set where
var : 𝑋 → Tm 𝑋

lam : Tm 𝑋 → Tm 𝑋

app : Tm 𝑋 → Tm𝑋 → Tm 𝑋

This encoding enables a generic definition of substitution for de Bruijn-indexed terms, Tm,N,
via a polymorphic function:

map-with-policy : ((𝑋 → 𝑌)→ (𝑋 → 𝑌))→ (𝑋 → 𝑌)→ Tm𝑋 → Tm𝑌

This operation simultaneously handles de Bruijn shifting and substitution, with a finalmonadic
join Tm(Tm𝑋) → Tm𝑋 collapsing nested layers. The idea lay mostly dormant until Bird and
Paterson (1999a) applied the notion of nested datatypes (Bird and Meertens, 1998) to syntactic
terms with binding. Their insight was to bound de Bruijn indices at the type level, encoding
scope directly into types by using the Maybe monad:

data Tm : Set→ Set where
var : 𝑋 → Tm 𝑋

lam : Tm (Maybe 𝑋)→ Tm 𝑋

app : Tm 𝑋 → Tm 𝑋 → Tm 𝑋

This deceptively small change has a profound effect: bound variables are now characterised
precisely, and scope is enforced statically. For instance, when 𝑋 = ⊥ (the empty type), any
term 𝑡 : Tm⊥must be closed, since there are no free variables to reference. Under a binder, the
scope is extended by wrapping 𝑋 in Maybe; the bound variable is accessible as var none, and
nested scopes are encoded via nested applications of some. This design ensures that variables
cannot escape their scope – an invariant enforced by the type system rather than manually
checked via shifting and renaming. Compared to raw numeric indices, this provides a vastly
improved user and proof experience.

Bird and Paterson (1999a) went on to define a generalised recursion scheme (Bird and
Paterson, 1999b) and used a distributive law Maybe(Tm𝑋) → Tm(Maybe𝑋) to derive
monadic multiplication Tm(Tm𝑋) → Tm𝑋 , from which single-variable substitution Tm𝑋 →
Tm(Maybe𝑋) → Tm𝑋 follows naturally. Building on this, Altenkirch and Reus (1999) pro-
vided categorical foundations for this approach, offering two constructions of the monadic
Kleisli structure for Tm. One is a mutually recursive definition of the operations

bind : (𝑋 → Tm𝑌)→ (Tm𝑋 → Tm𝑌)
lift : (𝑋 → Tm𝑌)→ (Maybe𝑋 → Tm (Maybe𝑌))

which involves intricate termination and monad law proofs. The alternative construction is
more modular: it leverages the functoriality of Maybe to prove the same property for Tm,
defines lift via the functorial lifting Tm some : Tm 𝑋 → Tm (Maybe 𝑋), and then constructs
bind in terms of lift, avoiding mutual recursion.

Already, clear connections to the presheaf model emerge – indeed, as the authors remark,
“Our work seems to be closely related to recent work by Fiore et al. (1999).” Altenkirch and

Related woRK 55

Reus (1999) also extend their approach to simply typed syntax, generalising from Kleisli triples
to Kleisli structures on indexed sets. This anticipates the development of relative monads (Al-
tenkirch et al., 2010), and underpins the intrinsically typed, intrinsically scoped syntax for
𝜆-terms used in many modern developments.

Two further strands of research have continued to explore and refine monadic abstract
syntax, both still active and evolving. For detailed comparisons between these methods, the
nested monad approach, and the presheaf model discussed next, see the surveys by Zsido
(2010) and Lamiaux and Ahrens (2025).

Modules over monads The modules-over-monads framework models syntax with binding
by capturing both syntactic structure and substitution in a unified categorical setting. The
core challenge lies in reconciling the algebraic structure of syntax (from a signature) with the
substitution structure provided by a monad.

A syntactic signature is presented by a functor Σ : SetSet → SetSet, combining the do-
mains of syntactic constructors. These constructors can be retrieved from a Σ-algebra struc-
ture 𝑎 : Σ(Tm) → Tm. For example, in the STLC, the constructor algebra is the copairing:

[lam, app] : 𝛿 (Tm) + (Tm × Tm) → Tm,

where 𝛿 (𝑋) ≜ 𝑋 ◦ Maybe. However, as observed by Hirschowitz and Maggesi (2007), the
interaction between:

• the substitution unit 𝜂 : 𝑋 → Tm(𝑋),
• substitution itself 𝜇 : Tm(Tm(𝑋)) → Tm(𝑋), and
• the syntax constructor map 𝑎 : Σ(Tm) → Tm

does not follow standard homomorphism patterns. Specifically:

• 𝜇 is not a Σ-algebra homomorphism, since Tm ◦ Tm is not a Σ-algebra.
• 𝑎 is not a monad morphism, as Σ(Tm) is not a monad.

These failures are illustrated by the non-commuting diagrams:

Σ(Tm ◦ Tm) ΣTm

Tm ◦ Tm Tm

Σ𝜇

𝑎?

𝜇

ΣTm ◦ ΣTm Tm

ΣTm Tm

𝑎◦𝑎

𝜇?

𝑎

To address this, Hirschowitz and Maggesi (2007) and collaborators (Ahrens and Zsido, 2011;
Hirschowitz and Maggesi, 2012; Ahrens, 2016; Hirschowitz et al., 2020; Ahrens et al., 2021;
Lamiaux and Ahrens, 2025) proposed using modules over a monad 𝑇 : SetSet → SetSet, i.e.
functors 𝑆 : SetSet → SetSet equipped with a natural transformation 𝛼 : 𝑆 ◦𝑇 =⇒ 𝑆 , satisfying
the coherence conditions:

𝑆Id 𝑆𝑇

𝑆

𝑆𝜂

id
𝛼

𝑆𝑇 𝑆𝑇

𝑆𝑇 𝑆

𝑆𝜇

𝛼𝛼𝑇

𝛼

56 bacKgRound

A signature in this setting assigns to each monad 𝑇 a 𝑇 -module (Σ𝑇, Σ𝑇 ◦𝑇 → Σ𝑇). A model
consists of a monad𝑇 together with a module morphism Σ𝑇 → 𝑇 . For the STLC, the signature
maps 𝑇 to ΣΛ𝑇 = 𝛿𝑇 +𝑇 ×𝑇 , with module structure defined by:

(𝛿𝑇 +𝑇 ×𝑇) ◦𝑇 → 𝛿 (𝑇 ◦𝑇) + (𝑇 ×𝑇) ◦𝑇 → 𝛿 (𝑇𝑇) +𝑇𝑇 ×𝑇𝑇 → 𝛿𝑇 +𝑇 ×𝑇 .

A model is then a monad 𝑇 with a module morphism 𝑎 : ΣΛ𝑇 → 𝑇 satisfying:

ΣΛ𝑇 ◦𝑇 ΣΛ(𝑇 ◦𝑇) ΣΛ𝑇

𝑇 ◦𝑇 𝑇

𝜎

𝑎◦𝑇

ΣΛ𝜇

𝑎

𝜇

The initial model Tm gives rise to a unique syntax- and substitution-preserving model homo-
morphism sem : Tm→ 𝑇 for any model (𝑇, 𝑎):

Σ(Tm) Σ(𝑇)

Tm 𝑇

Σsem

alg 𝑎

sem

This framework is well-developed and has been extended to handle typing and operational
semantics (Zsido, 2010; Ahrens, 2012, 2015, 2016; Ahrens et al., 2019; Hirschowitz et al., 2020;
Ahrens et al., 2021; Lamiaux and Ahrens, 2025). However, it also exhibits practical drawbacks
that can limit the scalability of the formalism:

• Flat hierarchy: All components – signatures, contexts, terms, variables – are encoded sets
or endofunctors on Set or SetSet, making it hard to know what level of the metatheory to
operate on and how to distinguish between application and composition:

(𝛿 (𝑆) ◦𝑇) (𝑇𝑋) vs. (𝛿 (𝑆𝑇) ◦𝑇)(𝑋) vs. 𝛿 (𝑆 ◦𝑇𝑇)(𝑋)

• Excessive flexibility: since the syntax can be instantiated over any set, bizarre terms like

lam (app (var none) (var (some [var [], lam (var (some (−0.381𝑖))])))) ∈ Tm(List(Tm(C)))

are type-correct but meaningless in practice. This level of generality can introduce errors
that are difficult to catch with a type system.

Heterogeneous substitution systems An alternative approach, pioneered by Matthes and
Uustalu (2004), focuses on substitution for non-wellfounded grammars using what are called
heterogeneous substitution systems (HSS). This generalises iteration principles such as Bird and
Paterson’s (1999) folds to a categorical setting.

Given a pointed strong endofunctor (Σ, 𝜑 : Id =⇒ Σ, 𝜃𝐹,𝐺 : Σ(𝐹) ◦ 𝐺 → Σ(𝐹 ◦ 𝐺)) on
SetSet, an HSS assigns to every pointed morphism 𝑓 : (𝐹, 𝜑) → (𝑇, 𝜂) into a Σ-algebra
(𝑇 ∈ SetSet, 𝛼 : Σ𝑇 → 𝑇) a unique extension {𝑓 } : 𝑇 ◦ 𝐹 → 𝑇 , satisfying:

Related woRK 57

𝐹 𝑇 ◦ 𝐹 Σ𝑇 ◦ 𝐹

Σ(𝑇 ◦ 𝐹)

𝑇 Σ𝑇

𝜂𝐹

𝑓
{𝑓 }

𝛼𝐹

𝜃𝑇,𝐹

Σ{𝑓 }

𝛼

The module-over-monads approach naturally yields an HSS: the module action Σ𝑇 ◦𝑇 → Σ𝑇

is generally composed of a strength Σ𝑇 ◦𝑇 → Σ(𝑇 ◦𝑇) followed by a monad multiplication.
The coherence pentagon of algebraic and monadic structure is an instance of the axiom above
for {id} : 𝑇 ◦𝑇 → 𝑇 . As Matthes and Uustalu show, the setting of HHSs allow for modelling
more complex syntactic constructs, such as explicit flattening: the endofunctor Σ𝑇 ≜ 𝑇 ◦ 𝑇
with strength Σ𝑇 ◦ 𝐹 = 𝑇𝑇𝐹

𝑇𝜑𝑇𝐹
𝑇𝐹𝑇𝐹 defines a heterogeneous substitution system that is

coherent with an internal monadic flattening operation Σ𝑇 = 𝑇𝑇 → 𝑇 .
Ahrens and Matthes (2018) extended the theory by defining homomorphisms of heteroge-

neous substitution systems and relating initial algebras to initial substitution systems. They
highlight important connections between the generalised iteration of Matthes and Uustalu
(2004), the even more generalised folds of Bird and Paterson (1999b), and the Mendler-style
induction of Mendler (1991), which handles recursive syntaxes by enforcing termination via
typing rather than structural constraints. Abel et al. (2005) subsumed generalised folds by ex-
tendingMendler-style iteration to higher-order and nested datatypes, applying it to the nested
structure of lambda-terms. Matthes (2011) further explored syntactic operations and laws on
monadic syntax using induction principles derived from this generalised Mendler framework.

Themost recent development is byMatthes et al. (2023), who abstract heterogeneous substi-
tution systems tomonoidal andmodular categories equipped with pointed strengths. This gen-
eral setting subsumes both heterogeneous substitution systems and the substitution monoids
of Fiore et al. (1999), covering simple types and non-wellfounded syntax. However, it does not
address the challenges posed by quotienting in the presheaf model.

2.3.3 Presheaves and monoidal substitution

The presheaf and family-based approach aligns naturally with the intrinsic formalisation of
syntax, representing contexts as structured lists of type- and scope-safe de Bruijn indices. This
avoids the two main drawbacks of the monadic approach: variables are inductively defined
and listed (rather than generated via theMaybemonad in the broad category Set), terms live in
sets functorially indexed by contexts (not as endofunctors on Set), and signatures are encoded
as endofunctors on presheaves (not endofunctors on endofunctors on Set).

Fiore et al. (1999) were the first to lay out a rigorous algebraic theory of abstract syntax. A
central insight was to treat terms and their contexts of free variables inseparably, with variable
renaming a first-class syntactic operation. Substitution emerges via a monoidal structure that
models simultaneous substitution: monoids in this structure are presheaves equipped with
variable embeddings and substitution operations that respect renaming both externally (re-
naming commutes with substitution) and internally (renaming fuses with substitution). While

58 bacKgRound

monad multiplication plays a similar role in the monadic setting, the simultaneous substitu-
tion rule is not spelled out explicitly: the terms to be substituted are embedded directly under
their associated variable constructor, so the internal renaming coherence is not needed. In the
presheaf setting, syntax models are substitution monoids with algebraic structure, echoing
the modules-over-monads and HSS frameworks. The initiality theorem shows that the initial
model of a syntax naturally carries this substitution structure, supporting the intuition that
substitution and its properties follow “freely” from the syntax itself.

This foundational work sparked several important lines of research, summarised below.

Linear syntax Tanaka (2000) extended the theory to linear syntax, prompting broader gen-
eralisations to cover a wide array of systems (Tanaka, 2005; Tanaka and Power, 2006; Power,
2007; Power and Tanaka, 2008). These works developed pseudo-distributive laws that ab-
stractly construct the substitution monoidal structure when the base category’s structure is
known, covering linear syntax, typing, substructural systems, and nominal syntax. However,
the high level of abstraction made these developments less suited for mechanisation. While
Fiore et al. (1999) also introduced single-variable substitution algebras, Tanaka (2000) claimed
they could not generalise to linear settings – a claim later refuted by Fiore and Ranchod (2024),
who used symmetric endofunctors and distributive laws to do precisely that.

Second-order syntax and algebraic theories The introduction of Σ-monoids – syntax mod-
els with substitution – led Hamana (2004) to study free constructions turning presheaves into
Σ-monoids. This resulted in a general calculus of parametrised metavariables (Sato et al.,
2003), supporting binding-aware opaque terms and metasubstitution operations. Fiore (2008)
developed an enriched axiomatisation of metasubstitution alongside a generalised theory of
strengths over modular categories, which underpins our work. Parametrised metavariables
enable second-order equational presentations encompassing operations like 𝛽-reduction, for-
malised in a corresponding equational logic theory (Fiore and Hur, 2007, 2008, 2009, 2010; Hur,
2010). Parallel work defined second-order algebraic theories à la Lawvere (1963), extending to
logic, universal algebra, and categorical algebra (Fiore and Mahmoud, 2010; Mahmoud, 2011;
Fiore and Mahmoud, 2014; Fiore, 2017).

Typed syntax Typed extensions of abstract syntax began with Fiore (2002) and Miculan and
Scagnetto (2003), motivated by normalisation-by-evaluation and higher-order abstract syntax.
Zsido (2010) clarified the relationship between typed presheaf models and monadic syntax.
Arkor and Fiore (2020) developed a theory for inductively defined simple types using polyno-
mial functors. Polymorphic abstract syntax emerged from Hamana (2011) and was expanded
by Fiore and Hamana (2013), incorporating metavariables and equational theories. A pre-
liminary development of dependently-typed second-order syntax is outlined in Fiore (2008),
though it lacks full generality and detail.

2.3.4 Higher-order abstract syntax

A conceptually elegant approach to representing syntax with binders in functional languages
is higher-order abstract syntax (HOAS). In HOAS, binding in the object language is encoded

Related woRK 59

directly using the host language’s abstraction mechanism. For example:

data Tm : Set where
lam : (Tm→ Tm)→ Tm
app : Tm→ Tm→ Tm

Here, variables are represented by variables of the metalanguage, and a lambda abstraction
in the object language is encoded by a metalanguage function. As a result, operations like
substitution can be delegated to the host language, avoiding the need to explicitly define them.
An example HOAS term is:

app (lam (𝜆𝑥 . lam (𝜆𝑦. 𝑥))) (lam(𝜆𝑥. 𝑥)) →𝛽 (𝜆𝑦. (lam(𝜆𝑥. 𝑥)))

This technique, introduced by Pfenning and Elliott (1988) but already suggested by Church
(1940), is remarkably concise. However, this simplicity comes with significant drawbacks for
the purposes of formal reasoning.

First, terms are no longer purely syntactic: some subterms are regular syntax (e.g. argu-
ments of app), while others are functions (e.g. in lam). This hybrid nature complicates recur-
sive definitions and structural induction – pattern-matching on binders becomes impossible,
and defining operations like equality or term size is obstructed.

Second, HOAS permits the construction of exotic terms – values that do not correspond
to any valid term in the object language. For example:

lam (𝜆𝑥 . case𝑥 of (lam 𝑡) → app 𝑡 𝑡 | (app 𝑓 𝑎) → 𝑓)

Here, host-level pattern matching is used to inspect and distinguish between object-level con-
structs, which breaks the abstraction. Additionally, such a definition violates the positivity
restriction required by many proof assistants: in the example above, the argument of the lam
constructor features Tm in a negative position (to the left of an arrow). This is generally for-
bidden as it can introduce non-terminating behaviour:

loop : Tm→ Tm→ Tm
loop (lam 𝑏) 𝑡 = 𝑏 𝑡
loop (app 𝑓 𝑎) 𝑡 = 𝑡

applied to t = lam (𝜆𝑥 . loop𝑥 𝑥) would result in the diverging reduction

loop t t→𝛽 (𝜆𝑥. loop𝑥 𝑥) t→𝛽 loop t t

This contradicts normalization and undermines the consistency of the type theory.

Weak HOAS To address these issues, Despeyroux and Hirschowitz (1994) proposed weak
HOAS, where the function argument in lam is restricted to an abstract variable type 𝑉 :

data Tm : Set where
var : 𝑉 → Tm
lam : (𝑉 → Tm)→ Tm
app : Tm→ Tm→ Tm

60 bacKgRound

Variables are explicitly embedded into terms:

app (lam (𝜆𝑥. lam (𝜆𝑦. (var 𝑥)))) (lam (𝜆𝑥. (var 𝑥)))

Since 𝑉 is abstract, we cannot pattern match on its values, thus avoiding exotic terms. More-
over, Tm is now strictly positive, so the type is accepted by proof assistants. However, since
binders are encoded as functions from 𝑉 , we can no longer define recursive functions struc-
turally on terms, and substitution must be implemented explicitly.

Parametric HOAS Parametric HOAS (Chlipala, 2008) refines weak HOAS by parametrising
the term syntax over the variable type, as first proposed by Washburn and Weirich (2003):

data Tm (𝑉 : Set) : Set where
var : 𝑉 → Tm 𝑉

lam : (𝑉 → Tm 𝑉)→ Tm 𝑉

app : Tm 𝑉 → Tm 𝑉 → Tm 𝑉

Term : Set
Term = (𝑉 : Set)→ Tm 𝑉

This formulation retains abstraction while enabling operations by instantiating 𝑉 with a con-
crete type. For example, to count the number of applications in a term:

count’ : Tm >→ N

count’ (var 𝑣) = 0
count’ (lam 𝑏) = count’ (𝑏 tt)
count’ (app 𝑓 𝑎) = count’ 𝑓 + count’ 𝑎

count : Term→ N

count t = count’ (𝑡 >)

Because𝑉 is abstract in Term, exotic terms are ruled out. But when needed, we can instantiate
𝑉 a variety of operations, including substitution (Despeyroux et al., 1995).

Semantics and proof assistants The semantics of HOAS were first formally developed by
Hofmann (1999), using presheaves over finite sets and substitutions to model higher-order
encodings. This framework encompasses weak and parametric HOAS, and modal approaches
for equipping HOAS with recursion and induction principles (Despeyroux et al., 1997).
Many proof systems adopt HOAS and its variants, offering trade-offs in terms of abstraction,
automation, and expressiveness:

• Twelf (Pfenning and Schürmann, 1999) encodes syntax in the logical framework LF (Harper
et al., 1993) using HOAS, though metatheory is expressed using relations.

• Delphin (Poswolsky and Schürmann, 2009) replaces relational proofs with functional ones
and includes a coverage and termination checker.

Related woRK 61

• Beluga (Pientka and Dunfield, 2008) further incorporates contextual modal type theory
(Nanevski et al., 2008) for explicitly reasoning about variable environments.

• Cocon (Pientka et al., 2021) is a dependent type theory that enables intentional and exten-
sional HOAS definitions and admits a Hofmann-style categorical semantics (Pientka and
Schöpp, 2020).

• Mœbius (Jang et al., 2022) enables metaprogramming and object-level manipulation of
HOAS syntax via contextual types.

• Abella (Gacek, 2008) separates the specification and reasoning logic into a two-level system
based on 𝜆-tree syntax (Miller, 2000), a restricted HOASwith nominal abstraction (Tiu, 2009;
Gacek et al., 2011).

• HybRid (Felty and Momigliano, 2012) encodes a similar two-level calculus in Rocq.

2.3.5 Locally nameless representation

An alternative approach is the locally nameless representation, which combines the benefits
of named and nameless approaches by representing bound variables with de Bruijn indices,
and free variables with explicit names.

data Tm : Set where
fvar : String→ Tm
bvar : N→ Tm
lam : Tm→ Tm
app : Tm→ Tm→ Tm

This style avoids the complexities of name bindingwhile retaining readability for free variables.
Variable opening and closing operations, combined with predicates of closure and freshness
enable the definition of capture-avoiding substitution without the headaches of de Bruijn arith-
metic, but with increased metatheoretic boilerplate.

Locally nameless was first hinted at by de Bruijn (1972) and later refined by Huet (1989),
McKinna and Robert Pollack (1993), and Gordon (1994).McBride and McKinna (2004) describe
a LN syntax representation library in Haskell that formed the foundation of Epigram. Leroy
(2007) gave a prominent example in his POPLMark challenge solution. A comprehensive tu-
torial is provided by Charguéraud (2012), introducing techniques like cofinite quantification
(Aydemir et al., 2008) to simplify reasoning about binders.

Despite its flexibility, the approach involves significant metatheoretical overhead. For com-
plex languages, the number of supporting lemmas and operations can scale quadratically with
the number of binding constructs. Rossberg et al. (2014) report this as a major pain point in
their formalisation efforts. To reduce this burden, tools like LNGen (Aydemir and Weirich,
2010) generate boilerplate Coq code from Ott specifications (Sewell et al., 2010). Although
verbose, this has been effectively used in several large-scale projects (Greenberg et al., 2010;
Busenius, 2011; Bosman et al., 2023).

62 bacKgRound

2.3.6 Representation-generic

Given the rich history of research into syntax representations, it is natural to ask whether one
can reason about syntax generically, without first committing to nominal, de Bruijn, higher-
order, or other encodings. Several efforts aim to support signature- and representation-generic
metatheory by abstracting over the details of variable binding:

• GMeta (Lee et al., 2012) uses datatype-generic programming to derive first-order infrastruc-
ture and lemmas fromRocq encodings annotatedwith isomorphisms into a generic universe.
It supports a range of binding styles (nominal, de Bruijn, locally named/nameless), though
reasoning requires special tactics and operates over encodings rather than inductive types.

• Keuchel and Jeuring (2012) define a generic translation between de Bruijn and PHOAS in
Agda. Syntax is described in a universe of codes, while PHOAS terms use a generalised
higher-order Church encoding. The translation allows switching between representations
for convenience (higher-order for programming, de Bruijn for proving), though the work
doesn’t cover substitution or other metatheory.

• Tealeaves (Dunn et al., 2023b) axiomatise binder-aware traversals via decorated traversable
monads (DTMs) – compositions of syntax monads, writer monads, and applicative functors
(McBride and Paterson, 2008). Backends like de Bruijn or locally nameless are instantiated
by supplying a traversal operation satisfying DTM laws. A categorical account is developed
in Dunn et al. (2023a).

As the preceding survey shows, no representation avoids all trade-offs. Every approach has
its own form of “fiddliness” – whether it’s manual 𝛼-conversion, de Bruijn arithmetic, locally
nameless bookkeeping, or parameter management in higher-order encodings. That most pro-
gramming language research is still published without formalisation underscores both the
inherent complexity of the problem and the convenience of the Barendregt variable conven-
tion on paper. This thesis does not claim a universal solution, but within its scope, offers a
mathematically robust treatment grounded in a principled foundation.

paRt i

M A T H E M A T I C A L
F O U N D A T I O N S

The familial model of abstract syntax offers a lightweight and accessible framework
for formalising languages in proof assistants. However, it departs significantly from
the presheafmodel inways thatmerit closer study, especially since themain feature
of presheaves – a uniform renaming operation – is not present in the family setting.

The first half of the thesis develops the mathematical infrastructure needed to
describe the familial model at a level of generality comparable to that of presheaves,
but without referring directly to contexts, variables, or substitution. By aligning the
generality of bothmodels, we enable formal comparisons and justify the translation
of definitions and results from the rigid setting of presheaves to the more flexible
world of indexed families – while preserving the core properties essential for the
model theory of syntax. This part focuses on algebraic and biclosed structure, while
the skew-monoidal aspects are deferred to Part II.
Chapter 3 introduces liftings and their associated distributive laws, which are cen-
tral to transporting constructions between families and presheaves. These tools
ultimately justify approximating syntax in the category of presheaves by initial alge-
bras in the category of families. Chapter 4 explores categories with strongmonoidal
closed structure and establishes an equivalence between algebras for strong mon-
ads and morphisms into clone monads – forming the foundation of the metasubsti-
tution theory for families.

While the internal mechanics of the presheaf model can be intricate, our goal is
to present the theory as abstractly and modularly as possible. One of our key con-
tributions is to identify and isolate the essential components of the model, so they
can be reassembled in new categorical settings. To support clarity and intuition, we
accompany the abstract development with a running example based on unsorted
abstract syntax, assuming familiarity with the high-level overview of the presheaf
model presented in Section 2.2.

64

c h a p t e R 3

Lifting of algebras

One of the central aims of this thesis is to show that the presheaf theory of abstract syntax –
summarised in Section 2.2 – can be faithfully reconstructed in the simpler setting of indexed
families of sets. This chapter focuses on initial syntactic models in both presheaves and fami-
lies, culminating in a proof that term syntax calculated in the category of families can be lifted
to the initial model in the category of presheaves. This result bridges a key conceptual and
practical gap: it ensures in intrinsically-typed syntax – typically implemented as an inductive
data type without native support for renaming – the law-abiding renaming operation can be
computed by structural recursion.

To build up to the initial algebra lifting theorem in Section 3.3, we first recall foundational
notions of distributive laws and liftings in Section 3.1, then examine their relationship to ad-
junctions between algebra categories in Section 3.2. Finally, Section 3.4 discusses how dis-
tributive laws can be constructed over a free monad.

3.1 DistRibutive laws and liftings

The term “lifting” has a variety of meanings in category theory, so we will fix it to refer to the
process of transporting some structure (functors, distinguished objects, categorical structure)
from one category to another, most often along a functor that preserves the lifted structure. For
example, we will say that an initial object lifts from categoryD to category C along𝑈 : C→ D

if there is an initial object ⊥C ∈ C (often calculated from ⊥D ∈ D) such that 𝑈⊥C = ⊥D. As
presented in this section, liftings to endofunctor algebras are closely related to the notion of
distributive laws.

3.1.1 Distributive laws

Distributive laws were introduced by Beck (1969) to investigate compositions of monads and
their liftings to algebras. Some results can be weakened to algebras for arbitrary endofunctors,
motivating the following generalisation – the name was chosen in connection to liftings, and
because most other alternatives (distributor, commutator, interchange law, etc.) were taken.

66 l ift ing of algebRas

Definition 3.1.1 For two functors 𝐹 : A → C and 𝐺 : B → D, an elevator from 𝐺 to 𝐹 is a
pair of functors 𝐾 : A → B and 𝐿 : C → D and a natural transformation 𝜑 : 𝐺𝐾 =⇒ 𝐿𝐹 . A
co-elevator is the same pair of functors 𝐾, 𝐿 with a natural transformation𝜓 : 𝐿𝐹 =⇒ 𝐺𝐾 . ⌟

We will be particularly interested in cases where 𝐹 : C→ C and 𝐺 : D→ D are endofunctors,
with co/elevators and liftings between them involving only one functor 𝐾 : C → D. When
these endofunctors have additional – e.g. monad or comonad – structure, the elevator between
them can be “upgraded” to a structure-preserving transformation.

Definition 3.1.2 A distributive law from a monad 𝑆 : C → C to a monad 𝑇 : D → D is an
elevator (𝐾,𝜑 : 𝑇𝐾 =⇒ 𝐾𝑆) between the underlying endofunctors, further satisfying

𝐾

𝑇𝐾 𝐾𝑆

𝜂𝑇𝐾 𝐾𝜂𝑆

𝜑

(𝜑 b𝜂e)
𝑇𝑇𝐾 𝑇𝐾𝑆 𝐾𝑆𝑆

𝑇𝐾 𝐾𝑆

𝑇𝜑 𝜑𝑆

𝜇𝑇𝐾 𝐾𝜇𝑆

𝜑

(𝜑 b𝜇e)

Dually, a codistributive law from a comonad 𝐶 : C → C to a comonad 𝐷 : D → D is a co-
elevator (𝐿,𝜓 : 𝐿𝐶 =⇒ 𝐷𝐿) between the underlying endofunctors, further satisfying

𝐿𝐶 𝐷𝐿

𝐿

𝜓

𝐿𝜀𝐶 𝜀𝐷
(𝜓 b𝜀e)

𝐿𝐶 𝐷𝐿

𝐿𝐶𝐶 𝐷𝐿𝐶 𝐷𝐷𝐿

𝜓

𝐿𝛿𝐶 𝛿𝐷𝐿

𝜓𝐶 𝐷𝜓

(𝜓 b𝛿e)

⌟

The theory of distributive laws comes with many elegant results (Beck, 1969; Tanaka, 2005),
but we are most interested in their relationship to liftings.

3.1.2 Liftings

Definition 3.1.3 A functor 𝐹 : A→ C is a (strong) lifting of𝐺 : B→ D along (𝐾, 𝐿) if there is
an elevator (𝐾 : A→ B, 𝐿 : C→ D, 𝜘) from 𝐹 to 𝐺 with 𝜘 an isomorphism 𝐺𝐾 � 𝐿𝐹 . ⌟

Definition 3.1.4 A functor 𝐹 : A→ C is a strict lifting of𝐺 : B→ D along (𝐾, 𝐿) simply when
𝐺𝐾 = 𝐿𝐹 – that is, (𝐾, 𝐿) is a morphism in the arrow category of Cat from 𝐹 to 𝐺 . ⌟

Following standard terminology, a weak lifting is then a non-invertible natural transformation
– this is precisely an elevator as given in the section before. The weak, strong, and strict
situations are shown below:

A C

B D

𝐹

𝐺

𝐾 𝐿
𝜑

𝜓

A C

B D

𝐹

𝐺

𝐾 𝐿𝜘
�

A C

B D

𝐹

𝐺

𝐾 𝐿

Notation. For a functor 𝐿 : 𝐹 -alg(C) → 𝐺-alg(D) and 𝐹 -algebra (𝐴, 𝑎), the carrier of the 𝐺-
algebra 𝐿(𝐴, 𝑎) will be denoted 𝐴𝐿, and its structure map 𝑎𝐿 : 𝐺 (𝐴𝐿) → 𝐴𝐿. For an 𝐹 -algebra
homomorphism 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏), 𝐿𝑓 : 𝐿(𝐴, 𝑎) → 𝐿(𝐵,𝑏) = (𝐴𝐿, 𝑎𝐿) → (𝐵𝐿, 𝑏𝐿) is a homo-
morphism of 𝐺-algebras also denoted 𝑓 𝐿 : 𝐴𝐿 → 𝐵𝐿. ⌟

distRibutive laws and lift ings 67

Definition 3.1.5 Given two endofunctors 𝐹 : C→ C and𝐺 : D→ D and a functor 𝐾 : C→ D,
its strict lifting to algebras is a functor 𝐾 : 𝐹 -alg(C) → 𝐺-alg(D) such that U𝐺𝐾 = 𝐾U 𝐹 .

𝐹 -alg(C) 𝐺-alg(D)

C D

𝐾

𝐾

U 𝐹 U𝐺

Thus, for an 𝐹 -algebra (𝐴, 𝑎), 𝐴𝐾 = U𝐺 (𝐾 (𝐴, 𝑎)) = 𝐾𝐴 and 𝑎𝐾 : 𝐺𝐾𝐴 → 𝐾𝐴, which we will
also denote 𝑎 : 𝐺𝐾𝐴→ 𝐾𝐴 when 𝐾 is clear from the context. ⌟

Strict liftings to algebras can be constructed from a lifting, up to isomorphism.

Proposition 3.1.1 Let 𝐾 : C → D be a functor and 𝐿 a strong lifting to 𝐹 -alg(C) → 𝐺-alg(D)
via 𝜘 : U𝐺𝐿 � 𝐾U 𝐹 . Then, there exists a strict lifting 𝐾 of 𝐾 to 𝐹 -alg(C) → 𝐺-alg(D) along the
forgetful functors such that 𝐿 � 𝐾 .

𝐹 -alg(C) 𝐺-alg(D)

C D
𝐾

𝐿

U 𝐹 U𝐺𝜘
�

⇒
𝐹 -alg(C) 𝐺-alg(D)

C D
𝐾

𝐾

U 𝐹 U𝐺

PRoof The natural isomorphism 𝜘 : U𝐺𝐿 � 𝐾U 𝐹 has components 𝐴𝐿 � 𝐾𝐴 at an 𝐹 -algebra
(𝐴, 𝑎)We define the strict lifting 𝐾 : 𝐹 -alg(C) → 𝐺-alg(D) as mapping (𝐴, 𝑎 : 𝐹𝐴→ 𝐴) to the
carrier 𝐾𝐴 with 𝐺-algebra structure

𝐺𝐾𝐴
𝜘
� 𝐺𝐴𝐿 𝑎𝐿 𝐴𝐿

𝜘
� 𝐾𝐴

and an 𝐹 -algebra homomorphism 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏) to 𝐾𝑓 : 𝐾𝐴 → 𝐾𝐵 with the 𝐺-algebra
homomorphism condition

𝐺𝐾𝐴 𝐺𝐴𝐿 𝐴𝐿 𝐾𝐴

𝐺𝐾𝐵 𝐺𝐵𝐿 𝐵𝐿 𝐾𝐵

𝐾𝑓𝐺𝐾 𝑓

�

��

�

𝑎𝐿

𝑏𝐿

𝑓 𝐿𝐺𝑓 𝐿 𝑓 𝐿 b ®𝐺 e

To show that this is a strict lifting, we need to prove that U𝐺𝐾 = 𝐾U 𝐹 : indeed, for all (𝐴, 𝑎) ∈
𝐹 -alg(C), U𝐺𝐾 (𝐴, 𝑎) = 𝐾𝐴 = 𝐾U 𝐹 (𝐴, 𝑎). Furthermore, the natural isomorphism 𝐿 � 𝐾 holds
because 𝐾 (𝐴, 𝑎) = (𝐾𝐴, 𝜘−1 ◦ 𝑎𝐿 ◦ 𝜘) � (𝐴𝐿, 𝑎𝐿) = 𝐿(𝐴, 𝑎). □

The definitions and properties above can also be dualised to categories of coalgebras.

3.1.3 Equivalence

The notions of elevators/distributive laws and liftings are closely connected – indeed the for-
mer can be used to induce the latter, and in the case of monad algebras, the result goes the
other way around too.

68 l ift ing of algebRas

Proposition 3.1.2 An elevator (𝐾 : C → D, 𝜑) from 𝐹 : C → C to 𝐺 : D → D strictly lifts to a
functor 𝐹 -alg(C) → 𝐺-alg(D).

𝐹 -alg(C) 𝐺-alg(D)

C D

𝐾𝜑

U𝐺U 𝐹

𝐾

PRoof Let (𝐾 : C → D, 𝜑 : 𝐺𝐾 =⇒ 𝐾𝐹) be an elevator. Define the lifting 𝐾𝜑 : 𝐹 -alg(C) →
𝐺-alg(D) along the forgetful functors U 𝐹 : 𝐹 -alg(C) → C and U𝐺 : 𝐺-alg(D) → D as mapping
an 𝐹 -algebra (𝐴, 𝑎 : 𝐹𝐴→ 𝐴) to the carrier 𝐾𝐴 with 𝐺-algebra structure

𝐺𝐾𝐴
𝜑𝐴

𝐾𝐹𝐴 𝐾𝑎 𝐾𝐴

and an 𝐹 -algebra homomorphism 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏) to the 𝐺-algebra homomorphism 𝐾𝑓

𝐺𝐾𝐴 𝐾𝐹𝐴 𝐾𝐴

𝐺𝐾𝐵 𝐾𝐹𝐵 𝐾𝐵

𝐾𝑓

𝐾𝑎

𝐾𝑏𝜑𝐵

𝜑𝐴

𝐺𝐾𝑓 𝐾𝐹 𝑓𝜑 𝑓 b ®𝐹 e □

The proposition can be strengthened to distributive laws between (co)monads.

Proposition 3.1.3 A distributive law𝐾 : C→ D from amonad 𝑆 : C→ C to amonad𝑇 : D→ D

strongly lifts to a functor 𝑆-Alg(C) → 𝑇 -Alg(D).

PRoof Let (𝐾,𝜑 : 𝑇𝐾 =⇒ 𝐾𝑆) be an elevator between monads. Proposition 3.1.2 induces a
lifting 𝐾𝜑 : 𝑆-alg(C) → 𝑇 -alg(D), and we can further show that the induced algebra structure
(𝐴 ∈ C, 𝑆𝐴→ 𝐴) ↦→ (𝐾𝐴 ∈ D,𝑇𝐾𝐴 𝜑𝐴

𝐾𝑆𝐴 𝐾𝑎 𝐾𝐴) is compatible with the monad 𝑇 :

𝐾𝐴 𝑇𝐾𝐴

𝐾𝐴 𝐾𝑆𝐴

𝜂𝑇𝐾𝐴

𝜑𝐴

𝐾𝑎

𝐾𝜂𝑆𝐴

𝜑 b𝜂 e

®𝑆

𝑇𝑇𝐾𝐴 𝑇𝐾𝐴

𝑇𝐾𝑆𝐴 𝐾𝑆𝑆𝐴 𝐾𝑆𝐴

𝑇𝐾𝐴 𝐾𝑆𝐴 𝐾𝐴

𝜇𝑇𝐾𝐴

𝜑𝐴

𝐾𝑎

𝑇𝜑𝐴

𝑇𝐾𝑎

𝜑𝐴 𝐾𝑎

𝜑𝑆𝐴 𝐾𝜇𝑆𝐴

𝐾𝑆𝑎

𝜑 b𝜇 e

𝜑 ®𝑆

Thus, the lifting is a functor 𝐾𝜑 : 𝑆-Alg(C) → 𝑇 -Alg(D). □

A classic result of the theory of distributive laws is that not only do they induce liftings, they
are equivalent to liftings. We show the inverse construction below; for the formal statement
and proof of equivalence, see e.g. Beck (1969).

Proposition 3.1.4 Given two monads 𝑆 : C → C and 𝑇 : D → D, if a functor 𝐾 : C → D has
a strong lifting 𝐾 : 𝑆-Alg(C) → 𝑇 -Alg(D) along the forgetful functors of 𝑆 and 𝑇 , there is a
distributive law 𝜑 : 𝑇𝐾 =⇒ 𝐾𝑆 from 𝑇 to 𝑆 .

distRibutive laws and lift ings 69

PRoof Given an algebra (𝐴, 𝑎 : 𝑆𝐴 → 𝐴) for the monad 𝑆 , the 𝑇 -algebra 𝐾 (𝐴, 𝑎) is of the
form (𝐾𝐴, â : 𝑇𝐾𝐴→ 𝐾𝐴), since the strong lifting conditionU𝑇 (𝐾 (𝐴, 𝑎)) = 𝐾 (U 𝑆 (𝐴, 𝑎)) = 𝐾𝐴
forces the carrier of 𝐾 (𝐴, 𝑎) to be 𝐾𝐴.

We first show that the collection of lifted structure maps �̂�𝐴 : 𝑇𝐾𝑆𝐴 → 𝐾𝑆𝐴 for the
free 𝑆-algebra (𝑆𝐴, 𝜇𝐴 : 𝑆𝑆𝐴 → 𝑆𝐴) constitute a natural transformation �̂� : 𝑇𝐾𝑆 =⇒ 𝐾𝑆 .
For a C-morphism 𝑓 : 𝐴 → 𝐵, 𝑆 𝑓 : 𝑆𝐴 → 𝑆𝐵 is an 𝑆-algebra homomorphism between the
free 𝑆-algebras (𝑆𝐴, 𝜇𝐴) → (𝑆𝐵, 𝜇𝐵). The lifting 𝐾 lifts this to a 𝑇 -algebra homomorphism
𝐾 (𝑆 𝑓) : (𝐾𝑆𝐴, �̂�𝐴 : 𝑇𝐾𝑆𝐴 → 𝐾𝑆𝐴) → (𝐾𝑆𝐵, �̂�𝐵 : 𝑇𝐾𝑆𝐵 → 𝐾𝑆𝐵). The naturality square for
�̂� simplifies to the square below (since U𝑇𝐾𝑆 𝑓 = 𝐾U 𝑆𝑆 𝑓 = 𝐾𝑆 𝑓) which is nothing but the
𝑇 -algebra homomorphism condition for 𝐾𝑆 𝑓 = 𝐾𝑆 𝑓 :

𝑇𝐾𝑆𝐴 𝐾𝑆𝐴

𝑇𝐾𝑆𝐵 𝐾𝑆𝐵

�̂�𝐴

𝐾𝑆 𝑓𝑇𝐾𝑆 𝑓

�̂�𝐵

With �̂� : 𝑇𝐾𝑆 =⇒ 𝐾𝑆 in hand, components �̂�𝐴 : 𝑇𝐾𝑆𝐴→ 𝐾𝑆𝐴 of which are𝑇 -algebra structure
maps of objects 𝐾𝑆𝐴, the distributive law 𝜑 : 𝑇𝐾 =⇒ 𝐾𝑆 is the composite

𝜑 : 𝑇𝐾
𝑇𝐾𝜂𝑆

𝑇𝐾𝑆
�̂�

𝐾𝑆

which satisfies the distributive law axioms by naturality, monad and algebra laws. □

Given endofunctors 𝐹,𝐺 on the same category C, an elevator 𝐺𝐹 =⇒ 𝐹𝐺 between them may
induce liftings both to algebras and coalgebras. If one of the functors is a monad, we obtain a
way of “swapping” liftings through a distributive law, which can be used to lift joint algebra-
coalgebra structures on an object.

Proposition 3.1.5 If 𝐹 : D → D is an endofunctor and 𝑇 : D → D is a monad, a lifting of 𝐹 to
𝑇 -algebras 𝐹 : 𝑇 -Alg→ 𝑇 -Alg gives rise to a monad 𝑇 : 𝐹 -coalg→ 𝐹 -coalg.

PRoof 𝐹 : 𝑇 -Alg→ 𝑇 -Alg induces an elevator 𝜑 : 𝑇𝐹 =⇒ 𝐹𝑇 by Proposition 3.1.4, which we
may also consider as a co-elevator from 𝐹 to 𝐹 , inducing a lifting 𝑇 : 𝐹 -coalg→ 𝐹 -coalg:

𝑇 (𝐴, 𝑐 : 𝐴→ 𝐹𝐴) ↦→ (𝑇𝐴,𝑇𝐴 𝑇𝑐 𝑇𝐹𝐴
𝜑𝐴

𝐹𝑇𝐴)

We show that 𝑇 is a monad on 𝐹 -coalg. The unit of the monad 𝑇 : 𝑇 : 𝐹 -coalg → 𝐹 -coalg is
a natural transformation 𝜂 (𝐴,𝑐) : (𝐴, 𝑐) → (𝑇 (𝐴, 𝑐) = (𝑇𝐴, 𝑐 : 𝑇𝐴 → 𝐹𝑇𝐴)) with components
given by 𝜂𝐴 : 𝐴→ 𝑇𝐴, which is an 𝐹 -coalgebra homomorphism:

𝐴 𝐹𝐴

𝑇𝐴 𝑇𝐹𝐴 𝐹𝑇𝐴

𝑐

𝜂𝐴

𝑇𝑐 𝜑𝐴

𝐹𝜂𝐴
𝜂𝐹𝐴

𝜂

𝜑 b𝜂 e

70 l ift ing of algebRas

The multiplication 𝜇 (𝐴,𝑐) : 𝑇𝑇 (𝐴, 𝑐) → 𝑇 (𝐴, 𝑐) is an 𝐹 -coalgebra homomorphism

(𝑇𝑇𝐴,𝑇𝑇𝐴 𝑇𝑇𝑐 𝑇𝑇𝐹𝐴
𝑇𝜑𝐴

𝑇𝐹𝑇𝐴
𝜑𝑇𝐴

𝐹𝑇𝑇𝐴) → (𝑇𝐴,𝑇𝐴 𝑇𝑐 𝑇𝐹𝐴
𝜑𝐴

𝐹𝑇𝐴)

defined, between the carriers, as 𝜇𝐴 : 𝑇𝑇𝐴→ 𝑇𝐴 and having the homomorphism condition

𝑇𝑇𝐴 𝑇𝑇𝐹𝐴 𝑇𝐹𝑇𝐴 𝐹𝑇𝑇𝐴

𝑇𝐴 𝑇𝐹𝐴 𝐹𝑇𝐴
𝑇𝑐 𝜑𝐴

𝑇𝑇𝑐 𝑇𝜑𝐴 𝜑𝑇𝐴

𝜇𝐴 𝐹𝜇𝐴𝜇𝐹𝐴𝜇 𝜑 b𝜇 e

□

All results in this chapter can be dualiased to an equivalence between codistributive laws and
liftings to coalgebras. Given 𝐾 : C→ D,

• if 𝐾 is a co-elevator from endofunctors 𝐹 : C → C to 𝐺 : D → D with 𝜓 : 𝐾𝐹 =⇒ 𝐺𝐾 ,
then 𝐾 has a lifting 𝐾𝜓 : 𝐹 -coalg(C) → 𝐺-coalg(D) to categories of algebras that maps
(𝐴, 𝑎 : 𝐴→ 𝐹𝐴) to (𝐾𝐴,𝐾𝐴 𝐾𝑎 𝐾𝐹𝐴

𝜓𝐴
𝐺𝐾𝐴);

• if 𝐾 is a codistributive law between comonads 𝐶 : C → C to 𝐷 : D → D, it has a lifting
𝐾𝜓 : 𝐶-Coalg(C) → 𝐷-Coalg(D) to categories of comonad-algebras;

• if 𝐾 has a lifting 𝐾 : 𝐶-Coalg(C) → 𝐷-Coalg(D), the lifting of the free 𝐶-coalgebra
𝐾 (𝐶𝐴, 𝛿𝐴 : 𝐶𝐴 =⇒ 𝐶𝐶𝐴) = (𝐾𝐶𝐴, 𝛿𝐴 : 𝐾𝐶𝐴 → 𝐷𝐾𝐶𝐴) induces a codistributive law be-

tween the comonads 𝐶 and 𝐷 : 𝜓 : 𝐾𝐶 𝛿 𝐷𝐾𝐶 𝐷𝐾𝜀𝐶 𝐷𝐾 ;

• if 𝐺 : C → C is an endofunctor and 𝐶 : C → C is a comonad, a lifting of 𝐺 to coalgebras
𝐺 : 𝐶-Coalg→ 𝐶-Coalg induces a comonad 𝐶 : 𝐺-alg→ 𝐺-alg.

The results established in this chapter apply whenever we have algebra and coalgebra struc-
tures on the same object – this will be the case in the proof of the initial-algebra lifting theorem
in Section 3.3. Before that, we investigate the relationship between liftings and adjunctions.

3.2 Adjunctions

As will be seen in Section 7.2.1, our work features intricate adjoint situations in the presence
of adjoint triples: functors 𝐿, 𝑅 : C → D and 𝐽 : D → C with 𝐿 a 𝐽 a 𝑅 and an induced
monad-comonad pair 𝑇 ≜ 𝐽𝐿 and 𝐶 ≜ 𝐽𝑅.

C

D

𝐽𝐿 𝑅

𝑇 𝐶a

aa

In this section we prove properties concerning adjoint triples, liftings, and distributive laws.

adjunctions 71

Proposition 3.2.1 Assume two adjoint triples 𝐿1 a 𝐽1 a 𝑅1 : B → A and 𝐿2 a 𝐽2 a 𝑅2 : D → C

with induced adjoint monad-comonad pairs 𝑇1 a 𝐶1 : A → A and 𝑇2 a 𝐶2 : C → C, respectively.
If 𝐹 : A→ C lifts to 𝐺 : B→ D along (𝐽1, 𝐽2), then we have co/elevators

𝐿2𝐹 =⇒ 𝐺𝐿1 𝐺𝑅1 =⇒ 𝑅2𝐹

and co/distributive laws
𝑇2𝐹 =⇒ 𝐹𝑇1 𝐹𝐶1 =⇒ 𝐶2𝐹

PRoof We have the following situation:

A C

B D

𝐽2𝐿2 𝑅2

𝑇2 𝐶2

𝐹

𝐺

𝐽1𝐿1 𝑅1

𝑇1 𝐶1

+ (†)

The lifting of 𝐹 to 𝐺 along (𝐽1, 𝐽2) satisfies the natural isomorphism 𝜅 : 𝐹 𝐽1 � 𝐽2𝐺 . The co/ele-
vators are transposes of the following composites:

𝐹
𝐹𝜂

𝐹 𝐽1𝐿1
𝜅𝐿1 𝐽2𝐺𝐿1 𝐽2𝐺𝑅1

𝜅−1𝑅1 𝐹 𝐽1𝑅1
𝐹𝜀 𝐹

and using these the co/distributive laws derive from these as:

𝑇2𝐹 = 𝐽2𝐿2𝐹 → 𝐽2𝐺𝐿1
𝜅−1𝐿1 𝐹 𝐽1𝐿1 = 𝐹𝑇1 𝐹𝐶1 = 𝐹 𝐽1𝑅1

𝜅𝑅1 𝐽2𝐺𝑅1 → 𝐽2𝑅2𝐹 = 𝐶2𝐹

Since the co/distributive laws and co/monad operations are all constructed from co/units, the
compatibility laws reduce to zig-zag identities. □

The full generality of the above theorem is needed to cover the cases when 𝐹 and 𝐺 are
functors of multiple arguments: for example, with a bifunctor 𝐹 : C × C → C, an isomor-
phism 𝐽 (𝐹 (𝐴, 𝐵)) � 𝐹 (𝐽𝐴, 𝐽𝐵) will induce a distributive law 𝑇 (𝐹 (𝐴, 𝐵)) → 𝐹 (𝑇𝐴,𝑇𝐵). When
𝐹 : C→ C and𝐺 : D→ D are endofunctors on an adjoint triple 𝐿 a 𝐽 a 𝑅 : C→ D in an adjoint
situation (†) in Proposition 3.2.1, the elevators calculated give rise to liftings to co/algebras:

𝐿 to 𝐹 -coalg(C) → 𝐺-coalg(D) 𝑅 to 𝐹 -alg(C) → 𝐺-alg(D)
𝐹 to 𝑇 -Alg(C) → 𝑇 -Alg(C) 𝐺 to 𝐶-Coalg(C) → 𝐶-Coalg(C)

The following corollary of Backhouse et al. (1995, Fusion Theorem) and Hermida and Jacobs
(1995, Theorem 2.3.1) relates the first two of these liftings.

Proposition 3.2.2 A lifting of 𝐹 : C → C to 𝐺 : D → D induces adjunctions between 𝐹 -alg(C)
and 𝐺-alg(D), as well as 𝐹 -coalg(C) and 𝐺-coalg(D).

72 l ift ing of algebRas

PRoof The two sides of the isomorphism 𝜅 : 𝐹 𝐽 � 𝐽𝐺 : 𝜘 are elevators that induce liftings
𝐽𝜅 : 𝐺-alg(D) → 𝐹 -alg(C) and 𝐽 𝜘 : 𝐺-coalg(D) → 𝐹 -coalg(C) (Proposition 3.1.2). We show
that these have a right and left adjoint, respectively.

By Proposition 3.2.1, we have an elevator 𝜔 : 𝐺𝑅 =⇒ 𝑅𝐹 which lifts 𝑅 : C → D to
𝑅𝜔 : 𝐹 -alg(C) → 𝐺-alg(D); we now show this to be the right adjoint of the lifted functor
𝐽𝜅 : 𝐺-alg(D) → 𝐹 -alg(C) by establishing the natural hom-set isomorphism

𝐽𝜅 (𝐴, 𝑎) → (𝐵,𝑏) ∈ 𝐹 -alg(C)
(𝐴, 𝑎) → 𝑅𝜔 (𝐵,𝑏) ∈ 𝐺-alg(D)

An 𝐹 -algebra homomorphism 𝑓 : 𝐽𝜅 (𝐴, 𝑎) → (𝐵,𝑏) is a morphism 𝐽𝐴 → 𝐵 ∈ C that satisfies
the left diagram below. It must be mapped to a morphism 𝑔 : 𝐴 → 𝑅𝐵 ∈ D that satisfies the
diagram on the right.

𝐹 𝐽𝐴 𝐽𝐺𝐴 𝐽𝐴

𝐹𝐵 𝐵

𝜅𝐴 𝐺𝑎

𝐹 𝑓 𝑓

𝑏

(†)
𝐺𝐴 𝐴

𝐺𝑅𝐵 𝑅𝐹𝐵 𝑅𝐵

𝑎

𝐺𝑔 𝑔

𝜔𝐵 𝑅𝑏

(‡)

Set 𝑔 to be 𝜏 (𝑓) : 𝐴 → 𝑅𝐵, the transpose of 𝑓 : 𝐽𝐴 → 𝐵 under 𝜏 : 𝐽 a 𝑅. The 𝐺-algebra
homomorphism condition (‡) can be transposed to

𝐽𝐺𝐴 𝐽𝐴

𝐽𝐺𝑅𝐵 𝐹𝐵 𝐵

𝐽𝑎

𝐽𝐺𝑔 𝑓

𝜏 (𝜔𝐵) 𝑏

which, expanding 𝜏 (𝜔𝐵), can be proved as follows:

𝐽𝐺𝐴 𝐽𝐴

𝐹 𝐽𝐴 𝐵

𝐽𝐺𝑅𝐵 𝐹 𝐽𝑅𝐵 𝐹𝐵

𝐽𝑎

𝑓

𝐽𝐺𝜏 (𝑓)

𝐹𝜀𝐵

𝑏

𝜅𝐴

𝐹 𝑓
𝐹 𝐽𝜏 (𝑓)

𝜅

†

The reverse mapping 𝑔 : 𝐴 → 𝑅𝐵 ↦→ 𝜏𝑔 : 𝐽𝐴 → 𝐵 satisfies (†) with similar reasoning, and the
naturality of hom-set equivalence follows from the adjunction C(𝐽𝐴, 𝐵) � D(𝐴, 𝑅𝐵).

The dual proof shows that the lifting of 𝐿 to 𝐹 -coalg(C) → 𝐺-coalg(D) is the left adjoint
of 𝐽 𝜘 : 𝐺-coalg(D) → 𝐹 -coalg(C), establishing the required adjunctions. □

The main application of this result is the lifting of co/limit preservation results from functors
to liftings between algebras. In the next section we consider a particularly important colimit:
the initial algebra of an endofunctor, which will eventually correspond to syntax.

in it ial algebRas 73

3.3 Initial algebRas

We now study the behaviour of initial algebras under liftings, establishing that under weak
assumptions on the elevating functor, initial algebras lift to initial algebras. As expected, every
result can be dualised to terminal coalgebras, but in the context of initial-algebra semantics,
only one side of the story is of relevance. We therefore assume one side of the adjoint triple
introduced above: the adjunction 𝐽 a 𝑅 : D→ C and the induced comonad 𝐶 .

Notation. The initial algebra for 𝐹 : C→ C will be denoted 𝜇𝐹 = (f, 𝑓 : 𝐹f→ f). ⌟

Lemma 3.3.1 If 𝐹 : C → C lifts to 𝐺 : D → D along 𝐽 via 𝜅 : 𝐹 𝐽 � 𝐽𝐺 and 𝐺 has an initial
algebra, so does 𝐹 with 𝐽𝜅 (𝜇𝐺) � 𝜇𝐹 .

PRoof Proposition 3.2.2 shows that the adjunction 𝐽 a 𝑅 : D → C induces an adjunction
𝐽𝜅 a 𝑅𝜘 : 𝐺-alg(D) → 𝐹 -alg(C) and, 𝐽𝜅 – being a left adjoint – preserves colimits, in particular
initial objects in 𝐺-alg(D). Thus, 𝐽𝜅 (g, 𝑔) = (𝐽g, 𝐹 𝐽g 𝜅g 𝐽𝐺g

𝐽𝑔
𝐽g) ∈ 𝐹 -alg(C) is an

initial 𝐹 -algebra, and furthermore, any initial 𝐹 -algebra 𝜇𝐹 is isomorphic to 𝐽𝜅 (g, 𝑔). □

The lemma above lets us “lower” initial algebras between adjoint categories, and it will be used
in conjunction with the following initial algebra-lifting result.

Proposition 3.3.1 Let 𝐶 : C → C be a comonad and 𝐹 : C → C an endofunctor with 𝐹 a strict
lifting to 𝐶-Coalg(C). Then, an initial 𝐹 -algebra (f, 𝑓) ∈ 𝐹 -alg(C) lifts to an initial 𝐹 -algebra
(f̂, 𝑓) ∈ 𝐹 -alg(𝐶-Coalg(C)) satisfying U (f̂) = f.

PRoof See the Appendix on page 315. □

Using Proposition 3.3.1, we can lift initial algebras to the category of coalgebras for a comonad.
In general, we may have an arbitrary lifting𝐺 of 𝐹 along some functor 𝐽 ; we now show that as
long as 𝐽 is comonadic, the initial 𝐹 -algebra can be lifted to an initial𝐺-algebra by first lifting
it to a category of coalgebras, then lowering it to 𝐺-alg(C).
Theorem 3.3.1

Let 𝐹 : C → C be an endofunctor and 𝐺 : D → D a lifting along a comonadic 𝐽 : D → C

via 𝜅 : 𝐽𝐺 �−→ 𝐹 𝐽 . Then, the initial 𝐹 -algebra 𝜇𝐹 lifts to an initial 𝐺-algebra 𝜇𝐺 such that
𝐽𝜅𝜇𝐺 � 𝜇𝐹 .

PRoof 𝐽 is (weakly) comonadic, so it has a right adjoint 𝑅 : C→ D and an induced comonad
𝐶 ≜ 𝐽𝑅 such that the canonical comparison functor 𝐾 : D→ 𝐶-Coalg(C) is an equivalence of
categories, i.e. there is a pseudo-inverse functor 𝐾 : 𝐶-Coalg(C) → D for which we have the
natural isomorphisms 𝐾𝐾 � IdD and 𝐾𝐾 � Id𝐶-Coalg(C) . Consider the situation

𝐶-Coalg(C) 𝐶-Coalg(C)

D D

C C

𝐾

𝐽 𝐽

𝐹

𝐺

𝐾𝐺𝐾

𝐾

𝑈 𝑈

�

𝜅
�

� �

74 l ift ing of algebRas

where outermost isomorphisms are due to the property 𝑈𝐾 � 𝐽 of the comparison functor 𝐾 .
We have the natural isomorphism on the left below, which, by Proposition 3.1.1, induces the
strict lifting on the right for an endofunctor 𝐻 � 𝐾𝐺𝐾 .

𝐶-Coalg(C) 𝐶-Coalg(C) 𝐶-Coalg(C) 𝐶-Coalg(C)

C C C C

𝑈

𝐾𝐺𝐾

𝑈

𝐹 𝐹

𝑈 𝑈

𝐻

�

𝐻 is a lifting of 𝐹 : C → C to 𝐶-coalgebras, putting us in the context of Proposition 3.3.1:
the initial 𝐹 -algebra (f, 𝑔) lifts to an initial 𝐻 -algebra (h, ℎ) with 1⃝ 𝑈h = f, and through the
isomorphism 𝐻 � 𝐾𝐺𝐾 , there is an associated initial algebra for 𝐾𝐺𝐾 too, which we will also
denoteh. Moreover, since

𝐶-Coalg(C) 𝐶-Coalg(C)

D D

𝐾

𝐺

𝐾𝐺𝐾

𝐾
𝜘
�

and the equivalence 𝐾 can be strengthened to an an adjoint equivalence 𝐾 a 𝐾 , we can use
Lemma 3.3.1 to map the initial 𝐾𝐺𝐾-algebra to the initial 𝐺-algebra (g, 𝑓) ≜ 𝐾

𝜘 (h, ℎ). Apply-
ing Lemma 3.3.1 again, we get that 𝐽𝜅 (g, 𝑓) � (f, 𝑔), as was required.

In summary, the initial 𝐹 -algebra f lifts to an initial 𝐾𝐺𝐾-algebra h which 𝐾 maps to the
initial 𝐺-algebra g, which can further be mapped back to f up to isomorphism. □

The theorem above shows that if 𝐺 is a strong lifting of 𝐹 along a weakly comonadic 𝐽 , an
initial 𝐹 -algebra 𝜇𝐹 induces an initial 𝐺-algebra that 𝐽 𝜘 maps to an initial object isomorphic
to the original 𝜇𝐹 . With a stronger assumption on 𝐽 , the isomorphism can be strengthened to
an equality on the carrier objects.

Corollary 3.3.1 If in the above theorem 𝐽 is strictly comonadic, we also have the equality of
carrier objects of the initial algebras 𝐽g = f.

PRoof If 𝐽 is strictly comonadic, 𝐾 : D→ 𝐶-Coalg(C) is an isomorphism of categories with
2⃝ 𝐾𝐾 = Id and 3⃝𝑈𝐾 = 𝐽 . We then have the following calculation:

𝐽g ≜ 𝐽𝐾h
3⃝
= 𝑈𝐾𝐾h

2⃝
= 𝑈h

1⃝
= f □

Remark. The initial-algebra lifting theorem will be applied that the term syntax of a signature
endofunctor Σ computed in families may be equipped with a 𝐶-coalgebra structure by initial-
ity/structural recursion, as long as Σ itself lifts to coalgebras. If the comonad is the cofree
presheaf comonad □ : Fam𝑆 → Fam𝑆 (whose coalgebras are families with renaming structure,
i.e. presheaves), the initial Σ-algebra lifts to an initial Σ̂-algebra in□-Coalg by Proposition 3.3.1.
This, byTheorem 3.3.1, gives the initial Ξ-algebra in presheaves, assuming the underlying fam-
ily mapping of Ξ : PSh𝑆 → PSh𝑆 is Σ. For formalisation purposes, Proposition 3.3.1 ensures
that the inductive datatype of terms admits a lawful recursive renaming operation. ⌟

fRee distRibutive laws 75

3.4 FRee distRibutive laws

As shown in this chapter, there is an equivalence of liftings of functors to monad algebras,
and distributive laws between the functor and the monad. In practice we will need a way to
“initialise” this equivalence by constructing a distributive law or lifting from first principles,
and freely translate between them afterwards. In this section we will prove that constructing
a distributive law for a freemonad is possible by giving an arbitrary lifting, not just to algebras.
We start by recalling some standard definitions and properties of free constructions – for more
details, see e.g. Mac Lane (1971, Section IV).

Definition 3.4.1 Let 𝑈 : C → D be a functor. A free C-object on 𝐴 ∈ D is an object 𝐹𝐴 ∈ C

and a morphism 𝜂𝐴 : 𝐴 → 𝑈𝐹𝐴 ∈ D such that for all 𝑌 ∈ C and 𝑓 : 𝐴 → 𝑈𝑌 ∈ D there exists
a unique extension 𝑓 ♯ : 𝐹𝐴→ 𝑌 ∈ C such that

𝐴 𝑈𝐹𝐴

𝑈𝑌

𝜂𝐴

𝑓
𝑈 𝑓 ♯ (𝐹 ♯)

Existence of free objects for all𝐴 ∈ D implies a free-forgetful adjunction C(𝐹𝐴,𝑌) � D(𝐴,𝑈𝑌)
for 𝐴 ∈ D, 𝑌 ∈ C and further induces the free monad 𝑇𝑋 = 𝑈𝐹𝑋 : D→ D. ⌟

As shown by Mac Lane (1971, Section VI.3), the comparison functor 𝐾 : C→ 𝑇 -Alg(D) maps
every object 𝑋 ∈ C to the 𝑇 -algebra (𝑈𝑋,𝑇𝑈𝑋 ≜ 𝑈𝐹𝑈𝑋

𝑈𝜀𝑋 𝑈𝑋). Freeness is employed
both to construct free extension functions, and to prove equalities via uniqueness: to show that
two morphisms 𝑔,ℎ : 𝐹𝐴 → 𝑌 ∈ C are equal, it is sufficient to show that they both factorise a
map 𝐴 → 𝑈𝑌 ∈ D in the sense that 𝑈𝑔 ◦ 𝜂𝐴 = 𝑓 ♯ = 𝑈ℎ ◦ 𝜂𝐴. By the uniqueness of the free
extension 𝑓 ♯, both 𝑔 and ℎ must equal to 𝑓 ♯ and therefore each other. This will be used in the
following theorem to construct a distributive law for the free monad.
Theorem 3.4.1

In the context of of the above, let 𝐺 : D → D be an endofunctor with 𝐺 : C → C a strict
lifting along𝑈 . Then, there is monad-functor distributive law 𝑇𝐺 =⇒ 𝐺𝑇 : D→ D.

PRoof 𝐺 is a strict lifting of 𝐺 , so 𝐺𝑇𝐴 = 𝐺𝑈𝐹𝐴 = 𝑈𝐺𝐹𝐴, so the components of the
distributive law will have the form 𝑈𝐹𝐺𝐴 → 𝑈𝐺𝐹𝐴 which is the image of a morphism
𝐹𝐺𝐴 → 𝐺𝐹𝐴 ∈ C under the forgetful functor. This latter morphism out of the free func-
tor can be induced by freeness, as the extension 𝜅𝐴 : 𝐹𝐺𝐴→ 𝐺𝐹𝐴 of𝐺𝐴 𝐺𝜂𝐴 𝐺𝑇𝐴 = 𝑈𝐺𝐹𝐴.
Naturality requires that for all 𝑓 : 𝐴 → 𝐵 ∈ D, 𝜅𝐵 ◦ 𝑇𝐺𝑓 = 𝐺𝑇 𝑓 ◦ 𝜅𝐴. We show that both
composites come from morphisms in C:

𝐹𝐺𝐴

𝐹 : D→ C

𝐹𝐺𝐵

freeness
𝐺𝐹𝐵

𝑇𝐺𝑓

𝜅𝐵

𝐹𝐺𝐴

freeness
𝐺𝐹𝐴

𝐺 : C→ C

𝐺𝐹𝐵

𝜅𝐴

𝐺𝐹 𝑓

76 l ift ing of algebRas

Moreover, they both factorise 𝐺𝐴 𝐺𝑓
𝐺𝐵

𝐺𝜂𝐵 𝐺𝑈𝐹𝐵, so the maps must be equal:

𝑈𝐹𝐺𝐴 𝐺𝐴 𝑈𝐹𝐺𝐴

𝑈𝐺𝐹𝐴 𝐺𝑈𝐹𝐴 𝐺𝐵 𝑈𝐹𝐺𝐵

𝑈𝐺𝐹𝐵 𝐺𝑈𝐹𝐵 𝑈𝐺𝐹𝐵

𝜂𝐺𝐴

𝐺𝑓

𝐺𝜂𝐵

𝜅𝐴

𝑈𝐺𝐹 𝑓

𝐺𝜂𝐴

𝜂𝐺𝐴

𝑈𝐹𝐺𝑓

𝜅𝐵

𝜂𝐺𝐵

𝐹 ♯

𝜂

𝜂

𝐹 ♯

The unit axiom (𝜑 b𝜂e) for the distributive law is simply Diagram (𝐹 ♯):

𝐺𝐴 𝑇𝐺𝐴 = 𝑈𝐹𝐺𝐴

𝐺𝑇𝐴 = 𝑈𝐺𝐹𝐴

𝜂𝐺𝐴

𝐺𝜂𝐴
𝜅

The multiplication axiom (𝜑 b𝜇e) is established by the equality of the following two maps in C:

𝐹𝑈 𝐹𝐺𝐴

𝐹 : C→ C

𝐹𝑈𝐺𝐹𝐴 = 𝐹𝐺𝑈 𝐹𝐴

freeness
𝐺𝐹𝑈 𝐹𝐴

𝐺 : C→ C and
𝜀𝑋 : 𝐹𝑈𝑋 → 𝑋 ∈ C

𝐺𝐹𝐴

𝐹𝑈𝜅𝐴

𝜅𝑈𝐹𝐴

𝐺𝜀𝐹𝐴

𝐹𝑈 𝐹𝐺𝐴

𝜀𝑋 : 𝐹𝑈𝑋 → 𝑋 ∈
C

𝐹𝐺𝐴

freeness
𝐺𝐹𝐴

𝜀𝐺𝐹𝐴

𝜅𝐵

They both factorise the embedding 𝑈𝐹𝐺𝐴 𝜅𝐴 𝑈𝐺𝐹𝐴 and must therefore be equal. For
simplicity, we will write 𝜅 both for the extension (𝐺𝜂𝐴)♯ : 𝐹𝐺𝐴→ 𝐺𝐹𝐴 and its value at𝑈 , the
distributive law 𝑇𝐺 =⇒ 𝐺𝑇 . □

A similar argument can be used to relate liftings of natural transformations, and maps of dis-
tributive laws for a free monad 𝑇 .

Proposition 3.4.1 For 𝐺,𝐻 : D → D with strict liftings 𝐺,𝐻 : C → C, if a natural transforma-
tion 𝜑 : 𝐺 =⇒ 𝐻 : D → D lifts to 𝜑 : 𝐺 =⇒ 𝐻 : C → C, the free monad 𝑇 : D → D distributes
over 𝜑 with respect to the induced 𝜅𝐺 : 𝑇𝐺 =⇒ 𝐺𝑇 and 𝜅𝐻 : 𝑇𝐻 =⇒ 𝐻𝑇 .

PRoof Given the assumptions, we need to show that the following square commutes:

𝑇𝐺 𝐺𝑇

𝑇𝐻 𝐻𝑇

𝜅𝐺

𝜑𝑇𝑇𝜑

𝜅𝐻

We reason by freeness: the two composites above are values of the following morphisms at𝑈 :

fRee distRibutive laws 77

𝐹𝐺𝐴

freeness
𝐺𝐹𝐴

𝜑𝑋 ∈ C(𝐺𝑋,𝐻𝑋)

𝐻𝐹𝐴

𝜅𝐺𝐴

𝜑𝑇𝐴

𝐹𝐺𝐴

𝐹 : C→ C

𝐹𝐻𝐴

freeness
𝐻𝐹𝐴

𝐹𝜑

𝜅𝐻𝐴

Both maps factorise the embedding 𝐺𝐴 𝜑𝐴
𝐻𝐴

𝐻𝜂𝐴 𝐻𝑈𝐹𝐴, and are therefore equal:

𝑈𝐹𝐺𝐴 𝐺𝐴 𝑈𝐹𝐺𝐴

𝑈𝐺𝐹𝐴 𝐺𝑈𝐹𝐴 𝐻𝐴 𝑈𝐹𝐻𝐴

𝑈𝐻𝐹𝐴 𝐻𝑈𝐹𝐴 𝑈𝐻𝐹𝐴

𝜂𝐺𝐴

𝑈𝜅𝐺𝐴

𝑈𝜑𝐹𝐴

𝜂𝑈𝐹𝐺𝐴

𝜑𝐴

𝐻𝜂𝐴

𝑈𝐹𝜑𝐴

𝑈𝜅𝐻𝐴

𝜂𝑈𝐹𝐻𝐴

𝐺𝜂𝐴

𝜑𝑈𝐹𝐴

𝐹 ♯

𝐹 ♯

𝜑

𝜂

□

Any lifting of 𝐺 : D → D to 𝐺 : C → C induces a distributive law 𝜅 : 𝑇𝐹 =⇒ 𝐹𝑇 , but by
Proposition 3.1.4, this distributive law itself gives rise to a lifting of 𝐺 to 𝑇 -algebras. The two
liftings for 𝐺 are related by the comparison functor 𝐾 : C→ 𝑇 -Alg(D) as follows.

Corollary 3.4.1 In the situation above, a lifting of 𝐺 : D→ D to 𝐻 : C→ C induces a lifting of
𝐺 to 𝐺 : 𝑇 -Alg(D) → 𝑇 -Alg(D), and they commute with 𝐾 : C→ 𝑇 -Alg(D):

C C

𝑇 -Alg(D) 𝑇 -Alg(D)

𝐻

𝐾𝐾

𝐺

PRoof From above we know that 𝐻 : C → C induces a distributive law 𝑇𝐺 =⇒ 𝐺𝑇 , which,
by Proposition 3.1.3, gives rise to a lifting of 𝐺 to 𝑇 -Alg(D) → 𝑇 -Alg(D). To relate the two
liftings, we calculate using 𝐾 (𝑋) ≜ (𝑈𝑋,𝑈𝜀𝑋 : 𝑇𝑈𝑋 → 𝑈𝑋) ∈ 𝑇 -Alg(D), with the algebra
maps𝑈𝜀𝐻𝑋 and 𝐺𝑈𝜀𝑋 ◦ 𝜅𝑈𝑋 equal by a series of zig-zag identities.

𝐾 (𝐻𝑋)
=
(
𝑈𝐻𝑋,𝑈𝜀𝐻𝑋 : 𝑈𝐹𝐻𝑋 → 𝑈𝐻𝑋

)
=
(
𝐺𝑈𝑋,𝑈𝜀𝐻𝑋 : 𝑈𝐹 (𝐺𝑈𝑋) → 𝐺𝑈𝑋

)
=
(
𝐺𝑈𝑋,𝑈 𝐹 (𝐺𝑈𝑋) 𝜅𝑈𝑋 𝐺𝑈𝐹𝑋

𝐺𝑈𝜀𝑋 𝐺𝑈𝑋
)

= 𝐺
(
𝑈𝑋,𝑈𝜀𝑋 : 𝑈𝐹𝑋 → 𝑈𝑋

)
= 𝐺 (𝐾𝑋) □

The utility of these theorems will be demonstrated at the end of the next chapter at a high level,
and as part of the familial model in Part III in more formal detail. We next address the structure
of biclosed, powered, and enriched categories that underlie the theory of metasubstitution.

78 l ift ing of algebRas

c h a p t e R 4

Powering and enrichment

This section develops the theory of monoidal biclosed categories and powered functors be-
tween them (Section 4.1), continuing with the definition of the clone monad in Section 4.2 and
powered monad maps into it in Section 4.3. This will underlie the formal derivation of meta-
substitution in the familial model in Section 11.3, establishing the laws of metasubstitution
purely from the construction of algebras for the free term monad.

4.1 Biclosed modulaR categoRies

We start by recalling the definition of monoidal categories, and right modular categories.

Definition 4.1.1 Amonoidal category V is equipped with a unit 𝐼 ∈ V and a tensor ⊗ : V×V→
V, structural natural isomorphisms

𝜆𝐵 : 𝐼 ⊗ 𝐵 � 𝐵 𝜌𝐴 : 𝐴 ⊗ 𝐼 � 𝐴 𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 � 𝐴 ⊗ (𝐵 ⊗ 𝐶)

satisfying the two coherence conditions

(𝐴 ⊗ 𝐼) ⊗ 𝐵 𝐴 ⊗ (𝐼 ⊗ 𝐵)

𝐴 ⊗ 𝐵

𝛼𝐴,𝐼,𝐵

𝜌𝐴⊗𝐵 𝐴⊗𝜆𝐵

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 (𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷) 𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

𝛼𝐴,𝐵,𝐶⊗𝐷

𝛼𝐴,𝐵⊗𝐶,𝐷

𝐴⊗𝛼𝐵,𝐶,𝐷

𝛼𝐴⊗𝐵,𝐶,𝐷

𝛼𝐴,𝐵,𝐶⊗𝐷

⌟

Definition 4.1.2 Given a monoidal category (V, 𝐼 , ⊗), a left V-modular category is a category
C with a left action �: V × C→ C, and structural natural transformations

𝜆 �
𝑋 : 𝐼 �𝑋 � 𝑋 : C→ C 𝛼 �

𝐴,𝐵,𝑋 : (𝐴 ⊗ 𝐵) �𝑋 � 𝐴 �(𝐵 �𝑋) : V × V × C→ C

80 poweRing and enRichment

satisfying the coherence conditions

(𝐴 ⊗ 𝐼) �𝑋 𝐴 �(𝐼 �𝑋)

𝐴 �𝑋

𝛼 �
𝐴,𝐼,𝑋

𝜌⊗𝐴 �𝑋 𝐴 �𝜆 �
𝑋

(𝐼 ⊗ 𝐵) �𝑋 𝐼 �(𝐵 �𝑋)

𝐵 �𝑋

𝛼 �
𝐼 ,𝐵,𝑋

𝜆⊗𝐵 �𝑋 𝜆 �
𝐴 �𝑋

((𝐴 ⊗ 𝐵) ⊗ 𝐶) �𝑋 (𝐴 ⊗ (𝐵 ⊗ 𝐶)) �𝑋

(𝐴 ⊗ 𝐵) �(𝐶 �𝑋) 𝐴 �(𝐵 �(𝐶 �𝑋)) 𝐴 �((𝐵 ⊗ 𝐶) �𝑋)

𝛼⊗𝐴,𝐵,𝐶 �𝑋

𝛼 �
𝐴,𝐵⊗𝐶,𝑋

𝐴 �𝛼 �
𝐵,𝐶,𝑋

𝛼 �
𝐴⊗𝐵,𝐶,𝑋

𝛼 �
𝐴,𝐵,𝐶 �𝑋 ⌟

A monoidal category is closed if for all 𝐵 ∈ V, the functor (−) ⊗ 𝐵 has a right adjoint [𝐵,−]. If
the monoidal structure is not symmetric, right adjoints to 𝐴 ⊗ (−) may give a different closed
structure to the internal hom [−,=].

Definition 4.1.3 A V-modular category (C, �) is biclosed if it is both left and right closed: for
all 𝑋 ∈ C and 𝐵 ∈ V, both functors (−) �𝑋 : V→ C and 𝐴 �(−) : C→ C have right adjoints
called the right hom 〈𝑋,−〉 : C→ V and left hom 𝐵 −• (=) : C→ C respectively:

(−) �𝑋 a 〈𝑋,−〉 𝐴 �(−) a 𝐴 −• (=) ⌟

Closure on both sides gives rise to a triangle of adjunctions between the action and the homs.

Proposition 4.1.1 We have a two-variable adjunction between the tensor and the two homs:

C(𝐴 �𝑋,𝑌)

V(𝐴, 〈𝑋,𝑌 〉) C(𝑋,𝐴 −• 𝑌)

𝜘 𝜅

𝛽

PRoof The unit and counit of the dual adjunction 〈−, 𝑌 〉 ` (−) −• 𝑌 derive, by the exponen-
tial transposes, from the adjunctions involving �:

𝛽𝑌𝑋 : 𝑋 → (〈𝑋,𝑌 〉 −• 𝑌)
𝜘𝑋𝑌 : (〈𝑋,𝑌 〉 �𝑋) → 𝑌

𝛽
𝑌

𝐴 : 𝐴→ 〈𝐴 −• 𝑌,𝑌 〉
𝜅𝐴𝑌 : (𝐴 �(𝐴 −• 𝑌)) → 𝑌 □

The hom-set isomorphisms above are natural in 𝐴 ∈ Vop, 𝑋 ∈ Cop, and 𝑌 ∈ C. Thus, given
𝑓 : 𝐵 → 𝐴, 𝑔 :𝑊 → 𝑋 , and ℎ : 𝑌 → 𝑍 , naturality amounts to the following composite trans-
positions for a morphism 𝑘 : 𝐴 �𝑋 → 𝑌 :

𝐵
𝑓

𝐴
𝜘(𝑘) 〈𝑋,𝑌 〉 〈𝑔,ℎ〉 〈𝑊,𝑍 〉

𝐵 �𝑊 𝑓 �𝑔
𝐴 �𝑋 𝑘 𝑌 ℎ 𝑍

𝑊
𝑓

𝑋
𝜅 (𝑘)

𝐴 −• 𝑌 𝑔−•ℎ
𝐵 −• 𝑍

biclosed modulaR categoRies 81

Left and right homs are closely connected to powering and enrichment respectively (Janelidze
and Kelly, 2001; McDermott and Uustalu, 2022), and in Chapter 5 we will discuss how these
notions relate to closed modular categories. For the theory presented in this chapter, it will be
beneficial to focus on powered and enriched categories, and take biclosed categories to possess
both powering and enrichment.

Proposition 4.1.2 The left hom (−) −• (=) : Vop×C→ C forms a [powering] of C over V, in that
it is equipped with natural isomorphisms

i𝐵 : (𝐼 −• 𝐵) � 𝐵 c𝐴,𝐵𝑋 :
(
(𝐴 ⊗ 𝐵) −• 𝑋

)
�
(
𝐵 −• (𝐴 −• 𝑋)

)
that satisfy the following coherence conditions:

𝐴 −• 𝑋

(𝐼 ⊗ 𝐴) −• 𝑋 𝐴 −• (𝐼 −• 𝑋)

𝜆𝐴−•𝑋 𝐴−•i𝑋

c𝐼 ,𝐴𝑋

(𝑐𝜆)
𝐴 −• 𝑋

(𝐴 ⊗ 𝐼) −• 𝑋 𝐼 −• (𝐴 −• 𝑋)

𝜌𝐴−•𝑋 i𝐴−•𝑋

c𝐴,𝐼𝑋

(𝑐𝜌)

(𝐴 ⊗ (𝐵 ⊗ 𝐶)) −• 𝑋 ((𝐴 ⊗ 𝐵) ⊗ 𝐶) −• 𝑋

(𝐵 ⊗ 𝐶) −• (𝐴 −• 𝑋) 𝐶 −• (𝐵 −• (𝐴 −• 𝑋)) 𝐶 −• ((𝐴 ⊗ 𝐵) −• 𝑋)

𝛼𝐴,𝐵,𝐶−•𝑋

c𝐴,𝐵⊗𝐶𝑋 c𝐴⊗𝐵,𝐶𝑋

c𝐵,𝐶𝐴−•𝑋 𝐶−•c𝐴,𝐵𝑋

(𝑐𝛼)

The right hom 〈−,=〉 : Cop × C → V forms an enrichment of C over V, in that it is equipped
structural transformations (natural and dinatural in the appropriate components)

j𝑋 : 𝐼 → 〈𝑋,𝑋 〉 M𝑌
𝑋,𝑍 : 〈𝑌, 𝑍 〉 ⊗ 〈𝑋,𝑌 〉 → 〈𝑋,𝑍 〉

such that the functions C(𝑋,𝑌) → V(𝐼 , 〈𝑋,𝑌 〉) that map C-morphisms 𝑓 : 𝑋 → 𝑌 to the compos-

ite 𝐼
j𝑋 〈𝑋,𝑋 〉 〈𝑋,𝑓 〉 〈𝑋,𝑌 〉 are bijections, and the following coherence conditions are satisfied:

𝐼 ⊗ 〈𝑋,𝑌 〉

〈𝑌,𝑌 〉 ⊗ 〈𝑋,𝑌 〉 〈𝑋,𝑌 〉

j𝑌⊗id 𝜆〈𝑋,𝑌 〉

M𝑌
𝑋,𝑌

(𝑀𝜆)

〈𝑌, 𝑍 〉 ⊗ 𝐼

〈𝑌, 𝑍 〉 ⊗ 〈𝑌,𝑌 〉 〈𝑌, 𝑍 〉

id⊗j𝑌 𝜌 〈𝑌,𝑍 〉

M𝑌
𝑌,𝑍

(𝑀𝜌)

(〈𝑌, 𝑍 〉 ⊗ 〈𝑋,𝑌 〉) ⊗ 〈𝑊,𝑋 〉 〈𝑌, 𝑍 〉 ⊗ (〈𝑋,𝑌 〉 ⊗ 〈𝑊,𝑋 〉)

〈𝑋,𝑍 〉 ⊗ 〈𝑊,𝑋 〉 〈𝑊,𝑍 〉 〈𝑌, 𝑍 〉 ⊗ 〈𝑊,𝑌 〉

𝛼 〈𝑊,𝑍 〉,〈𝑋,𝑌 〉,〈𝑌,𝑍 〉

M𝑌
𝑋,𝑍⊗id id⊗M𝑋

𝑊 ,𝑌

M𝑋
𝑊 ,𝑍 M𝑌

𝑊 ,𝑍

(𝑀𝛼)

As shown by McDermott and Uustalu (2022), the data involved with powering and being a left
hom are equivalent, but the equivalence between right homs and enrichment holds with the
further assumption that (V, [−,=]) is closed and the adjunction (−) �𝑋 a 〈𝑋,−〉 internalises
as an isomorphism 〈𝐴 �𝑋,𝑌 〉 � [𝐴, 〈𝑋,𝑌 〉]. This asymmetry is discussed further in a skew
setting by Uustalu et al. (2020) and in Chapter 5. For the purposes of this chapter, we will use

82 poweRing and enRichment

the language of powering, enrichment and biclosure, rarely using the module structure. In
particular, we will benefit from the following interderivability lemmas between the powering
and enrichment structure, derived from the naturality of the adjunctions in Proposition 4.1.1.

Corollary 4.1.1 The transformations above are related as follows:

𝑋 〈𝑋,𝑋 〉 −• 𝑋

𝐼 −• 𝑋

𝛽𝑋𝑋

i𝑋
j𝑋−•𝑋

𝐼 〈𝐼 −• 𝑌,𝑌 〉

〈𝑌,𝑌 〉

𝛽
𝑌

𝐼

j𝑌
〈i𝑌 ,𝑌 〉

(𝑖 a 𝑗)

𝑋 〈𝑋,𝑍 〉 −• 𝑍 (〈𝑌, 𝑍 〉 ⊗ 〈𝑋,𝑌 〉) −• 𝑍

〈𝑋,𝑌 〉 −• 𝑌 〈𝑋,𝑌 〉 −• (〈𝑌, 𝑍 〉 −• 𝑍)

𝛽𝑍𝑋

𝛽𝑌𝑋

M𝑌
𝑋,𝑍−•𝑍

c〈𝑌,𝑍 〉,〈𝑋,𝑌 〉𝑍

id−•𝛽𝑍𝑌

(𝑐 a𝑀)

𝐴 ⊗ 𝐵 〈𝐴 −• 𝑋,𝑋 〉 ⊗ 〈𝐵 −• (𝐴 −• 𝑋), 𝐴 −• 𝑋 〉

〈𝐴 ⊗ 𝐵 −• 𝑋,𝑋 〉 〈𝐵 −• (𝐴 −• 𝑋), 𝑋 〉

𝛽
𝑋

𝐴⊗𝛽
𝐴−•𝑋
𝐵

𝛽
𝑋

𝐴⊗𝐵 M𝐴−•𝑋
𝐴−•(𝐵−•𝑋),𝑋

〈c𝐴,𝐵𝑋 ,𝑋 〉

Next, we axiomatise a utility operation that combines tensors, powering, and enrichment – it
will simplify constructions later in the chapter.

Lemma 4.1.1 For a biclosed V-modular category C and all 𝐴 ∈ V, 𝑋,𝑌 ∈ C, we have a natural
family of maps that is compatible with the biclosed structure:

ℓ𝑋𝑌,𝐴 : 〈𝑋,𝑌 〉 ⊗ 𝐴→ 〈𝐴 −• 𝑋,𝑌 〉 : V × Cop × C→ V

𝐼 ⊗ 𝐴 〈𝑋,𝑋 〉 ⊗ 𝐴

𝐴 〈𝐴 −• 𝑋,𝑋 〉

j𝑋⊗𝐴

ℓ𝑋𝑋,𝐴𝜆𝐴

𝛽
𝑋

𝐴

(ℓ𝜆)
〈𝑋,𝑌 〉 ⊗ 𝐼 〈𝐼 −• 𝑋,𝑌 〉

〈𝑋,𝑌 〉

ℓ𝑋𝑌,𝐼

𝜌 〈𝑋,𝑌 〉 〈i𝑋 ,𝑌 〉
(ℓ𝜌)

(〈𝑋,𝑌 〉 ⊗ 𝐴) ⊗ 𝐵 〈𝐴 −• 𝑋,𝑌 〉 ⊗ 𝐵 〈𝐵 −• (𝐴 −• 𝑋), 𝑌 〉

〈𝑋,𝑌 〉 ⊗ (𝐴 ⊗ 𝐵) 〈(𝐴 ⊗ 𝐵) −• 𝑋,𝑌 〉

ℓ𝑋𝑌,𝐴⊗𝐵

𝛼 〈𝑋,𝑌 〉,𝐴,𝐵

ℓ𝐴−•𝑋𝑌,𝐵

〈c𝐴,𝐵𝑋 ,𝑌 〉

ℓ𝑋𝑌,𝐴⊗𝐵

(ℓ𝛼)

PRoof See the Appendix on page 317. □

The notion of a powered functor given by McDermott and Uustalu (2022, Definition 6.3) is
equivalent to the following presentation.

biclosed modulaR categoRies 83

Definition 4.1.4 A powered functor 𝐹 : C→ D between two right-closedV-modular categories
(C,−•) and (D,−■) is equipped with a powering natural transformation

𝑝𝐴,𝑌 : 𝐹 (𝐴 −• 𝑋) → (𝐴 −■ 𝐹𝑋) : Vop × C→ D

that satisfies the coherence conditions

𝐹𝑋

𝐹 (𝐼 −• 𝑋) 𝐼 −■ 𝐹𝑋

𝐹 i−•𝑋 i−■𝐹𝑋

𝑝𝐼 ,𝑋

(𝑝𝑖)

𝐹
(
(𝐴 ⊗ 𝐵) −• 𝑋

)
(𝐴 ⊗ 𝐵) −■ 𝐹𝑋

𝐹
(
𝐴 −• (𝐵 −• 𝑋)

)
𝐴 −■ (𝐵 −■ 𝐹𝑋)

𝐴 −■ 𝐹 (𝐵 −• 𝑋)

𝑝𝐴⊗𝐵,𝑋

𝐹 c−•,𝐴,𝐵𝑋 c−■,𝐴,𝐵𝐹𝑋

𝑝𝐴,𝐵−•𝑋 𝐴−•𝑝𝐵,𝑋

(𝑝𝑐)

A morphism of powered functors is a natural transformation 𝜑 : 𝐹 =⇒ 𝐺 satisfying

𝐹 (𝐴 −• 𝑋) 𝐴 −■ 𝐹𝑋

𝐺 (𝐴 −• 𝑋) 𝐴 −■ 𝐺𝑋

𝑝𝐹𝐴,𝑋

𝐴−■𝜑𝑋𝜑𝐴−•𝑋

𝑝𝐺𝐴,𝑋

(𝜑 bpe)

The 2-category of V-powered categories (equivalently, right-closed V-modular categories),
powered functors and natural transformations between them will be denoted V-Pow or just
Pow, as will be its full subcategory of biclosed V-modular categories. ⌟

Definition 4.1.5 A powered monad 𝑇 = (𝑇, p, 𝜂, 𝜇) on a V-powered category C is a monad
𝑇 : C→ C with a powering p that is compatible with the monad structure:

𝐴 −• 𝑋

𝑇 (𝐴 −• 𝑋) 𝐴 −• 𝑇𝑋

𝜂𝐴−•𝑋 𝐴−•𝜂𝑋

𝑝𝐴,𝑋

(p𝜂)
𝑇𝑇 (𝐴 −• 𝑋) 𝑇 (𝐴 −• 𝑇𝑋) 𝐴 −• 𝑇𝑇𝑋

𝑇 (𝐴 −• 𝑋) 𝐴 −• 𝑇𝑋

𝑇𝑝𝐴,𝑋 𝑝𝐴,𝑇𝑋

𝜇𝐴−•𝑋 𝐴−•𝜇𝑋

𝑝𝐴,𝑋

(p𝜇)

A morphism 𝜑 : (𝑆, p𝑆, 𝜂𝑆, 𝜇𝑆) → (𝑇, p𝑇 , 𝜂𝑇 , 𝜇𝑇) of powered monads is a powered functor mor-
phism (𝑆, p𝑆) → (𝑇, p𝑇) that is also monad morphism:

𝐼

𝑆 𝑇

𝜂𝑆 𝜂𝑇

𝜑

(𝜑 b𝜂e)
𝑆𝑆 𝑇𝑇

𝑆 𝑇

𝜑𝜑

𝜇𝑇𝜇𝑆

𝜑

(𝜑 b𝜇e)

The category of powered monads on a V-powered category C and powered monad morphisms
will be denoted PowM(C). ⌟

Remark. The laws (p𝜂) and (p𝜇) express 𝜂 and 𝜇 as morphisms of powered functors, so as
expected, a powered monad is a monoid in the category of powered endofunctors Pow(C, C).

⌟

84 poweRing and enRichment

Although the construction of poweredmonad structure will be easier in practice, a more useful
axiomatisation will be that of an enriched Kleisli triple and its corresponding algebras (cf.
extension systems of Marmolejo and Wood (2010)).

Definition 4.1.6 An endofunctor 𝑇 : C → C forms an enriched Kleisli triple if it is equipped
with natural transformations 𝜂𝑋 : 𝑋 → 𝑇𝑋 and Υ𝑋𝑌 : 〈𝑋,𝑇𝑌 〉 → 〈𝑇𝑋,𝑇𝑌 〉 satisfying

〈𝑋,𝑇𝑌 〉 〈𝑇𝑋,𝑇𝑌 〉

〈𝑋,𝑇𝑌 〉

Υ𝑋𝑌

〈𝜂𝑋 ,id〉 (𝜂Υ)

𝐼 〈𝑇𝑋,𝑇𝑋 〉

〈𝑋,𝑋 〉 〈𝑋,𝑇𝑋 〉

j𝑇𝑋

j𝑋

〈𝑋,𝜂𝑋 〉

Υ𝑋𝑋 (Υ𝜂)

〈𝑌,𝑇𝑍 〉 ⊗ 〈𝑋,𝑇𝑌 〉 〈𝑇𝑌,𝑇𝑍 〉 ⊗ 〈𝑋,𝑇𝑌 〉 〈𝑋,𝑇𝑍 〉

〈𝑇𝑋,𝑇𝑌 〉 ⊗ 〈𝑇𝑌,𝑇𝑍 〉 〈𝑇𝑋,𝑇𝑍 〉

Υ𝑌𝑍⊗id

Υ𝑌𝑍⊗Υ𝑋𝑌

M𝑇𝑌
𝑋,𝑇𝑍

Υ𝑋𝑍

M𝑇𝑌
𝑇𝑋,𝑇𝑍

(ΥΥ)

⌟

Definition 4.1.7 An algebra for an enriched Kleisli triple (𝑇, 𝜂, Υ) is an object 𝐴 ∈ C with a
natural extension operator ♯𝑋 : 〈𝑋,𝐴〉 → 〈𝑇𝑋,𝐴〉, satisfying

〈𝑋,𝐴〉 〈𝑇𝑋,𝐴〉

〈𝑋,𝐴〉

♯𝑋

〈𝜂𝑋 ,id〉 (𝜂Υ)

〈𝑌,𝐴〉 ⊗ 〈𝑋,𝑇𝑌 〉 〈𝑇𝑌,𝐴〉 ⊗ 〈𝑋,𝑇𝑌 〉 〈𝑋,𝐴〉

〈𝑇𝑌,𝐴〉 ⊗ 〈𝑇𝑋,𝑇𝑌 〉 〈𝑇𝑋,𝐴〉

♯𝑌⊗id

♯𝑌⊗Υ𝑋𝑌

M𝑇𝑌
𝑋,𝐴

♯𝑋

M𝑇𝑌
𝑇𝑋,𝐴

(Υ♯)

⌟

The relationship of powered monad and enriched Kleisli structure will be developed next.

4.2 PoweRed clone monad

The presence of two adjoint closed structures lends itself naturally to the study of their in-
duced monad, for which 𝛽𝑌𝑋 : 𝑋 → (〈𝑋,𝑌 〉 −• 𝑌) is the unit. Fiore (2013) formally connected
A. Kock’s (1970) work of this double-dualisation monad with the right adjoint of functor ap-
plication studied by Kelly and Power (1993), recognising them as a generalisation of abstract
clones (Taylor, 1993; Arkor and McDermott, 2021). We adapt these to the right V-module
setting, streamlining the proofs using the transformations introduced in the previous section.

Definition 4.2.1 Let (C, 〈−,=〉) and (D,−■) be categories enriched and powered over V, re-
spectively. For 𝑌 ∈ C and 𝑍 ∈ D, the clone functor L𝑌, 𝑍 M : C→ D is defined as

L𝑌, 𝑍 M𝑋 ≜ 〈𝑋,𝑌 〉 −■ 𝑍

If (C, 〈−,=〉,−•) is biclosed, for 𝑌 ∈ C, the endoclone functor L𝑌,𝑌 M : C → C will usually be
abbreviated as L𝑌 M; note that L−M = 𝑌 ↦→ L𝑌 M is not functorial due to the mixed variance. ⌟

Definition 4.2.2 The clone evaluation map L𝜀M𝑌𝑍 : L𝑌, 𝑍 M𝑌 → 𝑍 is the composite

L𝜀M𝑌𝑍 : 〈𝑌,𝑌 〉 −■ 𝑍 j 〈〉𝑌 −•𝑍 𝐼 −■ 𝑍 i−■𝑍 𝑍 ⌟

poweRed clone monad 85

Being defined in terms of the biclosed structure, it is perhaps not surprising that the clone
functor is itself compatible with the right hom and right action in that it is powered. Note
below the interplay between the 𝑐 and ℓ operations we defined above, and how their laws fit
together to give relatively simple proofs of the powering axioms.

Proposition 4.2.1 For all 𝑌 ∈ C, 𝑍 ∈ D, the clone functor L𝑌, 𝑍 M : C→ D possesses a powering

𝑝L𝑌,𝑍 M
𝐴,𝑋 : L𝑌, 𝑍 M(𝐴 −• 𝑋) → (𝐴 −■ L𝑌, 𝑍 M𝑋)

PRoof The powering is defined as the following composite, with laws given below:

〈𝐴 −• 𝑋,𝑌 〉 −■ 𝑍
ℓ𝑋𝑌,𝐴−•𝑍 〈𝑋,𝑌 〉 ⊗ 𝐴 −■ 𝑍 c𝐴,〈𝑋,𝑌 〉𝑍 𝐴 −■ (〈𝑋,𝑌 〉 −■ 𝑍)

〈𝐼 −• 𝑋,𝑌 〉 −■ 𝑍 〈𝑋,𝑌 〉 −■ 𝑍

(〈𝑋,𝑌 〉 ⊗ 𝐼) −■ 𝑍 𝐼 −■ (〈𝑋,𝑌 〉 −■ 𝑍)

ℓ𝑋𝑌,𝐼−■𝑍

c𝐼 ,〈𝑋,𝑌 〉𝑍

i−■〈𝑋,𝑌 〉−■𝑍

〈i−•𝑋 ,𝑌 〉−■𝑍

𝜌 〈𝑋,𝑌 〉−■𝑍
ℓ𝜌

𝑐𝜌

〈𝐴 ⊗ 𝐵 −• 𝑋,𝑌 〉 −■ 𝑍 〈𝐵 −• (𝐴 −• 𝑋), 𝑌 〉 −■ 𝑍

(〈𝑋,𝑌 〉 ⊗ (𝐴 ⊗ 𝐵)) −■ 𝑍 (〈𝐴 −• 𝑋,𝑌 〉 ⊗ 𝐵) −■ 𝑍

(𝐴 ⊗ 𝐵) −■ L𝑌, 𝑍 M𝑋 ((〈𝑋,𝑌 〉 ⊗ 𝐴) ⊗ 𝐵) −■ 𝑍

𝐵 −■ (𝐴 −■ L𝑌, 𝑍 M𝑋) 𝐵 −■ ((〈𝑋,𝑌 〉 ⊗ 𝐴) −■ 𝑍) 𝐵 −■ L𝑌, 𝑍 M(𝐵 −• 𝑋)c𝐴,𝐵L𝑌,𝑍 M𝑋

〈c𝐴,𝐵𝑋 ,𝑌 〉−■𝑍

ℓ𝐵−•𝑋𝑌,𝐴 −■𝑍

c𝐴,〈𝐵−•𝑋,𝑌 〉𝑍

𝐴−■c𝐵,〈𝑋,𝑌 〉𝑍

ℓ𝑋𝑌,𝐴⊗𝐵−■𝑍

c𝐴⊗𝐵,〈𝑋,𝑌 〉𝑍

𝛼 〈𝑋,𝑌 〉,𝐴,𝐵−■𝑍 (ℓ𝑋𝑌,𝐵⊗𝐴)−■𝑍

c𝐴,𝐵⊗〈𝑋,𝑌 〉𝑍

𝐵−■(ℓ𝑋𝑌,𝐵−■𝑍)

𝑐 2𝑐𝛼

ℓ𝛼

□

Many of our calculations will happen in the category of powered functors, so reframing the
powering transformation as an operation on clones will be useful.

Proposition 4.2.2 For a powered functor 𝐹 : C→ D between two biclosed V-modular categories,
the clone powering natural transformation is a powered functor morphism below, with compo-
nents

(L𝑝M𝐹
𝑌,𝑍

)
𝑋
≜ 𝑝𝐹〈𝑋,𝑌 〉,𝑍 : 𝐹 (〈𝑋,𝑌 〉 −• 𝑍) →

(
〈𝑋,𝑌 〉 −■ 𝐹𝑍

)
.

L𝑝M𝐹
𝑌,𝑍

: 𝐹 L𝑌, 𝑍 M =⇒ L𝑌, 𝐹𝑍 M : Cop × C→ D

PRoof The powering-preservation law expands to the following:

𝐹 (〈𝐴 −• 𝑋,𝑌 〉 −• 𝑍) 〈𝐴 −• 𝑋,𝑌 〉 −• 𝐹𝑍

𝐹
(
〈𝑋,𝑌 〉 ⊗ 𝐴 −• 𝑍

)
𝐴 ⊗ 〈𝑋,𝑌 〉 −■ 𝐹𝑍

𝐹 (𝐴 −• 〈𝑋,𝑌 〉 −• 𝑍)

𝐴 −■ 𝐹 (〈𝑋,𝑌 〉 −• 𝑍) 𝐴 −■ 〈𝑋,𝑌 〉 −• 𝐹𝑍 □

𝑝𝐹〈𝐴−•𝑋,𝑌 〉,𝑍

𝐴−■𝑝𝐹〈𝑋,𝑌 〉,𝑍

𝑝𝐹𝐴,〈𝑋,𝑌 〉−•𝑍

ℓ𝑋𝑌,𝐴−■𝐹𝑍

c𝐴,〈𝑋,𝑌 〉𝐹𝑍

𝐹 (ℓ𝑋𝑌,𝐴−•𝑍)

𝐹 c𝐴,〈𝑋,𝑌 〉𝑍

𝑝𝐹𝐴⊗〈𝑋,𝑌 〉,𝑍

𝑠 1

𝑝𝑐

86 poweRing and enRichment

Clones capture a two-level form of closure: the clone functor L−,=M : Cop × D → Pow(C,D)
is a functor-valued profunctor that gives a powered functor L𝑋,𝑌 M : C → D for all 𝑋 ∈ C

and 𝑌 ∈ D, but itself comes with transformations for unit Id =⇒ L𝑋,𝑋 M, clone compositionL𝑌, 𝑍 M ◦ L𝑋,𝑌 M =⇒ L𝑋,𝑍 M, and evaluation L𝑋,𝑌 M𝑋 =⇒ 𝑌 . This can be formalised using the
notion of enrichment in a (strict) bicategory, a generalisation of enrichment in a monoidal
category introduced by Garner and Shulman (2016, Section 15), whose terminology we adopt.

Proposition 4.2.3 Clones form the morphisms of a category enriched in the 2-category V-Pow.

PRoof We define a category Clones enriched in V-Powwhose objects and extents are𝑋 ∈ C
for a biclosed V-modular category C, and morphisms between 𝑋 ∈ C and 𝑌 ∈ D are clonesL𝑋,𝑌 M : C→ D, which are powered functors by Proposition 4.2.1. For each𝑋 ∈ C, the identityL𝜂M𝑋 : IdC =⇒ L𝑋,𝑋 M : C → C has components 𝛽𝑋𝑊 : 𝑊 → 〈𝑊,𝑋 〉 −• 𝑋 , and for each 𝑋 ∈ C,
𝑌 ∈ D and 𝑍 ∈ E, the composition L𝜒 M𝑋,𝑌,𝑍 : L𝑌, 𝑍 M ◦ L𝑋,𝑌 M =⇒ L𝑋,𝑍 M has components

L𝜒 M𝑋,𝑌,𝑍𝑊 : 〈〈𝑊,𝑋 〉C −•D 𝑌,𝑌 〉D −•E 𝑍
𝛽
𝑌

〈𝑊,𝑋 〉−•𝑍 〈𝑊,𝑋 〉C −•E 𝑍

These are both powered functor morphisms: the powering-preservation of L𝜂M is equivalent
to Diagram (𝑡 a𝑐), while the powering-preservation for L𝜒 M is

〈〈𝐴 −•𝑊,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍 〈𝐴 −•𝑊,𝑋 〉 −• 𝑍

〈𝐴 ⊗ 〈𝑊,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍 𝐴 ⊗ 〈𝑊,𝑋 〉 −• 𝑍

〈𝐴 −• 〈𝑊,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍

𝐴 ⊗ 〈〈𝑊,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍 𝐴 ⊗ 〈𝑊,𝑋 〉 −• 𝑍

𝐴 −• 〈〈𝑊,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍 𝐴 −• 〈𝑊,𝑋 〉 −• 𝑍

ℓ𝑊𝑋,𝐴−•𝑍

𝛽
𝑌

〈𝐴−•𝑊,𝑋 〉−•𝑍

𝐴−•(𝛽𝑌〈𝑊,𝑋 〉−•𝑍)

〈ℓ𝑊𝑋,𝐴−•𝑌,𝑌 〉−•𝑍

〈c𝐴,〈𝑊,𝑋 〉
𝑌 ,𝑌 〉−•𝑍

ℓ 〈𝑊,𝑋 〉−•𝑌
𝑌,𝐴 −•𝑍

c𝐴,〈〈𝑊,𝑋 〉−•𝑌,𝑌 〉
𝑍

𝛽
𝑌

𝐴⊗〈𝑊,𝑋 〉−•𝑍

𝐴⊗𝛽𝑌〈𝑊,𝑋 〉−•𝑍

c𝐴,〈𝑊,𝑋 〉
𝑍

𝛽 2

𝑐 2

𝑡 a𝑐

The coherence conditions between the unit and composition operations

IdL𝑋,𝑌 M
L𝑌,𝑌 ML𝑋,𝑌 M L𝑋,𝑌 ML𝜂M𝑌 L𝑌,𝑋 M

L𝜒 M𝑋,𝑋,𝑌
(L𝜂𝜒 M) L𝑌, 𝑍 MId

L𝑌, 𝑍 ML𝑌,𝑌 M L𝑌, 𝑍 ML𝑌,𝑋 ML𝜂M𝑌
L𝜒 M𝑌,𝑌,𝑍

(L𝜒𝜂M)

L𝑌, 𝑍 ML𝑋,𝑌 ML𝑊,𝑋 M L𝑋,𝑍 ML𝑊,𝑋 M
L𝑌, 𝑍 ML𝑊,𝑌 M L𝑊,𝑍 ML𝑌,𝑍 ML𝜒 M𝑊,𝑋,𝑌

L𝜒 M𝑊,𝑌,𝑍

L𝜒 M𝑋,𝑌,𝑍 L𝑊,𝑋 M
L𝜒 M𝑊,𝑋,𝑍 (L𝜒 𝜒 M)

poweRed clone monad 87

reduce to the zig-zag axioms of the dual adjunction in Proposition 4.1.1, and naturality of 𝛽 :

〈𝑈 ,𝑌 〉 −• 𝑍

〈〈𝑈 ,𝑌 〉 −• 𝑌,𝑌 〉 −• 𝑍 〈𝑈 ,𝑌 〉 −• 𝑍
〈𝛽𝑌𝑈 ,𝑌 〉−•𝑍

𝛽
𝑌

〈𝑈 ,𝑌 〉−•𝑍

〈𝑈 ,𝑋 〉 −• 𝑌

〈〈𝑈 ,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑌 〈𝑈 ,𝑋 〉 −• 𝑌

𝛽𝑌〈𝑈 ,𝑋 〉−•𝑌

𝛽
𝑌

〈𝑈 ,𝑋 〉−•𝑌

〈〈〈𝑈 ,𝑊 〉 −• 𝑋,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍 〈〈𝑈 ,𝑊 〉 −• 𝑋,𝑋 〉 −• 𝑍

〈〈𝑈 ,𝑊 〉 −• 𝑌,𝑌 〉 −• 𝑍 〈𝑈 ,𝑊 〉 −• 𝑍

〈𝛽𝑋〈𝑈 ,𝑊 〉−•𝑌,𝑌 〉−•𝑍

𝛽
𝑌

〈𝑈 ,𝑊 〉−•𝑍

𝛽
𝑋

〈〈𝑈 ,𝑊 〉−•𝑋,𝑋 〉−•𝑍

𝛽
𝑋

〈𝑈 ,𝑊 〉−•𝑍

□

Just as every endo-hom is a monoid in a monoidal closed category, the endo-clone is a monad
in the enriched category Clones.

Corollary 4.2.1 For any 𝑌 ∈ C, the biclosed endo-clone L𝑌 M : C→ C is a powered monad, and 𝑌
is an algebra for this monad.

PRoof One-object categories enriched in the 2-categoryV-Pow correspond precisely tomon-
ads in V-Pow, i.e. an object 𝑌 ∈ C, with identity L𝜂M𝑌 : IdC =⇒ L𝑌 M ∈ V-Pow(C, C) and com-
position L𝜇M𝑌 : L𝑌 ML𝑌 M =⇒ L𝑌 M ∈ V-Pow(C, C) satisfying unit and associativity laws (Garner
and Shulman, 2016, Example 15.3). The algebra structure on 𝑌 is the evaluation map

L𝜀M𝑌𝑌 : L𝑌 M𝑌 → 𝑌 =
(
〈𝑌,𝑌 〉 −• 𝑌 j𝑌−•𝑌 𝐼 −• 𝑌 i𝑌 𝑌

)
The unit law 𝑌

L𝜂M𝑌𝑌 L𝑌 M𝑌 L𝜀M𝑌𝑌 𝑌 = id𝑌 is equivalently the 𝛽-transposition Diagram (𝑖 a 𝑗)

between 〈𝑌,𝑌 〉 −• 𝑌 j𝑌−•𝑌 𝐼 −• 𝑌 and 𝑌 𝑖𝑌 𝐼 −• 𝑌 , while the multiplication law is:

L𝑌 ML𝑌 M𝑌 L𝑌 M(𝐼 −• 𝑌)
L𝑌, L𝑌 M𝑌 M𝑌 𝐼 −• L𝑌 M𝑌 L𝑌 M𝑌

L𝑌 M𝑌 𝐼 −• 𝑌 𝑌
i𝑌j𝑌−•𝑌

L𝑌 M(j𝑌−•𝑌)
L𝑌 Mi𝑌

L𝜇M𝑌
iL𝑌 M𝑌

𝐼−•L𝜀M𝑌𝑌 L𝜀M𝑌𝑌

𝑝L𝑌 M
𝐼 ,𝑌

j𝑌−•L𝑌 M𝑌
𝑝L𝑌 M
〈𝑌,𝑌 〉,𝑌

id−•L𝜀M𝑌𝑌
Lp𝜀 M

𝑠 1

𝑝𝑖

𝑖

□

Lemma 4.2.1 Clone composition can be given in terms of the clone powering and evaluation:

L𝑌, 𝑍 ML𝑋,𝑌 M
L𝑋, L𝑌, 𝑍 M𝑌 M L𝑋,𝑍 ML𝑝ML𝑌,𝑍 M

𝑋,𝑌

L𝜒 M𝑋,𝑌,𝑍
L𝑋,L𝜀M𝑌𝑍 M

(Lp𝜀M)

88 poweRing and enRichment

PRoof Expanding the definitions in the diagram, we have

〈〈𝑊,𝑋 〉 −• 𝑌,𝑌 〉 −• 𝑍 〈𝑊,𝑋 〉 −• 𝑍

(〈𝑌,𝑌 〉 ⊗ 〈𝑊,𝑋 〉) −• 𝑍 𝐼 ⊗ 〈𝑊,𝑋 〉 −• 𝑍

〈𝑊,𝑋 〉 −• (〈𝑌,𝑌 〉 −• 𝑍) 〈𝑊,𝑋 〉 −• (𝐼 −• 𝑍)
id−•(j𝑌−•𝑍)

id−•i𝑍

𝛽
𝑌

〈𝑊,𝑋 〉−•𝑍

ℓ𝑌𝑌,〈𝑊,𝑋 〉−•𝑍

c〈𝑊,𝑋 〉,〈𝑌,𝑌 〉
𝑍

c〈𝑊,𝑋 〉,𝐼
𝑍

(j𝑌⊗id)−•𝑍

𝜆〈𝑊,𝑋 〉−•𝑍
ℓ𝜆

𝑐 2

𝑐𝜌

□

The main result of this section establishes an enriched form of the currying adjunction for the
action given by functor evaluation, and hom given by the clone.
Theorem 4.2.1

For all 𝑌 ∈ C, the functor L𝑌,−M : D → Pow(C,D) is right adjoint to the evaluation-at-𝑌
functor (−)𝑌 : Pow(C,D) → D.

PRoof For all 𝑌 ∈ C, we establish the adjunction

(−)𝑌 a L𝑌,−M : Pow(C,D) → D 𝜔 : D(𝐹𝑌, 𝑍) � Pow(C,D) (𝐹, L𝑌, 𝑍 M)
with the unit and counit for 𝐹 ∈ Pow(C,D) and 𝑍 ∈ D defined as

L𝜂M𝑌𝐹 : 𝐹 𝐹L𝜂M
𝐹 L𝑌 M L𝑝M𝐹𝑌 L𝑌, 𝐹𝑌 M L𝜀M𝑌𝑍 : L𝑌, 𝑍 M𝑌 𝑍

(where the unit is a composite of two powered functor morphisms by Propositions 4.2.2
and 4.2.3), with zig-zag identities as follows:

L𝑌, 𝑍 M L𝑌, 𝑍 ML𝑌 M

L𝑌, 𝑍 M L𝑌, L𝑌, 𝑍 M𝑌 M

L𝑌,𝑍 ML𝜂M

L𝑝ML𝑌,𝑍 M
𝑌

L𝑌,L𝑒 M𝑌𝑍 M

L𝜒 M𝑌,𝑌,𝑍
L𝜒𝜂M

Lp𝜀 M

𝐹𝑌 𝐹 (〈𝑌,𝑌 〉 −• 𝑌)

𝐹 (𝐼 −• 𝑌)

𝐼 −• 𝐹𝑌 〈𝑌,𝑌 〉 −• 𝐹𝑌

𝐹L𝜂M𝑌

𝑝 〈𝑌,𝑌 〉,𝑌i−■𝐹𝑌

𝑝𝐼 ,𝑌

𝐹 iC𝑌

𝐹 (jC𝑌 −•𝑌)

jC𝑌 −•𝐹𝑌

𝑝𝑖

𝑠 1

®L𝜀 M

The corresponding hom-set mappings between 𝑓 : 𝐹𝑌 → 𝑍 and 𝜑 : 𝐹 =⇒ L𝑌, 𝑍 M are:

𝜔 (𝑓) : 𝐹 𝐹L𝜂M
𝐹 L𝑌 M L𝑝M𝐹𝑌 L𝑌, 𝐹𝑌 M L𝑌,𝑓 M L𝑌, 𝑍 M 𝜔 (𝜑) : 𝐹𝑌 𝜑𝑌 L𝑌, 𝑍 M𝑌 L𝜀M𝑌𝑍 𝑍 □

The endofunctor category Pow(C, C) is strict monoidal, and C is a canonical modular cat-
egory with the action given by application: 𝐹, 𝑋 ↦→ 𝐹 (𝑋) : Pow(C, C) × C → C. The
proposition above therefore corresponds to equipping C with an enrichment over Pow(C, C),
given by the clone functor L−,=M : Cop × C → Pow(C, C), satisfying the 𝜅-like adjunction
C(𝐹𝑋,𝑌) � Pow(C, C) (𝐹, L𝑋,𝑌 M). This will be used in the next section to induce monad maps
from algebras, and in the familial model to construct metasubstitution from a free term algebra.

poweRed monad moRphisms 89

4.3 PoweRed monad moRphisms

This section presents the equivalence of algebras for a monad, and monad maps into the endo-
clone of the algebra. The construction will allow us to extract the metasubstitution operation
for any model of a syntactic algebra, and the final Theorem 4.3.2 will be key in the proof of
the soundness of metasubstitution.

We fix a biclosed V-modular category C and a powered monad 𝑇 : C→ C. First, we estab-
lish some auxiliary properties about algebras for the postcomposition endofunctor.

Lemma 4.3.1 The postcomposition endofunctor (𝑇◦) : Pow(C, C) → Pow(C, C) is a monad.

PRoof Since 𝑇 is a monoid in Pow(C, C), the monoid action 𝑇 ◦ (−) on powered monads is
itself a monad. We will denote its unit and multiplication 𝜂◦ and 𝜇◦ respectively, but often
conflate application of 𝑇 with post-composition with 𝑇 . □

The clone powering L𝑝M𝑇
𝑌,𝑍

: 𝑇 L𝑌, 𝑍 M =⇒ L𝑌,𝑇𝑍 M is a collection of distributive laws (Section 3.1)
for all 𝑌 ∈ C from the monad 𝑇 : C→ C to the monad 𝑇◦ : Pow(C, C) → Pow(C, C).

C C

Pow(C, C) Pow(C, C)

𝑇

𝑇◦(−)

L𝑌,−M L𝑌,−M L𝑝M𝑇
𝑌,− : 𝑇 ◦ L𝑌,−M =⇒ L𝑌,𝑇−M

Thecorresponding lifting result (Prop. 3.1.2) states that L𝑌,−M : C→ Pow(C, C) lifts to a functor
𝑇 -Alg(C) → (𝑇◦)-Alg(Pow(C, C)), mapping a 𝑇 -algebra (𝐴, 𝑎 : 𝑇𝐴→ 𝐴) to the composite

L𝑎M : 𝑇 L𝑌,𝐴M L𝑝M𝑇𝑌,𝐴 L𝑌,𝑇𝑍 M L𝑌,𝑎M L𝑌,𝐴M ∈ Pow(C, C)

Lemma 4.3.2 For a𝑇 -algebra (𝐴, 𝑎), the clone composition L𝜒 M𝑋,𝑌,𝐴 : L𝑌,𝐴ML𝑋,𝑌 M =⇒ L𝑋,𝐴M is
a (𝑇◦)-algebra homomorphism.

𝑇 L𝑌,𝐴ML𝑋,𝑌 M L𝑌,𝐴ML𝑋,𝑌 M
𝑇 L𝑋,𝐴M L𝑋,𝐴M

L𝑎ML𝑋,𝑌 M
L𝜒 M𝑋,𝑌,𝐴𝑇 L𝜒 M𝑋,𝑌,𝐴

L𝑎M
PRoof The condition expands to the following diagram:

𝑇 L𝑌,𝐴ML𝑋,𝑌 M L𝑌,𝑇𝑍 ML𝑋,𝑌 M L𝑌,𝐴ML𝑋,𝑌 M

𝑇 L𝑋,𝐴M L𝑋,𝑇𝑍 M L𝑋,𝐴M
𝑇 L𝜒 M𝑋,𝑌,𝐴

L𝑝M𝑇𝑋,𝐴 L𝑋,𝑎M

L𝑝M𝑇𝑌,𝐴L𝑋,𝑌 M L𝑌,𝑎ML𝑋,𝑌 M
L𝜒 M𝑋,𝑌,𝐴L𝜒 M𝑋,𝑌,𝑇𝑍LpM L𝜒 M

□

Proposition 4.3.1 The lifting of a 𝑇 -algebra 𝐴 by L𝐴,−M is a 𝑇◦-algebra in PowM(C).

90 poweRing and enRichment

PRoof We show that given an algebra (𝐴, 𝑎 : 𝑇𝐴 → 𝐴) for the monad 𝑇 , L𝐴M is an algebra
for the monad 𝑇◦ : PowM(C) → PowM(C) with the structure map denoted

L𝑎M : 𝑇 L𝐴,𝐴M L𝑝M𝑇𝐴 L𝐴,𝑇𝐴M L𝐴,𝑎M L𝐴,𝐴M
The unit and multiplication laws are as follows:

L𝐴M 𝑇 L𝐴M
L𝐴M L𝐴,𝑇𝐴M

𝜂◦L𝐴M
L𝑝M𝑇𝐴

L𝐴,𝑎M
L𝐴,𝜂Mp𝜂
®𝑇

𝑇𝑇 L𝐴M 𝑇 L𝐴,𝑇𝐴M 𝑇 L𝐴M
L𝐴,𝑇𝑇𝐴M L𝐴,𝑇𝐴M

𝑇 L𝐴M L𝐴,𝑇𝐴M L𝐴M
𝜇◦L𝐴M

𝑇 L𝑝M𝐴 𝑇 L𝐴,𝑎M
L𝑝M𝐴
L𝐴,𝑎M

L𝑝M𝐴 L𝐴,𝑎M
L𝐴,𝑇𝑎ML𝐴,𝜇𝐴M

L𝑝M𝐴,𝑇𝐴
p𝜇

LpM 2

®𝑇

□

The following result is easy to establish but has valuable implications: any algebra for a monad
induces a poweredmonadmorphism into the endoclone. In the familial model, this will induce
the meta-interpretation operation from an algebra structure for the term monad, which is
equivalently a Σ-monoid – equipping a syntactic model with substitution structure is sufficient
to induce the internal metasubstitution operation.
Theorem 4.3.1

Algebras 𝑇𝐴→ 𝐴 are in bijection with powered monad maps 𝑇 =⇒ L𝐴M.
PRoof The adjunction in Theorem 4.2.1 tells us that C(𝑇𝐴,𝐴) � Pow(C, C) (𝑇, L𝐴,𝐴M). We
now show that the bijection extends to monad algebras and monad morphisms.

Let 𝑎 : 𝑇𝐴→ 𝐴 be an algebra for the monad 𝑇 . We show that the composite

𝜔 (𝑎) : 𝑇 𝑇 L𝜂M
𝑇 L𝐴M L𝑎M L𝐴M

which we will denote 𝜔𝑇
𝐴 (𝑎) : 𝑇 =⇒ L𝐴M is a monad morphism, i.e. it preserves the monad

units and multiplications:

Id 𝑇

L𝐴M
L𝐴M 𝑇 L𝐴M

𝜂

L𝜂ML𝜂M 𝑇 L𝜂M
𝜂◦L𝐴M

L𝑎M

𝜂

®𝑇

𝑇𝑇 𝑇𝑇 L𝐴M 𝑇 L𝐴M 𝑇 L𝐴ML𝐴M
𝑇 L𝐴M

𝑇 𝑇 L𝐴M L𝐴M L𝐴ML𝐴M

𝑇𝑇 L𝜂M

𝜇

𝑇 L𝑎M

𝜇◦L𝐴M

𝑇 L𝜂ML𝐴M

L𝑎M 𝑇 L𝜇M L𝑎ML𝐴ML𝑎M
𝑇 L𝜂M L𝑎M L𝜇M

𝜇 ®𝑇

L𝐴M

𝜇 b ®𝑇 e

Conversely, let 𝜑 : 𝑇 =⇒ L𝐴M be a monad morphism. We show that the composite

𝜔 (𝜑) : 𝑇𝐴 𝜑𝐴 L𝐴M𝐴 L𝜀M𝐴𝐴 𝐴

is an algebra for the monad 𝑇 , i.e. it satisfies the following unit and multiplication laws:

𝐴 𝑇𝐴

𝐴 L𝐴M𝐴

𝜂𝐴

𝜑𝐴

L𝜀M𝐴𝐴
L𝜂M𝐴𝜑 b𝜂 e
®L𝐴M

𝑇𝑇𝐴 𝑇 L𝐴M𝐴 𝑇𝐴

L𝐴ML𝐴M𝐴 L𝐴M𝐴
𝑇𝐴 L𝐴M𝐴 𝐴

𝜇𝐴

𝑇𝜑𝐴 𝑇 L𝜀M𝐴𝐴

L𝜀M𝐴𝐴
L𝜀M𝐴𝐴𝜑𝐴

𝜑𝐴𝜑L𝐴M𝐴

L𝜇M𝐴 L𝐴ML𝜀M𝐴𝐴𝜑 b𝜇 e

𝜑

L𝐴M

□

Our study of clones and powered monads culminates in the following theorem, connecting
algebras for powered monads with enriched Kleisli structures that encapsulate the notion of
metasubstitution and meta-interpretation.
Theorem 4.3.2

Every powered monad gives rise to an enriched Kleisli triple, and every algebra for a powered
monad induces an algebra for the corresponding enriched Kleisli triple.

PRoof See the Appendix on page 318. □

To contextualise the results of the previous sections within the presheaf model (Section 2.2),
consider a second-order signature Ω and a corresponding Ω-monoid M – a model of syn-
tax supporting constructors, variables, and substitution. If T denotes the free Ω-monoid
monad, then every Ω-monoid can be viewed as a T-algebra via the comparison functor
Ω-Mon→ T-Alg. When T is a powered monad, Theorem 4.3.2 shows that each Ω-monoid M

supports a meta-interpretation operation 〈P,M〉 → 〈TP,M〉: given an interpretation 〈P,M〉
of metavariables in the model, this operation lifts it to an interpretation of terms over P.

To construct the powering map T(P −• Q) → P −• TQ, we observe that it arises from a
family of distributive laws between T and the functor P −• (−). Since T is a free monad, we
can appeal to the results of Section 3.4: it suffices to find a lifting of P −• (−) to the category of
Ω-monoids. Then, by Theorem 3.4.1, we obtain a distributive law T(P −• (−)) =⇒ P −• T(−).
Furthermore, this construction is natural in P (Proposition 3.4.1), yielding a coherent family
of distributive laws 𝑝T

P,Q : T(P −• (−)) =⇒ P −• (T(−)), compatible with the monad structure
of T. With the powering axioms established by more concrete means, we conclude that T is
indeed a powered monad, justifying the meta-interpretation operation in every Ω-monoid.

The abstract treatment of metasubstitution and second-order syntax by Fiore and Hur
(2008, 2010) and Fiore (2013) is formally equivalent to our approach, though it relies on carte-
sian strength rather than powering. Our formulation more naturally extends to the familial
model (see Section 11.3.1). The equivalence of lifted signature endofunctor models between
presheaves and families will be established in Section 7.2.2, while the equivalence of initial
models – i.e. term syntax – is a consequence of the initial algebra lifting theorem in Section 3.3:
if an endofunctor 𝐹 : Fam𝑆 → Fam𝑆 lifts to𝐺 : PSh𝑆 → PSh𝑆 , then the initial 𝐹 -algebra induces
the initial 𝐺-algebra. When 𝐺 = Ω + V + P ⊗ (−), the initial 𝐺-algebra is TP. Applying the
lifting theorem thus reduces to identifying an 𝐹 that lifts to this 𝐺 . This task – identifying
appropriate functors that lift to Ω, V, and (P ⊗) – is the focus of the next part of the thesis,
which explores the skew-monoidal structure of substitution.

§ Summary of Part I

In this part of the dissertation, we developed key components of themath-
ematical theory supporting the familial model of abstract syntax. Central
to this was the study of liftings to algebras and other categories, partic-
ularly in the context of transferring properties of initial algebras for syn-
tactic signatures across forgetful functors.

We also introduced the theory of powered and enriched clone mon-
ads in biclosed monoidal categories and established a general method
for equipping free monads with distributive laws. These results lay the
groundwork for our later treatment of capture-permitting metasubstitu-
tion in second-order abstract syntax.

Part II focuses on the most significant divergence between the
presheaf and familial models: their respective substitution structures.

paRt ii

S K E W C O N S T R U C T I O N S

The main advantage of the algebraic approach to second-order abstract syntax is a
systematic treatment of variables and substitution structure: the substitution ten-
sor product equips presheaves with a monoidal structure, monoids in which corre-
spond to syntactic objects associated with a substitution operation. The categorical
theory of the presheafmodel relies on thismonoidal structure being strong, which is
implemented using a quotienting construction that represents a form of renaming-
invariance. With the technical limitations of the familial model – namely, the lack
of quotienting – the substitution structure cannot be translated directly. Recon-
ciling these differences is an intriguing technical challenge, requiring the use and
introduction of several categorical tools discussed next.

In the next three chapters we focus on skew-monoidal closed categories, the right
notion of weak monoidality that the familial model of abstract syntax is set in.
Chapter 5 gives the relevant definitions of skew-monoidal and skew-closed cate-
gories, modular categories, monoids and modules, also identifying the crucial no-
tion of parametrised maps that play an important rule in abstract syntax. A limita-
tion of skew-monoidal structure is that it doesn’t transport to categories of algebras
for monads we will be interested in: the tensor products of the underlying objects
of algebras do not necessarily have an algebra structure themselves. We can nev-
ertheless build a valuable theory of categories that functorially map into monoidal
categories, and have objects that in some way represent the monoidal unit and ten-
sor that are preserved by suitably generalised functors. This theory of synthetic
monoidal categories is introduced in Chapter 6 and will be precisely the axiomatisa-
tion we need to analyse the familial model. Finally, Chapter 7 studies warpings, a
structure relating a category C to a skew-monoidal category Vwhich equips Cwith
an skew-monoidal structure. We also introduce the adjoint notion of a closed warp-
ing, formally proving their equivalence and identifying an easily-satisfied sufficient
condition for inducing such an adjoint warping.

94

c h a p t e R 5

Skew-monoidal closed structure

This chapter introduces skew-monoidal closed categories in the abstract, and presents the main
constructions thatwewill employ in the rest of thework. As a byproduct, focusing on aweaker
monoidal structure helps us precisely systematise operations associated with monoidal and
closed categories, elucidating discrepancies and unifying disparate definitions found in the
literature in a consistent framework.

5.1 SKew categoRies

Monoidal closed categories (Eilenberg and Kelly, 1966; Mac Lane, 1971) are ubiquitous, but
their structure may be too strict in some situations. In this section we introduce an elegant
and wide-ranging technique to weakening monoidal structure and related constructions.

5.1.1 Skew-monoidal closed categories

Skew-monoidal categories, introduced by Szlachányi (2012) for the study of bialgebroids, offer
a generalisation of monoidal categories better suited to settings where the traditional symme-
try and invertibility assumptions do not hold. Since their introduction, they have emerged as
a robust framework for redeveloping large portions of monoidal category theory in a weaker,
yet richly structured, form – offering elegant dualities and encompassing natural examples be-
yond the scope of (op/lax) monoidal categories (Lack and Street, 2012a,b, 2014a,b, 2015). Work-
ing with directed structural transformations not only clarifies well-known results in monoidal
and closed category theory but also highlights which aspects of structure are essential and
which may be unnecessarily restrictive.

Following Street (2013) and Uustalu et al. (2020), we echo the sentiment that skew struc-
ture often provides a more appropriate setting for reasoning about monoidal and closed con-
cepts: strong monoidal or closed categories frequently impose excess structure that can ob-
scure rather than aid formalisation. In support of this perspective, we demonstrate how skew-
monoidal closed categories preserve the key insights of familiar monoidal constructs while

96 sKew-monoidal closed stRuctuRe

avoiding some of the technical burdens – showing that weakening the structure not only gen-
eralises but also simplifies core categorical ideas.

Definition 5.1.1 A skew monoidal category V is equipped with a skew unit 𝐼 ∈ V and a skew
tensor product (−) ⊗ (=) : V × V→ V, alongside natural transformations

𝜆𝐵 : 𝐼 ⊗ 𝐵 → 𝐵 𝜌𝐴 : 𝐴→ 𝐴 ⊗ 𝐼 𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶)

that satisfy the following axioms

𝐼 𝐼

𝐼 ⊗ 𝐼
𝜌𝐼 𝜆𝐼

(𝜆𝜌)

𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵

(𝐴 ⊗ 𝐼) ⊗ 𝐵 𝐴 ⊗ (𝐼 ⊗ 𝐵)

𝜌𝐴⊗𝐵

𝛼𝐴,𝐼,𝐵

𝐴⊗𝜆𝐵 (𝜆𝛼𝜌)

(𝐼 ⊗ 𝐴) ⊗ 𝐵 𝐼 ⊗ (𝐴 ⊗ 𝐵)

𝐴 ⊗ 𝐵

𝛼𝐼 ,𝐴,𝐵

𝜆𝐴⊗𝐵 𝜆𝐴⊗𝐵

(𝜆𝛼)

𝐴 ⊗ 𝐵

(𝐴 ⊗ 𝐵) ⊗ 𝐼 𝐴 ⊗ (𝐵 ⊗ 𝐼)𝛼𝐴,𝐵,𝐼

𝜌𝐴⊗𝐵 𝐴⊗𝜌𝐵 (𝛼𝜌)

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 (𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷) 𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷)) 𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

𝛼𝐴,𝐵,𝐶⊗𝐷

𝛼𝐴,𝐵⊗𝐶,𝐷

𝐴⊗𝛼𝐵,𝐶,𝐷

𝛼𝐴⊗𝐵,𝐶,𝐷

𝛼𝐴,𝐵,𝐶⊗𝐷

(𝛼𝛼)

⌟

Example 5.1.1 (Fiore and Saville (2018)). For C cocartesian, the slice category 𝑋/C over 𝑋 ∈ C
is left skew-monoidal with unit (𝑋, id : 𝑋 → 𝑋) and tensor

(𝑋 𝑓
𝐴) ⊕ (𝑋 𝑔

𝐵) ≜ (𝑋 𝑓
𝐴

𝜄𝐴,𝐵2 𝐴 + 𝐵)

since the morphism 𝑔 cannot be recovered e.g. from the inverse of the left unitor

(𝑋 𝑔
𝐵) ↦→ (𝑋 id 𝑋

𝜄𝑋,𝐵2 𝑋 + 𝐵) ↦→ (𝑋
𝜄𝑋,𝐵2 𝑋 + 𝐵 [?,id]

𝐵) ⌟

The following example predates the definition of a skew-monoidal category and provides a
rich and abstract source of non-invertible structural transformations – indeed, our definition
of skew substitution structure (Chapter 9) ultimately derives from a similar construction.

Example 5.1.2 (Altenkirch et al. (2010, Section 3.2)). For all functors 𝐽 : A → C, if the left
Kan extension Lan𝐽 : [A, C] → [A, C] exists (see Section 8.1.2), the category [A, C] is skew-
monoidal with unit 𝐽 ∈ [A, C] and tensor product 𝐹 ⊗ 𝐽 𝐺 ≜ Lan𝐽 𝐹 ◦ 𝐺 with the structural
transformations induced via the universal property of Kan extensions. ⌟

A running example throughout this part of the thesis will be the category of unsorted families
of sets, indexed byN – the discrete version of the category of finite sets F̃ studied in the original
presheaf model (Fiore et al., 1999), also discussed by Borthelle et al. (2020).

sKew categoRies 97

Example 5.1.3. The category Ñ of indexed sets is skew-monoidal, with unit 𝐼𝑛 ≜ [𝑛] (mapping
𝑛 ∈ N to the finite set {0, . . . , 𝑛−1} of size 𝑛), tensor, unitors and associator defined as follows:

(𝑋 ⊕ 𝑌)(𝑛) ≜
∑
𝑚∈N

𝑋𝑚 × (𝑌𝑚)𝑛

𝜆𝑌 :
∑
𝑚∈N
[𝑚] × (𝑌𝑛)𝑚 → 𝑌𝑛 𝜌𝑋 : 𝑋𝑛 →

∑
𝑚∈N

𝑋𝑚 × [𝑛]𝑚

(𝑚,𝑘 ∈ [𝑚], (𝑦𝑖 ∈ 𝑌𝑛)𝑖≤𝑚) ↦→ 𝑦𝑘 ∈ 𝑌𝑛 𝑥 ∈ 𝑋𝑛 ↦→ (𝑛, 𝑥, (𝑖)𝑖≤𝑛)

𝛼𝑋,𝑌,𝑍 :
∑
𝑚∈N

(∑
𝑘∈N

𝑋𝑘 × (𝑌𝑚)𝑘
)
× (𝑍𝑛)𝑚 →

∑
𝑝∈N

𝑋𝑝 ×
(∑
𝑞∈N

𝑌𝑞 × (𝑍𝑛)𝑞
)𝑝

(
𝑚, (𝑘, 𝑥 ∈ 𝑋𝑘 , (𝑦𝑖 ∈ 𝑌𝑚)𝑖≤𝑘), (𝑧 𝑗 ∈ 𝑍𝑛) 𝑗≤𝑚

)
↦→

(
𝑘, 𝑥, (𝑚,𝑦𝑖, (𝑧 𝑗) 𝑗≤𝑚)𝑖≤𝑘

)
The transformations are not invertible: for example, 𝜌−1𝑋 would require reindexing operation
on an indexed set, and 𝜆−1𝑌 , while definable, is only a one-sided inverse:

𝑦 ∈ 𝑌𝑛 ↦→ (1, 0, (𝑦)) ↦→ 𝑦 (𝑚,𝑘, (𝑦𝑖)𝑖≤𝑚) ↦→ 𝑦𝑘 ↦→ (1, 0, (𝑦𝑘)) ⌟

Street (2013) developed the theory of skew-closed categories, which, in some ways, are better
behaved than closed categories due to the cleaner definition without any non-diagrammatic
axioms (Eilenberg and Kelly, 1966; Laplaza, 1977). Uustalu et al. (2020) gives a detailed analysis
of the comparative structure of (skew) monoidal closed categories.

Definition 5.1.2 A skew closed category V is equipped with a skew unit 𝐼 ∈ V and a skew
internal hom [−,=] : Vop × V→ V, alongside (extra)natural transformations

i𝐴 : [𝐼 , 𝐴] → 𝐴 j𝐴 : 𝐼 → [𝐴,𝐴] L𝐴𝐵,𝐶 : [𝐵,𝐶] → [[𝐴, 𝐵], [𝐴,𝐶]]

that satisfy the following coherence laws:

𝐼 𝐼

[𝐼 , 𝐼]
j𝐼 i𝐼

(ij)

[𝐴,𝐶] [𝐴,𝐶]

[[𝐴,𝐴], [𝐴,𝐶]] [𝐼 , [𝐴,𝐶]]

L𝐴𝐴,𝐶

[j𝐴,𝐶]

i[𝐴,𝐶] (ijL)

[𝐵,𝐶] [[𝐼 , 𝐵], [𝐼 ,𝐶]]

[[𝐼 , 𝐵],𝐶]

L𝐼𝐵,𝐶

[i𝐵,𝐶] [id,i𝐶]
(iL)

𝐼

[𝐵, 𝐵] [[𝐴, 𝐵], [𝐴, 𝐵]]
L𝐴𝐵,𝐵

j𝐵 j[𝐴,𝐵] (Lj)

[𝐶, 𝐷] [[𝐵,𝐶], [𝐵, 𝐷]]

[[𝐴,𝐶], [𝐴,𝐷]] [[[𝐴, 𝐵], [𝐴,𝐶]], [[𝐴, 𝐵], [𝐴,𝐷]]] [[𝐵,𝐶], [[𝐴, 𝐵], [𝐴,𝐷]]]

[id,L𝐴𝐵,𝐷]

[L𝐴𝐵,𝐶 ,id]L[𝐴,𝐵][𝐴,𝐶],[𝐴,𝐷]

L𝐴𝐶,𝐷

L𝐵𝐶,𝐷

(𝐿𝐿)

⌟

98 sKew-monoidal closed stRuctuRe

We have the expected notions of monoidal and closed functors between skew categories, with
axioms directed in the appropriate way.

Definition 5.1.3 Given skew-monoidal categories (V, 𝐼 , ⊗) and (W, 𝐽 , ⊕), a skew-monoidal
functor 𝐹 : V → W comes with a unit morphism and multiplication natural transformation
satisfying the unit and associativity axioms:

𝑢 : 𝐽 → 𝐹𝐼 m𝐴,𝐵 : 𝐹𝐴 ⊕ 𝐹𝐵 → 𝐹 (𝐴 ⊗ 𝐵)

𝐹𝐴 𝐹 (𝐴 ⊗ 𝐼)

𝐹𝐴 ⊕ 𝐽 𝐹𝐴 ⊕ 𝐹𝐼

𝐹𝜌⊗𝐴

𝜌⊕𝐹𝐴

𝐹𝐴⊕𝑢

m𝐴,𝐼 (𝑚𝑢)

𝐽 ⊕ 𝐹𝐵 𝐹𝐼 ⊕ 𝐹𝐵

𝐹𝐵 𝐹 (𝐼 ⊗ 𝐵)
𝜆⊕𝐹𝐵

𝑢⊕𝐹𝐵

m𝐼 ,𝐵

𝐹𝜆⊗𝐵

(𝑢𝑚)

(𝐹𝐴 ⊕ 𝐹𝐵) ⊕ 𝐹𝐶 𝐹 (𝐴 ⊗ 𝐵) ⊕ 𝐹𝐶 𝐹 ((𝐴 ⊗ 𝐵) ⊗ 𝐶)

𝐹𝐴 ⊕ (𝐹𝐵 ⊕ 𝐹𝐶) 𝐹𝐴 ⊕ 𝐹 (𝐵 ⊗ 𝐶) 𝐹 (𝐴 ⊗ (𝐵 ⊗ 𝐶))

𝛼⊕𝐹𝐴,𝐹𝐵,𝐹𝐶

id⊕m𝐵,𝐶
m𝐴,𝐵⊗𝐶

m𝐴,𝐵⊕id m𝐴⊗𝐵,𝐶

𝐹𝛼⊗𝐴,𝐵,𝐶 (𝑚𝑚)

A skew-monoidal natural transformation 𝜑 : 𝐹 =⇒ 𝐺 satisfies

𝐽

𝐹 𝐼 𝐺𝐼

𝑢𝐹 𝑢𝐺

𝜑𝐼

(𝜑 b𝑢e)
𝐹𝐴 ⊕ 𝐹𝐵 𝐺𝐴 ⊕ 𝐺𝐵

𝐹 (𝐴 ⊗ 𝐵) 𝐺 (𝐴 ⊗ 𝐵)

𝜑𝐴⊕𝜑𝐵

m𝐺
𝐴,𝐵m𝐹

𝐴,𝐵

𝜑𝐴⊗𝐵

(𝜑 b𝑚e)

⌟

Example 5.1.4. The forgetful functor ★ : F̃ → Ñ, defined as (★𝑃)𝑛 ≜ 𝑃 [𝑛] is skew-monoidal:

𝑘 ∈ 𝐼 (𝑛) ↦→ 𝑘 ∈ ★(𝑉) (𝑛) = [𝑛]
(𝑚,𝑥 ∈ (★𝑃)𝑛, (𝑦𝑖)𝑖≤𝑚 ∈ ((★𝑄)𝑛)𝑚) ↦→ [(𝑚,𝑥, (𝑖 ∈ [𝑚] ↦→ 𝑦𝑖))] ∈ (★(𝑃 ⊗ 𝑄))𝑛 = (𝑃 ⊗ 𝑄) [𝑛]

where the tensor output is an equivalence class of tuples. ⌟

Definition 5.1.4 Given skew-closed categories (V, 𝐼 , [−,=]) and (W, 𝐽 , J−,=K), a skew-closed
functor 𝐹 : V→W comes with a unit morphism and natural transformation satisfying:

𝑢 : 𝐽 → 𝐹𝐼 h𝐴,𝐵 : 𝐹 [𝐴, 𝐵] → J𝐹𝐴, 𝐹𝐵K
𝐹 [𝐼 , 𝐵] 𝐹𝐵

J𝐹𝐼, 𝐹𝐵K J𝐽 , 𝐹𝐵K
𝐹 i⊗𝐵

h𝐼 ,𝐵

J𝑢,idK
i⊕𝐹𝐵 (ℎ𝑢)

𝐽 𝐹 𝐼

J𝐹𝐴, 𝐹𝐴K 𝐹 [𝐴,𝐴]

𝑢

j⊕𝐹𝐴 𝐹 j⊗𝐴

h𝐴,𝐴

(𝑢ℎ)

𝐹 [𝐵,𝐶] 𝐹 [[𝐴, 𝐵], [𝐴,𝐶]] J𝐹 [𝐴, 𝐵], 𝐹 [𝐴,𝐶]K
J𝐹𝐵, 𝐹𝐶K JJ𝐹𝐴, 𝐹𝐵K, J𝐹𝐴, 𝐹𝐶KK J𝐹 [𝐴, 𝐵], J𝐹𝐴, 𝐹𝐶KK

𝐹L⊗𝐴𝐵,𝐶

h𝐵,𝐶

h[𝐴,𝐵],[𝐴,𝐶]

Jid,h𝐴,𝐶K
L⊕𝐹𝐴𝐹𝐵,𝐹𝐶 Jh𝐴,𝐵,idK

(ℎℎ)

sKew categoRies 99

A skew-monoidal natural transformation 𝜑 : 𝐹 =⇒ 𝐺 satisfies

𝐽

𝐹 𝐼 𝐺𝐼

𝑢𝐹 𝑢𝐺

𝜑𝐼

(𝜑 b𝑢e)
𝐹 [𝐴, 𝐵] 𝐺 [𝐴, 𝐵]

J𝐹𝐴, 𝐹𝐵K J𝐹𝐴,𝐺𝐵K J𝐺𝐴,𝐺𝐵K
𝜑 [𝐴,𝐵]

h𝐹𝐴,𝐵 h𝐺𝐴,𝐵

Jid,𝜑𝐵K J𝜑𝐴,idK
(𝜑 bℎe)

⌟

The skew categorification of the set-theoretic concept of a module over a monoid corresponds
to a category with a directed bifunctorial action of a skew-monoidal category. Keeping with
the monoid→monoidal naming convention, we shall refer to these as skew-modular categories.

5.1.2 Skew-monoidal closed modular categories

Fix a skew-monoidal closed category (V, 𝐼 , ⊗, [−,=]), and denote the skew-monoidal and skew-
closed structures with V⊗ and V[] , respectively.

Definition 5.1.5 A left/right V⊗-modular category C comes with a left/right V⊗-action.

A left V⊗-action is a bifunctor

(−) �(=) : V × C→ C

and structure transformations

𝜆 �
𝑌 : 𝐼 �𝑌 → 𝑌

𝛼 �
𝐴,𝐵,𝑍 : (𝐴 ⊗ 𝐵) �𝑍 → 𝐴 �(𝐵 �𝑍)

satisfying the laws

(𝐼 ⊗ 𝐵) �𝑍 𝐼 �(𝐵 �𝑍)

𝐵 �𝑍

𝛼 �
𝐼 ,𝐵,𝑍

𝜆⊗𝐵 �𝑍 𝜆 �
𝐵 �𝑍

(𝜆 �)

𝐴 �𝑍 𝐴 �𝑍

(𝐴 ⊗ 𝐼) �𝑍 𝐴 �(𝐼 �𝑍)

𝜌⊗𝐴 �𝑍 𝐴 �𝜆 �
𝑍

𝛼 �
𝐴,𝐼,𝑍

(𝜌 �)

(𝐴 ⊗ (𝐵 ⊗ 𝐶)) �𝑍

((𝐴 ⊗ 𝐵) ⊗ 𝐶) �𝑍 𝐴 �((𝐵 ⊗ 𝐶) �𝑍)

(𝐴 ⊗ 𝐵) �(𝐶 �𝑍) 𝐴 �(𝐵 �(𝐶 �𝑍))

𝛼⊗𝐴,𝐵,𝐶 �𝑍 𝛼 �
𝐴,𝐵⊗𝐶,𝑍

𝛼 �
𝐴⊗𝐵,𝐶,𝑍 𝐴 �𝛼 �

𝐵,𝐶,𝑍

𝛼 �
𝐴,𝐵,𝐶⊗𝑍

(𝛼 �)

A right V⊗-action is a bifunctor

(−) � (=) : C × V→ C

and structure transformations

𝜌�𝑋 : 𝑋 → 𝑋 � 𝐼
𝛼 �𝑋,𝐵,𝐶 : (𝑋 � 𝐵) � 𝐶 → 𝑋 � (𝐵 ⊗ 𝐶)

satisfying the laws

𝑋 � 𝐶 𝑋 � 𝐶

(𝑋 � 𝐼) � 𝐶 𝑋 � (𝐼 ⊗ 𝐶)

𝜌�𝑋�𝐶

𝛼�𝑋,𝐼,𝐶

𝑋�𝜆⊗𝐶 (𝜆�)

𝑋 � 𝐵

(𝑋 � 𝐵) � 𝐼 𝑋 � (𝐵 ⊗ 𝐼)

𝜌�𝑋�𝐵 𝑋�𝜌⊗𝐵

𝛼�𝑋,𝐵,𝐼

(𝜌�)

(𝑋 � (𝐵 ⊗ 𝐶)) � 𝐷

((𝑋 � 𝐵) � 𝐶) � 𝐷 𝑋 � ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

(𝑋 � 𝐵) � (𝐶 ⊗ 𝐷) 𝑋 � (𝐵 ⊗ (𝐶 ⊗ 𝐷))

𝛼�𝑋,𝐵,𝐶�𝐷 𝛼�𝑋,𝐵⊗𝐶,𝐷

𝛼�𝑋�𝐵,𝐶,𝐷 𝑋�𝛼⊗𝐵,𝐶,𝐷

𝛼�𝑋,𝐵,𝐶⊗𝐷

(𝛼�)

⌟

100 sKew-monoidal closed stRuctuRe

Definition 5.1.6 A skew-monoidal (V,W)-bimodular category C has a left V-action �and a
right W-action �, with a coherent mixed associator (Capucci and Gavranović, 2022, Sec. 4.3).

𝛼𝐴,𝑌,𝐶 : (𝐴 �𝑌) � 𝐶 → 𝐴 �(𝑌 � 𝐶) : V × C ×W→ C ⌟

Modular categories often arise from changing or forgetting some of the structure of monoidal
categories, but the action can be highly heterogeneous too.

Example 5.1.5. For any category C, the strictly monoidal endofunctor category [C, C] is a two-
sided action on C. For example, C presented as a left [C, C]-modular category has the action
�: [C, C] ×C→ C defined by evaluation: 𝐹 �𝑋 ≜ 𝐹𝑋 . The left unit Id : 𝑋 → 𝑋 and associator
(𝐺 ◦ 𝐹)𝑋 → 𝐺 (𝐹𝑋) are the identities. If C is a skew bicategory (Lack and Street, 2014a), the
same construction gives rise to a skew action, without the invertibility conditions. ⌟

Example 5.1.6. Given two skew-monoidal categories (V, 𝐼 , ⊗) and (W, 𝐽 , ⊕) and a skew-
monoidal functor𝑈 : W→ C, W acts on V with 𝐴,𝑄 ↦→ 𝐴 ⊗ 𝑈𝑄 : V ×W→ V. ⌟

Example 5.1.7. The substitution tensor product ⊕ in sorted families is defined via the substitu-
tion action (−) 	 (=) : Fam×Fam𝑆 → Famwhich, “retrospectively”, is a right Fam𝑆-action. ⌟

Example 5.1.8. Presheaves act on families via the mixed tensor action (−) �(=) : F̃ × Ñ→ Ñ:

(𝑃 �𝑌)(𝑛) ≜
∑
[𝑚]∈F

𝑃 [𝑚] × ([𝑚] ⇒ 𝑌𝑛)

Families also act on presheaves along ★ : F̃ → Ñ, using the action 𝑋 � 𝑃 ≜ 𝑋 ⊗ ★𝑃 . ⌟

It is well-known that (strong) left modular categories (C, �: V × C→ C) – also known as left
actegories (Capucci and Gavranović, 2022) – are equivalently strong monoidal functors from
V to the endofunctor category [C, C] (Janelidze and Kelly, 2001). Then, a skew left modular
category is equivalently an oplax skew-monoidal functor 𝐹 : V → [C, C], with directed unit
𝐹𝐼 → Id : C→ C and multiplication 𝐹 (𝐴 ⊗ 𝐵) → 𝐹𝐴 ◦ 𝐹𝐵 : C→ C satisfying the usual axioms.
Writing 𝐹 (𝐴) (𝑋) as 𝐴 �𝑋 , we get exactly the structure defined above. Graded comonads
(Fujii, 2016) are similarly axiomatised as oplax functors V → [C, C], but usually for strict
monoidal V. We may wonder if right (skew) modular categories (C, � : C × V → C) have a
similar natural characterisation, other than as lax monoidal functors Vrev → [C, C]; we shall
return to this question in Section 5.2.1.

Before proceeding, it is natural to ask whether one can define modules over closed cate-
gories using only the structure provided by the transformations 𝑖 , 𝑗 , and 𝐿. Eilenberg and Kelly
(1966, Chapter 5) introduce categories over a closed category, a notion extended to the skew
setting by Street (2013); this corresponds to what we define below as a left V[]-modular cate-
gory. Campbell (2018) presents an equivalent definition using the language of enrichment, as
formalised in Section 4.1. A skew axiomatisation of powering, framed in terms of closed struc-
ture, naturally fills the gap to yield the expected definition of a right V[]-modular category.

sKew categoRies 101

Definition 5.1.7 A left/right V[]-modular category C comes with a left/right V[]-action.

A left V[]-action is a bifunctor

〈−,=〉 : Cop × C→ V

and structure transformations

j 〈〉𝑋 : 𝐼 → 〈𝑋,𝑋 〉
L〈〉𝑋𝑌,𝑍 : 〈𝑌, 𝑍 〉 → [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉]

satisfying the laws

𝐼

〈𝑌,𝑌 〉 [〈𝑋,𝑌 〉, 〈𝑋,𝑌 〉]
L〈〉𝑋𝑌,𝑌

j 〈〉𝑌
j []〈𝑋,𝑌 〉 (𝑗 〈〉)

〈𝑋,𝑌 〉 〈𝑋,𝑌 〉

[〈𝑋,𝑋 〉, 〈𝑋,𝑌 〉] [𝐼 , 〈𝑋,𝑌 〉]
L〈〉𝑋𝑋,𝑌

[j 〈〉𝐴 ,id]

i[]〈𝑋,𝑌 〉
(𝑖〈〉)

〈𝑌, 𝑍 〉 [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉]

[〈𝑊,𝑌 〉, 〈𝑊,𝑍 〉] [〈𝑋,𝑌 〉, [〈𝑊,𝑋 〉, 〈𝑊,𝑍 〉]]

[[〈𝑊,𝑋 〉, 〈𝑊,𝑌 〉], [〈𝑊,𝑋 〉, 〈𝑊,𝑍 〉]]

[id,L〈〉𝑊𝑋,𝑍]

[L〈〉𝑊𝑋,𝑌 ,id]L[] 〈𝑊,𝑋 〉
〈𝑊,𝑌 〉,〈𝑊,𝑍 〉

L〈〉𝑊𝑌,𝑍

L〈〉𝑋𝑌,𝑍

(𝐿〈〉)

A right V[]-action is a bifunctor

[−,=〉 : Vop × C→ C

and structure transformations

i[〉𝑌 : [𝐼 , 𝑌 〉 → 𝑌

L[〉𝐴𝐵,𝑍 : [𝐵, 𝑍 〉 → [[𝐴, 𝐵], [𝐴,𝑍 〉〉

satisfying the laws

[𝐴,𝑋 〉 [𝐴,𝑋 〉

[[𝐴,𝐴], [𝐴,𝑋 〉〉 [𝐼 , [𝐴,𝑋 〉〉
L[〉𝐴𝐴,𝑋

[j []𝐴 ,id〉

i[〉[𝐴,𝑋 〉
(𝑗 [〉)

[𝐵,𝑌 〉 [[𝐼 , 𝐵], [𝐼 , 𝑌 〉〉

[[𝐼 , 𝐵], 𝑌 〉

L[〉𝐼𝐵,𝑌

[i[]𝐵 ,id〉 [id,i[〉𝑌 〉
(𝑖 [〉)

[𝐶,𝑍 〉 [[𝐵,𝐶], [𝐵, 𝑍 〉〉

[[𝐴,𝐶], [𝐴,𝑍 〉〉 [[𝐵,𝐶], [[𝐴, 𝐵], [𝐴,𝑍 〉〉〉

[[[𝐴, 𝐵], [𝐴,𝐶]], [[𝐴, 𝐵], [𝐴,𝑍 〉〉〉

[id,L[〉𝐴𝐵,𝑍 〉

[L𝐴𝐵,𝐶 ,id〉L[𝐴,𝐵][𝐴,𝐶],[𝐴,𝑍 〉

L[〉𝐴𝐶,𝑍

L[〉𝐵𝐶,𝑍

(𝐿[〉)

⌟

Definition 5.1.8 A skew-closed (V,W)-bimodular category C has a left V-action 〈−,=〉 and a
right W-action [−,=〉, together with a mixed compositor satisfying compatibility axioms:

L𝐴𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈[𝐴,𝑋 〉, [𝐴,𝑌 〉〉 : W × Cop × C→ V ⌟

Example 5.1.9. The category of indexed sets Ñ is a left skew-closed action over the closed
category of presheaves:

〈𝑋,𝑌 〉[𝑚] ≜
∏
𝑛∈N
([𝑚] ⇒ 𝑋𝑛) → 𝑌𝑛

The presheaf action, given any function 𝑓 : [𝑚] → [𝑚′], maps ℎ ∈ 〈𝑋,𝑌 〉[𝑚] to

𝑛 ∈ N, 𝑠 : [𝑚′] ⇒ 𝑋𝑛 ↦→ ℎ𝑛
(
𝑘 ∈ [𝑚] ↦→ 𝑠 (𝑓 𝑘)

)
The transformation j𝑋 : 𝑉 → 〈𝑋,𝑋 〉 is the mapping 𝑘 ∈ [𝑚] ↦→ 𝑛 ∈ N, 𝑠 : [𝑚] ⇒ 𝑋𝑛 ↦→ 𝑠 𝑘

and L𝑋𝑌,𝑍 : 〈𝑌, 𝑍 〉 → [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉] is the following, natural in 𝑙 :

102 sKew-monoidal closed stRuctuRe

ℎ ∈ 〈𝑌, 𝑍 〉[𝑘] ↦→ 𝑙 ∈ N, 𝑓 : [𝑘] ⇒ 〈𝑋,𝑌 〉[𝑙] ↦→ 𝑚 ∈ N, 𝑠 : [𝑙] ⇒ 𝑋𝑚

↦→ ℎ𝑚
(
𝑖 ∈ [𝑘] ↦→ (𝑓 𝑖)𝑚 (𝑗 ∈ [𝑙] ↦→ 𝑠 𝑗)

)
⌟

Functors between modular categories generalise strong functors with tensorial strength. Un-
fortunately, “strong” can be an ambiguous term, referring both to a functor with strength, or a
functor that preserves some structure up to isomorphism. Ratkovic (2012) uses the term very
strong monad for monads with isomorphic strengths; instead, we prefer to use a consistent
terminology of modular functors, which can themselves be lax, oplax, strong, or strict.

Definition 5.1.9 A lax left/right skew V⊗-modular functor between left/right skew V⊗-modules
C and D is a functor 𝐹 : C→ D with a left/right skew strength.

A lax skew V �-strength is a natural transfor-
mation with compatibility laws:

s𝐴,𝑌 : 𝐴 	 𝐹𝑌 → 𝐹 (𝐴 �𝑌) : V × C→ D

𝐼 	 𝐹𝑌 𝐹 (𝐼 �𝑌)

𝐹𝑌

s𝐼 ,𝑌

𝜆 	𝐹𝑌 𝐹𝜆 �
𝑌

(𝑠𝜆 �)

𝐴 	 (𝐵 	 𝐹𝑍)

((𝐴 ⊗ 𝐵) 	 𝐹𝑍) 𝐴 �𝐹 (𝐵 �𝑍)

𝐹 ((𝐴 ⊗ 𝐵) �𝑍) 𝐹 (𝐴 �(𝐵 �𝑍))

𝛼 	𝐴,𝐵,𝐹𝑍 𝐴 �s𝐵,𝑍

s𝐴⊗𝐵,𝑍 s𝐴,𝐵 �𝑍

𝐹𝛼 �
𝐴,𝐵,𝑍

(𝑠𝛼 �)

A lax skew V�-strength is a natural transfor-
mation with compatibility laws:

s𝑋,𝐵 : 𝐹𝑋 	 𝐵 → 𝐹 (𝑋 � 𝐵) : C × V→ D

𝐹𝑋

𝐹𝑋 	 𝐼 𝐹 (𝑋 � 𝐼)

𝜌	𝐹𝑋 𝐹𝜌�𝑋

s𝑋,𝐼

(𝑠𝜌�)

𝐹 (𝑋 � 𝐵) 	 𝐶

(𝐹𝑋 	 𝐵) 	 𝐶 𝐹 ((𝑋 � 𝐵) � 𝐶)

𝐹𝑋 	 (𝐵 ⊗ 𝐶) 𝐹 (𝑋 � (𝐵 ⊗ 𝐶))

s𝑋,𝐵�𝐶 s𝑋�𝐵,𝐶

𝛼	𝐹𝑋,𝐵,𝐶 𝐹𝛼�𝑋,𝐵,𝐶

s𝑋,𝐵⊗𝐶

(𝑠𝛼�)

⌟

Definition 5.1.10 A lax (V,W)-modular functor between bimodules C andD is equipped with

s �𝐴,𝑌 : 𝐴 	 𝐹𝑌 → 𝐹 (𝐴 �𝑌) s�𝑋,𝐴 : 𝐹𝑋 	 𝐴→ 𝐹 (𝑋 � 𝐴)

satisfying two unit laws and the associativity law

(𝐴 	 𝐹𝑌) 	 𝐵 𝐹 (𝐴 �𝑌) 	 𝐵 𝐹 ((𝐴 �𝑌) � 𝐵)

𝐴 	 (𝐹𝑌 	 𝐵) 𝐴 	 𝐹 (𝑌 � 𝐵) 𝐹 (𝐴 �(𝑌 � 𝐵))

𝛼D
𝐴,𝐹𝑌,𝐵

𝐴 �s�𝑌,𝐵

s �𝐴,𝑌�𝐵 s�𝐴 �𝑌,𝐵

𝐹𝛼C
𝐴,𝑌,𝐵

s �𝐴,𝑌�𝐵

(𝑠𝛼 ��)

⌟

As usual, a modular functor is oplax if it is between the opposite categories (so 𝑠 and the
axioms are reversed), strong if 𝑠 is an isomorphism, and strict if 𝑠 is the identity. Natural
transformations between modular functors preserve the strength in the obvious way.

sKew categoRies 103

The appropriate notion of functors between closed modular categories coincides with
enrichment- and power-preserving functors, with axioms expressed via the closed structure.

Definition 5.1.11 A lax left/right skew V[]-modular functor between left/right skew-closed
V-modular C and D is a functor 𝐹 : C→ D with a left/right skew strength.

A lax skew V〈〉-strength is a natural transfor-
mation with compatibility laws:

s𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈〈𝐹𝑋, 𝐹𝑌 〉〉 : Cop × C→ V

𝐼

〈𝑋,𝑋 〉 〈〈𝐹𝑋, 𝐹𝑋 〉〉

j 〈〉𝑋 j
〈〈〉〉
𝐹𝑋

s𝑋,𝑋

(𝑠 𝑗 〈〉)

〈𝑌, 𝑍 〉 [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉]

〈〈𝐹𝑌, 𝐹𝑍 〉〉 [〈𝑋,𝑌 〉, 〈〈𝐹𝑋, 𝐹𝑍 〉〉]

[〈〈𝐹𝑋, 𝐹𝑌 〉〉, 〈〈𝐹𝑋, 𝐹𝑍 〉〉]

s𝑌,𝑍

L
〈〈〉〉𝐹𝑋
𝐹𝑌,𝐹𝑍

L〈〉𝑋𝑌,𝑍

[id,s𝑋,𝑍]

[s𝑋,𝑌 ,id] (𝑠𝐿〈〉)

A lax skew V[〉-strength is a natural transfor-
mation with compatibility laws:

s𝐴,𝑌 : 𝐹 [𝐴,𝑌 〉 → J𝐴, 𝐹𝑌 〉〉 : Vop × C→ D

𝐹 [𝐼 , 𝑌 〉 J𝐼 , 𝐹𝑌 〉〉
𝐹𝑌

s𝐼 ,𝑌

𝐹 i[〉𝑌 i
J〉〉
𝐹𝑌

(𝑠𝑖 [〉)

𝐹 [𝐵,𝑌 〉 J𝐵, 𝐹𝑌 〉〉
𝐹 [[𝐴, 𝐵], [𝐴,𝑌 〉〉 J[𝐴, 𝐵], J𝐴, 𝐹𝑌 〉〉〉〉

J[𝐴, 𝐵], 𝐹 [𝐴,𝑌 〉〉〉

𝐹L[〉𝐴𝐵,𝑌

s[𝐴,𝐵],[𝐴,𝑌 〉

s𝐵,𝑌

L
J〉〉𝐴
𝐵,𝐹𝑌

Jid,s𝐴,𝑌 〉〉 (𝑠𝐿[〉)

⌟

Example 5.1.10. These notions of functorial strength have appeared throughout the literature,
often under different names and assumptions, and typically shown to be equivalent under suit-
able structural conditions. The resulting terminological inconsistency – encompassing terms
such as left/right strength, costrength, cotensorial strength, opstrength, strong functor, enriched
functor, and powered functor – motivates the unified naming scheme adopted here. By casting
these transformations as instances of natural structure between modular categories, we clarify
the distinctions and structural requirements involved.

A. Kock (1970a, 1972) constructs the canonical right transformation (left V⊗-strength) 𝐴 ⊗
𝐹𝐵 → 𝐹 (𝐴 ⊗ 𝐵) and canonical left transformation (right V⊗-strength) 𝐹𝐴 ⊗ 𝐵 → 𝐹 (𝐴 ⊗
𝐵) from a strong endofunctor (left V[]-strength) [𝐴, 𝐵] → [𝐹𝐴, 𝐹𝐵], extending the notions
and equivalences to (commutative) monads. A. Kock (1971b) gives the equivalence between
functorial strength and cotensorial strength (right V[]-strength) 𝐹 [𝐴, 𝐵] → [𝐴, 𝐹𝐵]. ⌟

It may not be surprising that many of the structures introduced above are equivalent – an
important fact that enables seamless translation between skew-monoidal and skew-closed set-
tings as needed. Eilenberg and Kelly (1966) established that monoidal and closed categories are
equivalent in the presence of an adjunction (−) ⊗ 𝐵 a [𝐵, =] internalising to the isomorphism
[𝐴 ⊗ 𝐵,𝐶] � [𝐴, [𝐵,𝐶]], a principle that also underlies the correspondence between enrich-
ment and powering (McDermott and Uustalu, 2022). This equivalence was extended to the
skew setting by Street (2013), who dropped the need for an internalised adjunction. Uustalu
et al. (2020) offer a thorough exploration of this relationship in the skew context, and Campbell
(2018) demonstrates the equivalence for skew modular categories via skew proactegories.

104 sKew-monoidal closed stRuctuRe

Definition 5.1.12 The 2-categories of left/right skew-monoidal/closed V-modular categories,
modular functors and natural transformations are denoted, respectively, as

V⊗-LMod V[]-RMod V⊗-LMod V[]-RMod ⌟

Theorem 5.1.1
We have the following implications:

𝜉 : (−) ⊗ 𝐵 a [𝐵, =] : V→ V =⇒ V⊗ � V[]

𝜅 : (−) �𝑌 a 〈𝑌,=〉 : V→ C =⇒ V⊗-LMod � V[]-LMod
𝜘 : (−) � 𝐵 a [𝐵, =〉 : C→ C =⇒ V⊗-RMod � V[]-RMod

PRoof sKetch The hom-set natural isomorphisms arising from the adjunctions

𝜉 : V(𝐴⊗𝐵,𝐶) � V(𝐴, [𝐵,𝐶]) 𝜅 : C(𝐴 �𝑌, 𝑍) � V(𝐴, 〈𝑌, 𝑍 〉) 𝜘 : C(𝑋 �𝐵,𝑌) � C(𝑋, [𝐵,𝑌 〉)

are used to bijectively transpose the structural transformations and axioms from the monoidal
to the closed setting. For the left unitors, the transposition is direct:

𝜆⊗𝐵 : 𝐼 ⊗ 𝐵 → 𝐵
(𝜉)

j⊗𝐵 : 𝐼 → [𝐵, 𝐵]
𝜆 〈〉𝑌 : 𝐼 �𝑌 → 𝑌

(𝜅)
j [〉𝑌 : 𝐼 → 〈𝑌,𝑌 〉

For right unitors, it goes via the Yoneda embedding:

V(𝐴 ⊗ 𝐼 , 𝐵)

V(𝐴, 𝐵)

V(𝐴, [𝐼 , 𝐵])

V(𝜌⊗𝐴 ,𝐵)

𝜉

V(𝐴,i⊗𝐵)

C(𝑋 � 𝐼 , 𝑌)

C(𝑋,𝑌)

C(𝑋, [𝐼 , 𝑌 〉)

C(𝜌�𝑋 ,𝑌)

𝜘

C(𝑋,i[〉𝑌)

To connect the associators and compositors, we again apply the Yoneda embedding to trans-
pose the associator to an internal currying operation, then show that the compositor 𝐿 is
its mate under some adjunction (see Kelly and Street (1974, Proposition 2.1)). For example,
𝛼𝑋,𝐵,𝐶 : (𝑋 �𝐵)�𝐶 → 𝑋 �(𝐵⊗𝐶) transposes by Yoneda to the currying [𝐴⊗𝐵,𝑌 〉 → [𝐴, [𝐵,𝑌 〉〉,
and taking its mate under

V Cop

V Cop

(−)⊗𝐵 [𝐵,=]

[−,[𝐵,𝑌 〉〉

[−,𝑌 〉

a

exhibits a bijection between [𝐴⊗𝐵,𝑌 〉 → [𝐴, [𝐵,𝑌 〉〉 and [𝐵, 𝑍 〉 → [[𝐴, 𝐵], [𝐴,𝑍 〉〉. The other
equivalences are as follows:

𝛼 ⊗𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶)
c⊗𝐴,𝐵,𝐶 : [𝐴 ⊗ 𝐵,𝐶] → [𝐴, [𝐵,𝐶]]
L⊗𝐴𝐵,𝐶 : [𝐵,𝐶] → [[𝐴, 𝐵], [𝐴,𝐶]]

𝛼 �
𝐴,𝐵,𝑍 : (𝐴 ⊗ 𝐵) �𝑍 → 𝐴 �(𝐵 �𝑍)

c �𝐴,𝑌,𝑍 : 〈𝐴 �𝑌, 𝑍 〉 → [𝐴, 〈𝑌, 𝑍 〉]

L〈〉𝑋𝑌,𝑍 : 〈𝑌, 𝑍 〉 → [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉]

sKew categoRies 105

The axioms of skew-monoidal and skew-closed categories and left/right actions are shown to
be equivalent – in most cases – by transposing the monoidal axiom to an equivalent one con-
cerning the currying operator 𝑐 , then using the expansion rules and transposition schemas to
show that the 𝑐-axioms and 𝐿-axioms imply each other. We do not include the full derivations
here, but see Theorem 7.1.3 for a detailed proof of a similar nature.

For functors between skew-monoidal/closed categories, and left/right actions thereof, the
procedure is similar. The units 𝑢 : 𝐽 → 𝐹𝐼 of skew-monoidal and skew-closed functors are
identical, while the multiplications m𝐴,𝐵 : 𝐹𝐴 ⊕ 𝐹𝐵 → 𝐹 (𝐴 ⊗ 𝐵) and h𝐵,𝐶 : 𝐹 [𝐵,𝐶] → J𝐹𝐵, 𝐹𝐶K
are mates under the adjunction

V W

V W

(−)⊕𝐹𝐵 J𝐹𝐵,=K(−)⊗𝐵 [𝐵,=]

𝐹

𝐹

a a

Similarly, the strengths

s �𝐴,𝑌 : 𝐴 	 𝐹𝑌 → 𝐹 (𝐴 �𝑌)

s〈〉𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈〈𝐹𝑋, 𝐹𝑌 〉〉
and

s�𝑋,𝐵 : 𝐹𝑋 	 𝐵 → 𝐹 (𝑋 � 𝐵)

s [〉𝐴,𝑌 : 𝐹 [𝐴,𝑌 〉 → J𝐴, 𝐹𝑌 〉〉
are mates under

V V

C D
𝐹

(−) �𝑋 〈𝑋,=〉 (−) 	𝐹𝑋 〈〈𝐹𝑋,=〉〉a a

C D

C D
𝐹

(−)�𝐴 [𝐴,=〉 (−)	𝐴 J𝐴,=〉〉
𝐹

a a

The correspondence between the respective axioms is also a series of transpositions. □

The following lemma is a useful tool for transposing adjoint functors across monoidal and
closed actions, with the internal transposition as the intermediate step.

Lemma 5.1.1 Given an adjunction 𝜏 : 𝐹 a 𝐺 : C → D between left skew-monoidal closed V-
modular categories, the following conditions are equivalent:

1. 𝐹 is an oplax left skew V⊗-modular functor with strength s𝐹𝐴,𝑌 : 𝐹 (𝐴 �𝑌) → 𝐴 	 𝐹𝑌
2. 𝐺 is a lax left skew V[]-functor with strength s𝐺𝑌,𝑍 : 〈〈𝑌, 𝑍 〉〉 → 〈𝐺𝑌,𝐺𝑍 〉;
3. 𝜏 has a lax internal transpose

t𝑋,𝑌 : 〈〈𝐹𝑋,𝑌 〉〉 → 〈𝑋,𝐺𝑌 〉 : C ×D→ V

that satisfies the unit and associativity axioms

𝐼 〈𝑋,𝑋 〉

〈〈𝐹𝑋, 𝐹𝑋 〉〉 〈𝑋,𝐺𝐹𝑋 〉

j 〈〉𝑋

〈𝑋,𝜏𝑋 〉j
〈〈〉〉
𝐹𝑋

t𝑋,𝐹𝑋

(𝑡 𝑗)

106 sKew-monoidal closed stRuctuRe

〈〈𝐹 (𝐴 �𝑋), 𝑌 〉〉

〈〈𝐴 	 𝐹𝑋,𝑌 〉〉 〈𝐴 �𝑋,𝐺𝑌 〉

[𝐴, 〈〈𝐹𝑋,𝑌 〉〉] [𝐴, 〈𝑋,𝐺𝑌 〉]

〈〈s𝐹𝐴,𝑋 ,𝑌 〉〉 t𝐴 �𝑋,𝑌

c 	𝐴,𝐹𝑋,𝑌 c �𝐴,𝑋,𝐺𝑌

[𝐴,t𝑋,𝑌]

(𝑡𝑐)

〈〈𝑌, 𝑍 〉〉 〈𝐺𝑌,𝐺𝑍 〉

[〈〈𝐹𝑋,𝑌 〉〉, 〈〈𝐹𝑋, 𝑍 〉〉] [〈𝑋,𝐺𝑌 〉, 〈𝑋,𝐺𝑍 〉]

[〈〈𝐹𝑋,𝑌 〉〉, 〈𝑋,𝐺𝑍 〉]

s𝐺𝑌,𝑍

L
〈〈〉〉𝐹𝑋
𝑌,𝑍

L〈〉𝑋𝐺𝑌,𝐺𝑍

[id,t𝑋,𝑍] [t𝑋,𝑌 ,id] (𝑡𝐿)

PRoof See the Appendix on page 321. □

Corollary 5.1.1 A strong V �-modular functor 𝐹 with a right adjoint 𝜏 : 𝐹 a 𝐺 : C→ D induces
an isomorphism 〈〈𝐹𝑋,𝑌 〉〉 � 〈𝑋,𝐺𝑌 〉.

PRoof The equivalences of 𝐴 	 𝐹𝑋 � 𝐹 (𝐴 �𝑋) and 〈〈𝐹𝑋,𝑌 〉〉 � 〈𝑋,𝐺𝑌 〉 can be calculated
via the Yoneda embedding.

D
(
𝐴 	 𝐹𝑋,𝑌

)
D(𝐹 (𝐴 �𝑋), 𝑌)

C(𝐴 �𝑋,𝐺𝑌)

V
(
𝐴, 〈〈𝐹𝑋,𝑌 〉〉

)
V
(
𝐴, 〈𝑋,𝐺𝑌 〉

)
𝜏

𝜅C

𝜅D

D(s𝐴,𝑋 ,𝑌)
�

V(𝐴,t𝑋,𝑌)
�

□

Example 5.1.11. The equivalence of 𝛼 , 𝑐 and 𝐿 in Theorem 5.1.1 is an instance of Lemma 5.1.1,
since 𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶) is an oplax V⊗-strength for 𝐹 ≜ (−) ⊗ 𝐶 and
L𝐴𝐵,𝐶 : [𝐵,𝐶] → [[𝐴, 𝐵], [𝐴,𝐶]] is a lax V[]-strength for 𝐺 ≜ [𝐴,−]. The internal transpose
t𝐴,𝐵,𝐶 : [𝐴 ⊗ 𝐵,𝐶] → [𝐴, [𝐵,𝐶]] is then the currying operator, and the associativity axioms of
𝑡 reduce to the intermediate axioms of currying required to connect the associativity laws of
𝛼 and 𝐿; see Eilenberg and Kelly (1966, Section II.2), axioms MCC3 and MCC3’. In a strong
monoidal category, the associator is an isomorphism, and by Corollary 5.1.1, so is the curry-
ing transformation – this is familiar from Eilenberg and Kelly’s (1966) proof of equivalence
of monoidal categories, and closed categories with an internalised tensor-hom adjunction
[𝐴 ⊗ 𝐵,𝐶] � [𝐴, [𝐵,𝐶]], and explains the discrepancy highlighted by Uustalu et al. (2020). ⌟

In the context of the corollary above, the directions of the isomorphism s �𝐴,𝑋 : 𝐴 	 𝐹𝑋 �
𝐹 (𝐴 �𝑋) give rise to two transformations: a V〈〉-strength for 𝐹 , and an internal transpose for
𝐹 and 𝐺 . The next lemma relates these two formally.

Lemma 5.1.2 Given a strong V �-modular functor 𝐹 with right adjoint 𝜏 : 𝐹 a 𝐺 : C → D, the
induced V〈〉-strength s𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈〈𝐹𝑋, 𝐹𝑋 〉〉 and internal transpose t𝑋,𝑌 : 〈〈𝐹𝑋,𝑌 〉〉 → 〈𝑋,𝐺𝑌 〉
are compatible in the sense of the following diagrams:

〈𝑋,𝑌 〉

〈〈𝐹𝑋, 𝐹𝑌 〉〉 〈𝑋,𝐺𝐹𝑌 〉
s〈〉𝑋,𝑌

〈𝑋,𝜏𝑌 〉

t𝑋,𝐹𝑌

(𝜏𝑡𝑠)

〈〈𝐹𝑋,𝑌 〉〉 〈〈𝐹𝑋,𝑌 〉〉

〈𝑋,𝐺𝑌 〉 〈〈𝐹𝑋, 𝐹𝐺𝑌 〉〉
〈〈id,𝜏𝑌 〉〉t𝑋,𝑌

s〈〉𝑋,𝐺𝑌

(𝜏𝑡𝑠)

sKew categoRies 107

PRoof See the Appendix on page 323. □

In the same situation, we can prove similar laws about the interaction between the induced
inverse transpose 〈𝑋,𝐺𝑌 〉 → 〈〈𝐹𝑋,𝑌 〉〉 and the V〈〉-strength 〈〈𝑋,𝑌 〉〉 → 〈𝐺𝑋,𝐺𝑌 〉.

Example 5.1.12. In a (strong) monoidal category, the functor (−) ⊗ 𝐶 : V → V is a strong
modular functor with the associator (𝐴 ⊗ 𝐵) ⊗ 𝐶 � 𝐴 ⊗ (𝐵 ⊗ 𝐶). By the above theorem, we
have the induced isomorphism [𝐴 ⊗ 𝐵,𝐶] � [𝐴, [𝐵,𝐶]], and transformations K𝐶

𝐴,𝐵 : [𝐴, 𝐵] →
[𝐴 ⊗ 𝐶, 𝐵 ⊗ 𝐶] and L𝐶𝐴,𝐵 : [𝐴, 𝐵] → [[𝐶,𝐴], [𝐶, 𝐵]]. The 𝐾 transformation is the subject of
Eilenberg and Kelly (1966, Section II.7), and the axioms above become the schemes that allow
us to express 𝐾 in terms of 𝑡 and vice versa. In a skew setting, where 𝛼 is not invertible, not
all transformations are available at the same time: in a left-skew category, we have

(𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶) [𝐵,𝐶] → [[𝐴, 𝐵], [𝐴,𝐶]] [𝐴 ⊗ 𝐵,𝐶] → [𝐴, [𝐵,𝐶]]

while in a right-skew category, we have

𝐴 ⊗ (𝐵 ⊗ 𝐶) → (𝐴 ⊗ 𝐵) ⊗ 𝐶 [𝐴, 𝐵] → [𝐴 ⊗ 𝐶, 𝐵 ⊗ 𝐶] [𝐴, [𝐵,𝐶]] → [𝐴 ⊗ 𝐵,𝐶]

As Uustalu et al. (2020) show in Definition 4.5 and the corresponding footnote, there is no
“elegant” way to define right-skew closed categories as 𝐿 is not invertible – this is supported
by the fact that the reversed transpose operation 〈𝑋,𝐺𝑌 〉 → 〈〈𝐹𝑋,𝑌 〉〉 does not fit into the
framework of mates, so we do not get an inverse left strength 〈𝐺𝑌,𝐺𝑍 〉 → 〈𝑌, 𝑍 〉 that could
be a right-skew variant of 𝐿. ⌟

The situation for right modules is somewhat simpler.

Lemma 5.1.3 Assuming an adjunction 𝜋 : 𝐹 a 𝐺 : C → D between right skew-monoidal closed
V-modular categories, the following conditions are equivalent:

1. 𝐹 is an oplax right V⊗-modular functor with s�𝑋,𝐴 : 𝐹𝑋 	 𝐴→ 𝐹 (𝑋 � 𝐴)
2. 𝐺 is a lax right V[]-module morphism with s [〉𝐴,𝑋 : 𝐺J𝐴,𝑋 〉〉 → [𝐴,𝐺𝑋 〉.
PRoof The bijection between the strengths is given in the following diagram:

D(𝐹𝑋 	 𝐵,𝑌) D(𝐹 (𝑋 � 𝐵), 𝑌)

D(𝐹𝑋, J𝐵,𝑌 〉〉) D(𝑋 � 𝐵,𝐺𝑌)

C(𝑋,𝐺J𝐵,𝑌 〉〉) C(𝑋, [𝐵,𝐺𝑌 〉)

D(s�𝑋,𝐵,𝑌)

𝜁D

𝜏

𝜏

𝜁 C

C(𝑋,s [〉𝐵,𝑌)

The unit diagrams are transposes of each other. The associativity law of 𝑠� transposes to:

𝐺J𝐴 ⊗ 𝐵,𝑋 〉〉 [𝐴 ⊗ 𝐵,𝐺𝑋 〉

𝐺J𝐴, J𝐵,𝑋 〉〉〉〉 [𝐴,𝐺J𝐶,𝑋 〉〉〉 [𝐴, [𝐵,𝐺𝑋 〉〉

s [〉𝐴⊗𝐵,𝑋

𝐺c�𝐴,𝐵,𝑋 c	𝐴,𝐵,𝐺𝑋

s [〉𝐴,[𝐵,𝑋 〉 [𝐴,s [〉𝐵,𝑋 〉

(𝑐 [〉)

108 sKew-monoidal closed stRuctuRe

which is equivalent to the associativity law of 𝑠 [〉:

𝐺J𝐴 ⊗ 𝐵,𝑋 〉〉 [𝐴 ⊗ 𝐵,𝐺𝑋 〉

𝐺J[𝐵,𝐴 ⊗ 𝐵], [𝐵,𝑋 〉〉〉 [[𝐵,𝐴 ⊗ 𝐵],𝐺J𝐵,𝑋 〉〉〉 [[𝐵,𝐴 ⊗ 𝐵], [𝐵,𝐺𝑋 〉〉

𝐺 [𝐴, [𝐵,𝑋 〉〉 [𝐴,𝐺J𝐵,𝑋 〉〉〉 [𝐴, [𝐵,𝐺𝑋 〉〉

[𝜉𝐴,id〉

s [〉𝐴⊗𝐵,𝑋

𝐺LJ〉〉𝐵𝐴⊗𝐵,𝑋

𝐺 [𝜉𝐵𝐴,id〉

s [〉𝐴,[𝐵,𝑋 〉 [𝐴,s [〉𝐵,𝑋 〉

L[〉𝐵𝐴⊗𝐵,𝐺𝑋
[𝐴,s [〉𝐵,𝑋 〉s [〉[𝐵,𝐴⊗𝐵],[𝐵,𝑋 〉

[𝜉𝐵𝐴,id〉

𝑠𝐿[〉

𝑠 1

𝐺J𝐵,𝑋 〉〉 [𝐵,𝐺𝑋 〉

𝐺J[𝐴, 𝐵] ⊗ 𝐴,𝑋 〉〉 [[𝐴, 𝐵] ⊗ 𝐴,𝐺𝑋 〉

𝐺J[𝐴, 𝐵], [𝐴,𝑋 〉〉〉 [[𝐴, 𝐵],𝐺J𝐴,𝑋 〉〉〉 [[𝐴, 𝐵], [𝐴,𝐺𝑋 〉〉

c�[𝐴,𝐵],𝐴,𝐺𝑋

s [〉𝐵,𝑋

𝐺 [𝜉𝐴𝐵 ,𝑋 〉

𝐺c	[𝐴,𝐵],𝐴,𝑋

s [〉[𝐴,𝐵],[𝐴,𝑋 〉 [id,s[〉𝐴,𝑋 〉

[𝜉𝐴𝐵 ,𝐺𝑋 〉

s [〉[𝐴,𝐵]⊗𝐴,𝑋

𝑠 1

𝑐 [〉

□

Example 5.1.13. The forgetful functor ★ : F̃ → Ñ has a right adjoint cofree presheaf functor
■ : Ñ→ F̃ , defined as

(■𝑋) [𝑚] ≜
∏
𝑛∈N
([𝑛]𝑚 ⇒ 𝑋𝑛)

★ is also a strong modular functor from the trivial F̃ -module (F̃ , ⊗) to the left module (Ñ, �)
of Example 5.1.8: ★(𝑃 ⊗ 𝑄) � 𝑃 �★𝑄 . Thus, by above, we have the induced transformations
[𝑃,𝑄] → 〈★𝑃,★𝑄〉, 〈𝑋,𝑌 〉 → [■𝑋,■𝑌], and isomorphism 〈★𝑃,𝑌 〉 � [𝑃,■𝑌]. ⌟

Having defined skew-monoidal closed categories and modules, we can turn to the analysis of
distinguished objects: monoids, and module objects over the monoid. In the theory of syntax,
these will encapsulate the substitution structure of presheaves and families.

5.2 Monoids and modules

The notion of a monoid in a monoidal category extends naturally to a skew-monoidal setting;
in fact, there is no need to call it “skew monoid”, as the structure morphisms are identical to
the monoidal case, and the laws follow the directionality of the skew structure in the obvious
way. One natural variation we consider is the axiomatisation of monoids in a closed category,
which will be more convenient to use in the context of initiality.

Definition 5.2.1 A monoid (𝑀,𝜂, 𝜇) in a skew-monoidal category V is given by an object
𝑀 ∈ V with the unit and multiplication maps

𝜂 : 𝐼 → 𝑀 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀

satisfying unit and associativity laws

monoids and modules 109

𝐼 ⊗ 𝑀 𝑀 ⊗ 𝑀

𝑀

𝜂⊗𝑀

𝜇
𝜆𝑀

(𝜂𝜇)
𝑀 ⊗ 𝐼 𝑀 ⊗ 𝑀

𝑀 𝑀

𝑀⊗𝜂

𝜇𝜌𝑀 (𝜇𝜂)

(𝑀 ⊗ 𝑀) ⊗ 𝑀 𝑀 ⊗ (𝑀 ⊗ 𝑀)

𝑀 ⊗ 𝑀 𝑀 𝑀 ⊗ 𝑀

𝛼𝑀,𝑀,𝑀

𝜇⊗𝑀 𝑀⊗𝜇

𝜇 𝜇

(𝜇𝜇)

The equivalent data and laws in a skew-closed category are maps and axioms

𝜂 : 𝐼 → 𝑀 𝜇 : 𝑀 → [𝑀,𝑀]

𝐼 𝑀

[𝑀,𝑀]

𝜂

𝜇
j𝑀

(𝜂𝜇)

𝑀 𝑀

[𝑀,𝑀] [𝐼 , 𝑀]

𝜇

[𝜂,𝑀]

i𝑀 (𝜇𝜂)

[𝑀,𝑀] 𝑀 [𝑀,𝑀]

[[𝑀,𝑀], [𝑀,𝑀]] [𝑀, [𝑀,𝑀]]

𝜇 𝜇

L𝑀𝑀,𝑀 [id,𝜇]

[𝜇,id]

(𝜇𝜇)

⌟

Definition 5.2.2 A monoid homomorphism 𝑓 : (𝑀,𝜂𝑀, 𝜇𝑀) → (𝑁,𝜂𝑁 , 𝜇𝑁) is a morphism
𝑓 : 𝑀 → 𝑁 ∈ V that preserves the unit and multiplication:

𝐼

𝑀 𝑁

𝜂𝑀 𝜂𝑁

𝑓

(𝑓 b𝜂e)
𝑀 ⊗ 𝑀 𝑁 ⊗ 𝑁

𝑀 𝑁

𝑓 ⊗𝑓

𝜇𝑁𝜇𝑀

𝑓

(𝑓 b𝜇e)
𝑀 𝑁

[𝑀,𝑀] [𝑀, 𝑁] [𝑁, 𝑁]

𝑓

𝜇𝑀 𝜇𝑁

[𝑀,𝑓] [𝑓 ,𝑁]

(𝑓 b𝜇e)

For a skew-monoidal/closed category V, we write Mon(V) for the category of monoids and
monoid homomorphisms. ⌟

Example 5.2.1 (Altenkirch et al. (2010, Theorem 5)). Given the skew-monoidal category
([A, C], 𝐽 , ⊗ 𝐽) of Example 5.1.2, a monoid 𝑀 ∈ [A, C] comes with unit natural transforma-
tion 𝜂 : 𝐽 =⇒ 𝑀 , and a multiplication 𝑀 ⊗ 𝐽 𝑀 =⇒ 𝑀 , which, with the calculus properties of
left Kan extensions and copowers (Section 8.1.1), expands as follows:∫

𝐵∈A

(∫ 𝐴∈A
C(𝐽𝐴,𝑀𝐵) ·𝑀𝐴

)
→ 𝑀𝐵 �

∫
𝐴,𝐵∈A

C(𝐽𝐴,𝑀𝐵) → C(𝑀𝐴,𝑀𝐵)

We recognise the RHS as a relative Kleisli extension, making𝑀 a 𝐽 -relative monad. ⌟

Example 5.2.2. The endo-hom [𝐴,𝐴] is a monoid for all objects 𝐴 in a closed category, with
unit j𝐴 : 𝐼 → [𝐴,𝐴] and multiplication is L𝐴𝐴,𝐴 : [𝐴,𝐴] → [[𝐴,𝐴], [𝐴,𝐴]]. This generalises to
the left V[]-endo-action 〈𝑋,𝑋 〉 for any 𝑋 in a left modular category C. ⌟

110 sKew-monoidal closed stRuctuRe

Example 5.2.3 (Fiore et al. (1999, Proposition 3.4)). A monoid in the category Ñ is an abstract
clone: a N-indexed set 𝑀 with unit as a set of distinguished elements 𝜂𝑛 : [𝑛] → 𝑀𝑛 = {𝑢𝑖 ∈
𝑀𝑛 | 𝑖 ∈ [𝑛] } and multiplication as an indexed family of functions{

𝑚𝑖, 𝑗 : 𝑀𝑖 × (𝑀 𝑗)𝑖 → 𝑀 𝑗

}
𝑖, 𝑗∈N

satisfying unit and associativity axioms that correspond to monoid laws. ⌟

Proposition 5.2.1 Monoidal/closed functors preserve monoids in skew categories.

PRoof Given a monoid (𝑀,𝜂, 𝜇) ∈ V and a monoidal/closed functor (𝐹 : V → W, 𝑢,𝑚), 𝐹𝑀
is a monoid in W with unit 𝐽 𝑢 𝐹𝐼

𝐹𝜂
𝐹𝑀 and multiplication maps

𝐹𝑀 ⊕ 𝐹𝑀 m𝑀,𝑀
𝐹 (𝑀 ⊗ 𝑀) 𝐹𝜇

𝐹𝑀 𝐹𝑀
𝐹𝜇

𝐹 [𝑀,𝑀] 𝑚 J𝐹𝑀, 𝐹𝑀K
and monoid laws constructed from those of𝑀 and the monoidal functor laws. □

Corollary 5.2.1 A monoidal functor 𝐹 : V → W lifts to Mon(V) → Mon(W), making Mon a
functor SkMonCat→ Cat from the category of skew-monoidal categories and monoidal functors.

5.2.1 Modules

Generalising the concept of a monoid object in a monoidal category leads naturally to the
notion of a module in a modular category. By the microcosm principle (Baez and Dolan, 1998,
Section 2.2), modular categories serve as the canonical setting for defining module objects, just
as monoids are most generally formulated within monoidal categories. For the remainder of
this chapter, fix a skew-monoidal closed category (V, 𝐼 , ⊗, [−,=]), a left V-modular category
(C, �, 〈−,=〉) and a right V-modular category (D, �, [−,=〉).

Definition 5.2.3 Let (𝑀,𝜂 : 𝐼 → 𝑀, 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀) be a monoid in V.

A left𝑀-module in C is an object𝑍 ∈ Cwith
a left action over𝑀 , or left𝑀-action

𝑧 : 𝑀 �𝑍 → 𝑍

that respects the unit and multiplication of
the monoid:

𝐼 �𝑍 𝑀 �𝑍

𝑍

𝜂 �𝑍

𝜆𝑍
𝑧

(𝜂 �)

(𝑀 ⊗ 𝑀) �𝑍 𝑀 �(𝑀 �𝑍)

𝑀 �𝑍 𝑍 𝑀 �𝑍

𝛼𝑀,𝑀,𝑍

𝜇 �𝑀 𝑀 �𝑧

𝑧 𝑧

(𝜇 �)

A right 𝑀-module in D is an object 𝑋 ∈ D

with a right action over𝑀 , or right𝑀-action

𝑥 : 𝑋 � 𝑀 → 𝑋

that respects the unit and multiplication of
the monoid:

𝑋 � 𝐼 𝑋 � 𝑀

𝑋 𝑋

𝑋�𝜂

𝑥𝜌𝑋 (�𝜂)

(𝑋 � 𝑀) � 𝑀 𝑋 � (𝑀 ⊗ 𝑀)

𝑋 � 𝑀 𝑋 𝑋 � 𝑀

𝛼𝑋,𝑀,𝑀

𝑥�𝑀 𝑋�𝜇

𝑥 𝑥

(�𝜇)

⌟

monoids and modules 111

If C is a (V,W)-bimodular category, the two notions can be combined into into a C-object that
can be acted on from both sides by two monoids𝑀 ∈ V and 𝑁 ∈ W in a coherent way.

Definition 5.2.4 A (𝑀, 𝑁)-bimodule (𝑌,𝑦𝑙 , 𝑦𝑟) has both a left𝑀-action 𝑦𝑙 : 𝑀 �𝑌 → 𝑌 and a
right 𝑁 -action 𝑦𝑟 : 𝑌 � 𝑁 → 𝑌 that are compatible with each other:

(𝑀 �𝑌) � 𝑁 𝑀 �(𝑌 � 𝑁)

𝑌 � 𝑁 𝑌 𝑀 �𝑌

𝛼𝑀,𝑌,𝑁

𝑦𝑙�𝑁 𝑀 �𝑦𝑟

𝑦𝑟 𝑦𝑙

(��)

⌟

Definition 5.2.5 Let (𝑀,𝜂 : 𝐼 → 𝑀, 𝜇 : 𝑀 → [𝑀,𝑀]) be a monoid in V.

A left 𝑀-module in C is an object 𝑍 ∈ C

with a left action over𝑀 , or left𝑀-action

𝑧 : 𝑀 → 〈𝑍,𝑍 〉

that respects the unit and multiplication
of the monoid:

𝐼

𝑀 〈𝑍, 𝑍 〉

𝜂 j𝑍

𝑧

(〈〉𝜂)

〈𝑍,𝑍 〉 𝑀 [𝑀,𝑀]

[〈𝑍,𝑍 〉, 〈𝑍, 𝑍 〉] [𝑀, 〈𝑍,𝑍 〉]

𝑧 𝜇

L𝑍𝑍,𝑍 〈𝑀,𝑧〉

[𝑧,id]

(〈〉𝜇)

A right 𝑀-module in D is an object 𝑋 ∈ D

with a right action over𝑀 , or right𝑀-action

𝑥 : 𝑋 → [𝑀,𝑋 〉

that respects the unit and multiplication of
the monoid:

𝑋 𝑋

[𝑀,𝑋 〉 [𝐼 , 𝑋 〉

𝑥

[𝜂,𝑥〉

i𝑋 ([〉𝜂)

[𝑀,𝑋 〉 𝑋 [𝑀,𝑋 〉

[[𝑀,𝑀], [𝑀,𝑋 〉〉 [𝑀, [𝑀,𝑋 〉〉

𝑥 𝑥

L𝑀𝑋,𝑋 [𝑀,𝑥〉

[𝜇,id〉

([〉𝜇)

⌟

Definition 5.2.6 A (𝑀, 𝑁)-bimodule (𝑌,𝑦𝑙 , 𝑦𝑟) has both a left𝑀-action 𝑦𝑙 : 𝑀 → 〈𝑌,𝑌 〉 and a
right 𝑁 -action 𝑦𝑟 : 𝑌 → [𝑁,𝑌 〉 that are compatible with each other:

〈𝑌,𝑌 〉 𝑀 〈𝑌,𝑌 〉

〈[𝑁,𝑌 〉, [𝑁,𝑌 〉〉 〈𝑌, [𝑁,𝑌 〉〉

𝑦𝑙 𝑦𝑙

L𝑁𝑌,𝑌 〈𝑌,𝑦𝑟 〉

〈𝑦𝑟 ,id〉

(〈〉[〉)

⌟

Homomorphisms of modules are maps between the carrier objects that commute with the
action in the obvious way, giving rise to a category of modules for a monoid. We write
𝑀-LMod(C) for the category of left 𝑀-modules, 𝑁 -RMod(D) for the category of right 𝑁 -
modules, and (𝑀, 𝑁)-BMod(C) for bimodules. Of course, a trivial example of an𝑀-bimodule
is the monoid 𝑀 itself, with the multiplication 𝜇 as either action, but the flexibility over the
object and its category lets us state far more general properties.

Example 5.2.4. Every object 𝑋 of a left V[]-modular category C is a module over its endo-hom
〈𝑋,𝑋 〉, with the evaluation morphism 𝜅𝑋 : 〈𝑋,𝑋 〉 �𝑋 → 𝑋 . ⌟

112 sKew-monoidal closed stRuctuRe

Example 5.2.5. In a skew category, every object is canonically a left 𝐼 -module, with actions
𝜆𝑌 : 𝐼 �𝑌 → 𝑌 and j𝑌 : 𝐼 → 〈𝑌,𝑌 〉. Every right 𝐼 -module is automatically an 𝐼 -bimodule. ⌟

Example 5.2.6. Module objects in skew-closed modular categories are the appropriate notions
of distinguished objects in enriched and powered categories (see Chapter 4): a C-object𝑋 with
a left 𝑁 -action 𝑁 → 〈𝑋,𝑋 〉 ∈ V or right 𝑁 -action 𝑋 → [𝑁,𝑋 〉 ∈ C compatible with the unit
and composition or currying (which can be equivalently expressed in terms of 𝐿):

𝑁 ⊗ 𝑁 〈𝑋,𝑋 〉 ⊗ 〈𝑋,𝑋 〉

𝑁 〈𝑋,𝑋 〉

𝑥⊗𝑥

𝜇 N𝑋
𝑋,𝑋

𝑥

[𝑁,𝑋 〉 𝑋 [𝑁,𝑋 〉

[𝑁 ⊗ 𝑁,𝑋 〉 [𝑁, [𝑁,𝑋 〉〉

𝑥 𝑥

[𝜇,𝑋 〉 [𝑁,𝑥〉

c𝑁,𝑁𝑋 ⌟

Example 5.2.7. Since 〈𝑍, 𝑍 〉 ∈ V is a monoid for all 𝑍 ∈ C, a left 𝑀-module in a skew-closed
modular category C is equivalently an object 𝑍 ∈ C with a monoid morphism 𝑧 : 𝑁 → 〈𝑍, 𝑍 〉.
A categorification of this fact is precisely the equivalence of skew left V-modular categories
(C, �: V × C→ C) and oplax monoidal functors V→ [C, C]: if (V, 𝐼 : 1→ V, ⊗ : V × V→ V)
is considered as a skew pseudomonoid in Cat (Lack and Street, 2012b), and the endofunctor
category ([C, C], Id : 1→ [C, C], ◦ : [C, C] × [C, C] → [C, C]) is a (pseudo)monoid for any C, an
oplaxmorphism of pseudomonoids �: V→ [C, C] – or equivalently, a skew left pseudomodule
over the closed pseudomonoidV, or amodule object in theMonCat-enrichedCat – is equipped
with natural transformations

1

V [C, C]

𝐼 Id

�
𝜆 �

V × V [C, C] × [C, C]

V [C, C]

�× �

⊗ ◦

�

𝛼 �

that satisfy appropriate coherence conditions that reduce to axioms of a modular category.
This analysis also answers a question we posed earlier: if a skew left V-modular category

is equivalently an oplax monoidal functor V → [C, C] which is a categorification of closed
module object, a skew right V-modular category (C, � : D × V → D) is equivalently the cat-
egorification of a skew right module object 𝑋 → [𝑀,𝑋 〉. Namely, defining the closed action
[−,=〉 : MonCatop × Cat → Cat by taking the functor category of the underlying categories
[V,D〉 ≜ [V,D], we have that a right V-modular category (D, � : D×V→ D) is equivalently
a skew-closed right V-pseudomodule in Cat, with a right V-pseudoaction � : D → [V,D]
equipped with coherent natural transformations

D D

[V,D] [1,D]
�

[𝐼 ,D]

𝑖𝜌�

[V,D] D [V,D]

[V × V,D] [V, [V,D]]
[⊗,D]

� �

𝛼�
[V,�]

𝑐

that have components 𝑋 → 𝑖 ([𝐼 ,D] (�𝑋)) and [V, �](�𝑋)𝐴𝐵 → 𝑐 ([⊗,D] (�𝑋))𝐴𝐵, which
simplify (with infix notation) to 𝜌�𝑋 : 𝑋 → 𝑋 � 𝐼 and 𝛼 �𝑋,𝐴,𝐵 : (𝑋 � 𝐴) � 𝐵 → 𝑋 � (𝐴 ⊗ 𝐵).
What this tells us is that despite the usual presentation of left modular categories as monoidal

monoids and modules 113

functors V → [C, C], a more fundamental characterisation is as a left skew V-pseudomodule
(over the pseudomonoid V ∈ Cat), either in the monoidal form V × C→ C or the closed form
V → [C, C], with right modular categories defined the other way around. The fact that the
former definition aligns with the monoidal functor characterisation simply stems from the
special case that the endo-action 〈𝑋,𝑋 〉 in any left modular category is a monoid. ⌟

Example 5.2.8. In the presheaf model, the right unitor 𝑃 ⊗ 𝑉 → 𝑃 is a right 𝑉 -module action.
In Ñ, the transformation 𝑋 ⊕ 𝐼 → 𝑋 isn’t available as part of the structure, since it expresses
the reindexing of the N-indexed set:

(
∑
𝑚∈N

𝑋𝑚 × [𝑛]𝑚) → 𝑋𝑛 = {𝑋𝑚 × [𝑛]𝑚 → 𝑋𝑛 }𝑚,𝑛∈N

We can prove that a 𝐼 -module structure on an indexed set is equivalent to a presheaf action:
the free presheaf monad^𝑋 is isomorphic to𝑋 ⊕ 𝐼 , and module actions𝑋 ⊕ 𝐼 → 𝑋 correspond
to ^-algebra structure maps ^𝑋 → 𝑋 . Dually, the cofree presheaf comonad □𝑋 is isomorphic
to [𝐼 , 𝑋], and coalgebras 𝑋 → □𝑋 are module actions 𝑋 → [𝐼 , 𝑋]. ⌟

Right modules can be described categorically using the following standard result.

Proposition 5.2.2 For a monoid 𝑀 , the functor �𝑀 ≜ (−) � 𝑀 : C → C is a monad, with unit
and multiplication given by the following composites:

𝑋
𝜌𝑋 𝑋 � 𝐼 𝑋�𝜂

𝑋 � 𝑀 (𝑋 � 𝑀) � 𝑀
𝛼𝑋,𝑀,𝑀

𝑋 � (𝑀 ⊗ 𝑀) 𝑋�𝜇
𝑋 � 𝑀

For amonoid𝑀 , the functor𝑀 [〉 ≜ [𝑀, =〉 : C→ C is a comonad, with counit and comultiplication

[𝑀,𝑌 〉 [𝜂,𝑌 〉 [𝐼 , 𝑌 〉 i𝑌 𝑌 [𝑀,𝑌 〉
L𝑀𝑀,𝑌 [[𝑀,𝑀], [𝑀,𝑌 〉〉 [𝜇,id〉 [𝑀, [𝑀,𝑌 〉〉

The co/monad laws stem from axioms of skewmodular categories and monoids, with all trans-
formations directed in just the right way to make the appropriate diagrams commute. The
axioms of modules are precisely the compatibility laws of co/algebras for the co/monads.

Proposition 5.2.3 The categories of 𝑀-modules 𝑀-RMod(C), algebras �𝑀-Alg(C), and coalge-
bras𝑀 [〉-Coalg(C) are isomorphic.

The functor �𝑀 ≜ (−) �𝑀 : C→ C then lifts to the free𝑀-module functor C→ 𝑀-RMod(C),
mapping objects𝑋 ∈ C to𝑀-modules (𝑋 �𝑀, (𝑋 �𝑀) �𝑀 → 𝑋 �𝑀), and for all𝑀-modules
(𝑌,𝑦 : 𝑌 � 𝑀 → 𝑌), we have a right 𝑀-module homomorphism �𝑀 (𝑌) → 𝑌 ∈ 𝑀-RMod(C)
exhibited by Diagram (�𝜇).

Remark. 𝑀 �≜ 𝑀 �(−) is not a monad in a left-skew monoidal category due to the direction
of the associator, so left modules are not expressible as algebras for a monad (but they are
algebras for the endofunctor). The left action 𝑀 → 〈𝑋,𝑋 〉 is not expressible as an algebra
structure at all. Consequently, we will be working with right modules as default, specifying
the direction in case of ambiguity. ⌟

We have a preservation property of module objects under modular functors, arising from a
distributive law induced by the strength.

114 sKew-monoidal closed stRuctuRe

Proposition 5.2.4 A right V-modular functor 𝐹 : C→ D is an elevator from (−) � 𝐵 : C→ C to
(−) 	 𝐵 : D→ D, for all 𝐵 ∈ V. When 𝐵 = 𝑀 a monoid, this is a monad-monad distributive law.

PRoof For all 𝑋 ∈ C, the action 𝐹𝑋 	 𝐵 → 𝐹 (𝑋 � 𝐵) gives the components of the elevator.
For 𝐵 = 𝑀 a monoid, the distributive law axioms follow from strength andmonoid axioms. □

Corollary 5.2.2 Right V-modular functors 𝐹 : C→ D lift to𝑀-RMod(C) → 𝑀-RMod(D), and
𝑀-RMod becomes a functor V-RMod→ Cat.

PRoof The distributive law of Proposition 5.2.4 induces the lifting to �𝑀-algebras, or equiv-
alently,𝑀-modules. Given (𝑋, 𝑥), 𝐹𝑋 is equipped with a module structure

𝐹𝑋 	 𝑀 s𝑋,𝑀
𝐹 (𝑋 � 𝑀) 𝐹𝑥 𝐹𝑋 𝐹𝑋 𝐹𝑥 𝐹 [𝑀,𝑋 〉 s𝑀,𝑋 J𝑀, 𝐹𝑋 〉〉 □

Example 5.2.9. Let C be a (V,W)-bimodular category, 𝑀 ∈ V, 𝑁 ∈ W monoids, and 𝐴 ∈ V

an object. Then, the functor 𝐴 �(−) : C → C lifts to 𝑁 -RMod(C) → 𝑁 -RMod(C), using the
associator (𝐴 �𝑌) � 𝑁 → 𝐴 � (𝑌 � 𝑁) as the distributive law. Similarly, 𝑋 � (−) lifts to
𝑀-LMod(V) → 𝑀-LMod(V), mapping (𝐴, 𝑎 : 𝐴⊗𝑀 → 𝐴) to (𝑋 �𝐴) �𝑀 → 𝑋 � (𝐴⊗𝑀) →
𝑋 � 𝐴. ⌟

Corollary 5.2.3 The action s𝑋,𝑀 : 𝐹𝑋 	𝑀 → 𝐹 (𝑋 �𝑀) of a right V-modular functor 𝐹 : C→ D

over a monoid𝑀 is a right𝑀-module homomorphism.

PRoof The homomorphism property expands as follows:

(𝐹𝑋 	 𝑀) 	 𝑀 𝐹𝑋 	 (𝑀 ⊗ 𝑀) 𝐹𝑋 	 𝑀

𝐹 (𝑋 � 𝑀) 	 𝑀 𝐹 ((𝑋 � 𝑀) � 𝑀) 𝐹 (𝑋 � (𝑀 ⊗ 𝑀)) 𝐹 (𝑋 � 𝑀)

s𝑋,𝑀

𝛼𝐹𝑋,𝑀,𝑀 id	𝜇

s𝑋,𝑀	𝑀

s𝑋�𝑀,𝑀 𝐹𝛼𝑋,𝑀,𝑀 𝐹 (𝑋�𝜇)

s𝑋,𝑀⊗𝑀𝑠𝛼� 𝑠 2

The proof is similar for the closed setting. □

Modules will form a very important part of our development, as presheaves are equivalently
captured as co/algebras for the co/free presheaf co/monad, or modules for the monoidal unit.
We turn to the discussion of modules and homomorphisms with additional structure, and how
modular functors interact with this structure.

5.2.2 Parametrised maps

We investigate properties of parametrised maps 𝑓 : 𝑋 � 𝐵 → 𝑌 , or 𝑔 : 𝑋 → [𝐵,𝑌 〉 for 𝑋,𝑌 ∈ C
and 𝐵 ∈ V. These intend to represent morphisms from𝑋 to𝑌 , while incorporating a parameter
𝐵 ∈ V. Such maps may interact with module structure in three ways, depending on where in
the object 𝑋 � 𝐵 a monoid𝑀 acts.

Definition 5.2.7 Let 𝑓 : 𝑋 � 𝐵 → 𝑌 ∈ C be a morphism in C, and𝑀 ∈ V a monoid.

monoids and modules 115

1. 𝑓 is left-linear if C is a V-bimodular category, 𝑥 : 𝑀 �𝑋 → 𝑋 and 𝑦 : 𝑀 �𝑌 → 𝑌 are left
modules, and

(𝑀 �𝑋) � 𝐵 𝑀 �(𝑋 � 𝐵) 𝑀 � 𝑌

𝑋 � 𝐵 𝑌

𝛼𝑀,𝑋,𝐵 𝑀 �𝑓

𝑥�𝐵 𝑦

𝑓

(𝑓 L)

2. 𝑓 is middle-linear if 𝑥 : 𝑋 � 𝑀 → 𝑋 is a right module, 𝑏 : 𝑀 ⊗ 𝐵 → 𝐵 is a left module, and

(𝑋 � 𝑀) � 𝐵 𝑋 � (𝑀 ⊗ 𝐵) 𝑋 � 𝐵

𝑋 � 𝐵 𝑌

𝛼𝑋,𝑀,𝐵 𝑋�𝑏

𝑥�𝐵 𝑓

𝑓

(𝑓M)

3. 𝑓 is right-linear if 𝑏 : 𝐵 ⊗ 𝑀 → 𝐵 and 𝑦 : 𝑌 � 𝑀 → 𝑌 are right modules, and

(𝑋 � 𝐵) � 𝑀 𝑋 � (𝐵 ⊗ 𝑀) 𝑋 � 𝐵

𝑌 � 𝑀 𝑌

𝛼𝑋,𝐵,𝑀 𝑋�𝑏

𝑓 �𝑀 𝑓

𝑦

(𝑓 R)

⌟

Example 5.2.10. The motivation for the terminology comes from abstract algebra: when 𝑅
is a commutative ring and 𝑋, 𝐵,𝑌 are 𝑅-modules, the diagrams correspond to the following
properties of a function 𝑓 : 𝑋 × 𝐵 → 𝑌 :

𝑓 (𝑟 ·𝑋 𝑥, 𝑏) = 𝑟 ·𝑌 𝑓 (𝑥, 𝑏)
𝑓 (𝑥 ·𝑋 𝑟, 𝑏) = 𝑓 (𝑥, 𝑟 ·𝐵 𝑏)
𝑓 (𝑥, 𝑏 ·𝐵 𝑟) = 𝑓 (𝑥, 𝑏) ·𝑌 𝑟 ⌟

Right-linearity is just the notion of homomorphism from the 𝑀-module (𝑋 � 𝐵, (𝑋 � 𝑏𝑙) ◦
𝛼𝑋,𝐵,𝑀) to the𝑀-module (𝑌,𝑦). Middle linearity is also known as balancedness (Jacobson, 2012,
Section 3.7): postcomposition by a balanced map 𝑓 : 𝑋 � 𝐵 → 𝑌 equates the parallel pair:

𝑋 � (𝑀 ⊗ 𝐵)
(𝑋 � 𝑀) � 𝐵 𝑋 � 𝐵

𝛼𝑋,𝑀,𝐵

𝑎�𝑀

𝑋�𝑏𝑙
+

By taking the coequaliser 𝑋 � 𝐵 𝑞
𝑄 , we find the initial balanced map, through which

all other balanced maps factor via 𝑞. The construction therefore allows us to define the right
action of a left 𝑀-module on a right 𝑀-module (−) �𝑀 (=) : 𝑀-RMod(C) ×𝑀-LMod(V) → C,
given, for all (𝑋, 𝑥) ∈ 𝑀-RMod(C) and (𝐵, 𝑎𝑟) : 𝑀-LMod(V), as the coequaliser

116 sKew-monoidal closed stRuctuRe

𝑋 � (𝑀 ⊗ 𝐵)
(𝑋 � 𝑀) � 𝐵 𝑋 � 𝐵 𝑋 �𝑀 𝐵

𝑌

𝛼𝑋,𝑀,𝐵

𝑎�𝑀

𝑋�𝑏𝑙
𝑞+

𝑓
𝑓 ♯

The construction is a generalisation of the tensor product of 𝑅-modules for a commutative
ring 𝑅 (Mac Lane and Birkhoff, 1967, Section IX.8). If 𝑅 is a commutative ring and (𝐴, 𝑎), (𝐵,𝑏)
are 𝑅-modules, their tensor product over 𝑅, 𝐴 ⊗𝑅 𝐵, is defined as the tensor product of the
underlying commutative group 𝐴 ⊗ 𝐵 quotiented by an invariance property with respect to
the module actions:

𝐴 ⊗𝑅 𝐵 ≜ 𝐴 ⊗ 𝐵 / (𝑎 ·𝐴 𝑟, 𝑏) ∼ (𝑥, 𝑟 ·𝐵 𝑏)

For a commutative ring 𝑅, this tensor is itself an 𝑅-module, exhibiting the category
(𝑅-Mod([〉), 𝑅, ⊗𝑅) as monoidal. In case 𝑅 is not commutative, the construction still works
as long as 𝐴 is a right 𝑅-module and 𝐵 a left 𝑅-module, though the resulting object will not
in general be a module. The universal property of the tensor product identifies every bilinear
map 𝐴 × 𝐵 → 𝐶 as a linear map 𝐴 ⊗𝑅 𝐵 → 𝐶 . This balancedness property and its relation to
quotienting is used to address the main discrepancy between the presheaf and familial models.

Example 5.2.11. In F̃ , a transformation 𝑓 : 𝑃 ⊗ 𝑄 → 𝑅 is both natural and dinatural: it is
equivalently a family of maps { 𝑓 : 𝑃 [𝑚] × ([𝑚] ⇒ 𝑄 [𝑛]) → 𝑅 [𝑛] }𝑚,𝑛∈F satisfying, for all
𝜌 : [𝑚] → [𝑛] and 𝜚 : [𝑛] → [𝑝], the dinaturality and naturality conditions

𝑓 ([𝑚], 𝑡, 𝜎 ◦ 𝜌) = 𝑓 ([𝑛], 𝑃 (𝜌)𝑡, 𝜎) 𝑓 ([𝑚], 𝑡, 𝑄 (𝜚) ◦ 𝜎) = 𝑅(𝜚)(𝑓 ([𝑚], 𝑡, 𝜎))

In Ñ, a map 𝑓 : 𝑋 ⊕ 𝑌 → 𝑍 satisfies the same axioms exactly when all three objects are right
𝐼 -modules, and the map is middle- and right-linear respectively. ⌟

Linearity properties compose with homomorphism conditions to give the following.

Proposition 5.2.5 Let 𝑓 : 𝑋�𝐵 → 𝑌 ∈ C be a parametrisedmap, and 𝑖 : 𝑋 ′→ 𝑋, 𝑗 : 𝑌 → 𝑌 ′ ∈ C
and ℎ : 𝐵′→ 𝐵 ∈ V morphisms. Then, the composite 𝑋 ′ � 𝐵′ 𝑖�ℎ

𝑋 � 𝐵 𝑓
𝑌

𝑗
𝑌 ′ is:

1. left-linear, if 𝑓 is left-linear, 𝑥′ : 𝑀 �𝑋 ′→ 𝑋 ′ and 𝑦′ : 𝑀 �𝑌 ′→ 𝑌 ′ are left modules, and 𝑖, 𝑗
are left module homomorphisms;

2. middle-linear, if 𝑓 is middle-linear, 𝑥′ : 𝑋 ′ � 𝑀 → 𝑋 ′ is a right module, 𝑏′ : 𝑀 ⊗ 𝐵′→ 𝐵′ is a
left module, 𝑖 is a right module homomorphism, and 𝑏′ is a left module homomorphism;

3. right-linear, if 𝑓 is right-linear, 𝑏′ : 𝐵′ ⊗𝑀 → 𝐵′ and 𝑦′ : 𝑌 ′ �𝑀 → 𝑌 ′ are right modules, and
ℎ, 𝑗 are right module homomorphisms.

The homomorphism properties give rise to the functors

LeftLin(−,−;−) : 𝑀-LMod(C)op × Vop ×𝑀-LMod(C) → Set

MiddleLin(−,−;−) : 𝑀-RMod(C)op ×𝑀-LMod(V)op × C→ Set

RightLin(−,−;−) : Cop ×𝑀-RMod(V)op ×𝑀-RMod(C) → Set

monoids and modules 117

that map objects to sets of linear maps of the right form.

Proposition 5.2.6 If 𝑋 � 𝐵 → 𝑌 is a right/middle/left-linear map in C and 𝐹 : C → D is a

modular functor, 𝐹𝑋 	 𝐵
s𝐹𝑋,𝐵

𝐹 (𝑋 	 𝐵) 𝐹 𝑓
𝐹𝑌 is right/middle/left-linear in D.

PRoof Assuming the appropriate structure on the objects and the functor, the linearity laws
hold by the laws assumed for 𝑓 , strength properties, and naturality.

(𝑀 	 𝐹𝑋) 	 𝐵 𝑀 	 (𝐹𝑋 	 𝐵) 𝑀 	 𝐹 (𝑋 �C 𝐵) 𝑀 	 𝐹𝑌

𝐹 (𝑀 �C 𝑋) 	 𝐵 𝐹 ((𝑀 �C 𝑋) �C 𝐵) 𝐹 (𝑀 �C (𝑋 �C 𝐵)) 𝐹 (𝑀 �C 𝑌)

𝐹𝑋 	 𝐵 𝐹 (𝑋 �C 𝐵) 𝐹𝑌
s�𝑋,𝐵 𝐹 𝑓

𝐹𝑥�𝐵

s �𝑀,𝑋

𝛼𝑀,𝐹𝑋,𝐵 𝑀 �s�𝑋,𝐵 𝑀 �𝐹 𝑓

s �𝑀,𝑌

𝐹𝑦𝐹 (𝑥�𝐵)

𝐹𝛼𝑀,𝑋,𝐵 𝐹 (𝑀�𝑓)
s �𝑀,𝑋�𝐵

s�𝑀 �𝑋,𝐵

𝑠𝛼 �� 𝑠 2

𝑠 1 𝑓 L

(𝐹𝑋 � 𝑀) � 𝐵 𝐹𝑋 � (𝑀 ⊗ 𝐵) 𝐹𝑋 � 𝐵

𝐹 (𝑋 � 𝑀) � 𝐵 𝐹 ((𝑋 � 𝑀) � 𝐵) 𝐹 (𝑋 � (𝑀 ⊗ 𝐵)) 𝐹 (𝑋 � 𝐵)

𝐹𝑋 � 𝐵 𝐹 (𝑋 � 𝐵) 𝐹𝑌

s𝑋,𝑀�𝐵

𝐹𝑥�𝐵

s𝑋,𝐵 𝐹 𝑓

𝐹 𝑓

s𝑋,𝐵

id�𝐹𝑏𝛼𝐹𝑋,𝑀,𝐵

s𝑋�𝑀,𝐵

s𝑋,𝑀⊗𝐵
𝐹𝛼𝑋,𝑀,𝐵

𝐹 (𝑥�𝐵)

𝐹 (𝑋�𝑏)
𝑠𝛼� 𝑠 2

𝑠 1 𝑓M

(𝐹𝑋 � 𝐵) � 𝑀 𝐹𝑋 � (𝐵 ⊗ 𝑀) 𝐹𝑋 � 𝐵

𝐹 (𝑋 � 𝐵) � 𝑀 𝐹 ((𝑋 � 𝐵) � 𝑀) 𝐹 (𝑋 � (𝐵 ⊗ 𝑀)) 𝐹 (𝑋 � 𝐵)

𝐹𝑌 � 𝑀 𝐹 (𝑌 � 𝑀) 𝐹𝑌
𝐹𝑦s𝐶,𝑀

𝐹 𝑓 �𝑀

s𝑋,𝐵�id s𝑋,𝐵

𝐹 𝑓

id�𝐹𝑏𝛼𝐹𝑋,𝐵,𝑀

s𝑋�𝐵,𝑀

s𝑋,𝐵⊗𝑀
𝐹𝛼𝑋,𝐵,𝑀

𝐹 (𝑓 �𝑀)

𝐹 (𝑋�𝑏)
𝑠𝛼� 𝑠 2

𝑠 1 𝑓 R

□

The definition above showcases the symmetry of the operations, but in practice we will use
a more general definition of left-linearity, changing from 𝑋 �(−) : C → C to an arbitrary
module endofunctor 𝐹 – this also rids us of the requirement that C is a modular category.
Other names for the idea are 1-linearity (A. Kock, 1971a), left-linearity (Fiore and Saville, 2018)
or left homomorphism (Fiore and Saville, 2017).

Definition 5.2.8 If 𝐹 : C→ C is a right V-modular functor, and (𝑋, 𝑥), (𝑌,𝑦) are 𝐹 -algebras, a
parametrised map 𝑋 � 𝐴→ 𝑌 is 𝐹 -linear if

𝐹𝑋 � 𝐵 𝐹 (𝑋 � 𝐵) 𝐹𝑌

𝑋 � 𝐵 𝑌

s𝑋,𝐵 𝐹 𝑓

𝑥�𝐵 𝑦

𝑓

(𝑓 F)

118 sKew-monoidal closed stRuctuRe

𝐹 -linearity is closed under homomorphisms (Fiore and Saville, 2021), so we have a functor

𝐹 -Lin(−,−;−) : 𝐹 -Alg(C)op × Vop × 𝐹 -Alg(C) → Set

that maps (((𝑋, 𝑥), 𝐵), (𝑌,𝑦)) to 𝐹 -linear maps 𝑋 � 𝐵 → 𝑌 . ⌟

Definition 5.2.9 For a right V-modular functor 𝐹 : C → C, an 𝐹 -module over 𝑀 is an object
𝑋 ∈ C with 𝐹 -algebra structure 𝑥 : 𝐹𝑋 → 𝑋 and an 𝐹 -linear module structure 𝑓 : 𝑋 �𝑀 → 𝑋 :

𝐹𝑋 � 𝑀 𝐹 (𝑋 � 𝑀) 𝐹𝑋

𝑋 � 𝑀 𝑋

s𝑋,𝑀 𝐹 𝑓

𝑥�𝑀 𝑥

𝑓

An 𝐹 -monoid for 𝐹 : V → V is a monoid 𝑀 which is an 𝐹 -module over 𝑀 . We will generally
talk about algebraic modules and algebraic monoids when the functor 𝐹 is not named. ⌟

Example 5.2.12. For a right modular monad 𝑇 , the strength 𝑇𝑋 � 𝑀 → 𝑇 (𝑋 � 𝑀) is 𝑇 -linear:

𝑇𝑇𝑋 � 𝑀 𝑇 (𝑇𝑋 � 𝑀) 𝑇𝑇 (𝑋 � 𝑀)

𝑇𝑋 � 𝑀 𝑇 (𝑋 � 𝑀)

𝜇𝑋�𝑀

s𝑋,𝑀

s𝑇𝑋,𝑀 𝑇 s𝑋,𝑀

𝜇𝑋�𝑀

⌟

Example 5.2.13. Defining (−) � (=) : C × [C, C] → C as 𝑋 �𝐺 ≜ 𝐺𝑋 , an 𝐹 -module over𝐺 is a
natural transformation 𝜑 : 𝐺𝐹 =⇒ 𝐹𝐺 and object 𝑋 with compatible algebra structures:

𝐺𝐹𝑋 𝐹𝐺𝑋 𝐹𝑋

𝐺𝑋 𝑋

𝜑𝑋 𝐹𝑔

𝐺 𝑓 𝑓

𝑔 ⌟

Example 5.2.14. In F̃ with substitution monoidal structure, for a signature endofunctor Ω, a
Ω-monoid is a presheaf with compatible substitution and syntax structure. For the initial
Ω-monoid, the compatibility law unfolds into the structurally recursive specification of the
substitution operation. ⌟

The above definitions were presented in their most general form, in order to exhibit the sym-
metry of the definitions; in practice, we will work most often work with modules over the
monoidal unit 𝐼 .

5.2.3 Modules over the unit

Themonoidal unit 𝐼 is a monoid, with unit id𝐼 : 𝐼 → 𝐼 andmultiplication 𝜆𝐼 : 𝐼 ⊗𝐼 → 𝐼 . Modules
over the unit feature prominently in our work, as they capture the renaming of presheaves as
an extra algebraic structure on families. The general theory from the previous section also
simplifies: every object of V is canonically a left 𝐼 -module with action 𝜆𝐵 : 𝐼 ⊗𝐵 → 𝐵, and thus
every bimodule is just a right module. In this section we discuss some derived definitions.

monoids and modules 119

Pointed and invariant modules Modules over the unit may interact with compatible ways
with monoids in V. If the module resides in V itself, it may also have a point that is compatible
with the module structure.

Definition 5.2.10 An pointed module (𝐴, 𝑝, 𝑎) is an 𝐼 -module (𝐴, 𝑎) with a module homomor-
phism 𝑝 : 𝐼 → 𝐴. Pointed modules are the objects in the slice category 𝐼/𝐼 -RMod(V).

𝐼 ⊗ 𝐼 𝐴 ⊗ 𝐼

𝐼 𝐴

𝑝⊗𝐼

𝑎𝜆𝐼

𝑝

(⊗𝑝)

⌟

Remark. The unit 𝐼 is pointed, as is tensor of pointed objects (𝐴, 𝑝 : 𝐼 → 𝐴) and (𝐵,𝑞 : 𝐼 → 𝐵):

𝐼
𝜌𝐼 𝐼 ⊗ 𝐼 𝑝⊗𝑞

𝐴 ⊗ 𝐵

However, the tensor is not necessarily a pointed module – see discussion later. ⌟

Any𝑀-module can be turned into an𝑁 -module by restricting along amonoid homomorphism
𝑓 : 𝑁 → 𝑀 :

𝑋 � 𝑁 𝑋�𝑓
𝑋 � 𝑀 𝑥 𝑋

One such homomorphism is the unit 𝜂 : 𝐼 → 𝑁 , which is a monoid homomorphism; this can
turn any 𝑁 -module into an 𝐼 -module. If a module has both structures present independently,
we ask for them to be compatible.

Definition 5.2.11 A module (𝑋,𝑚 : 𝑋 ⊗ 𝑀 → 𝑋) is invariant if it is also an 𝐼 -module with
𝑎 : 𝑋 ⊗ 𝐼 → 𝑋 , and the structures are compatible:

𝑋 � 𝐼

𝑋 � 𝑀 𝑋

𝑋�𝜂 𝑎

𝑚

(�𝜂)

⌟

Thenotion of invariance is more valuable when𝑋 has both𝑀-module and 𝐼 -module structures
a priori. In a strong monoidal modular category, every 𝑀-module (𝑋,𝑚 : 𝑋 � 𝑀 → 𝑋) has
the canonical 𝐼 -module action 𝜌𝑋 : 𝑋 � 𝐼 → 𝑋 which are compatible by the right unit law of
the modular category. In a skew-monoidal modular category, the right unitor 𝑋 � 𝐼 → 𝑋 does
not exist by default, so if it is constructed by alternative means, the invariance condition may
not necessarily hold.

Proposition 5.2.7 Every monoid is a pointed invariant 𝐼 -module, with the unit 𝜂 : 𝐼 → 𝑀 a
module homomorphism.

PRoof Given a monoid (𝑀,𝜂 : 𝐼 → 𝑀, 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀), the 𝐼 -module structure is given by
Diagram (�𝜂): 𝑎 : 𝑀 ⊗ 𝐼 𝑀⊗𝜂

𝑀 ⊗𝑀 𝜇
𝑀 . The module unit law is the right monoid law

of𝑀 ; the associativity law is

120 sKew-monoidal closed stRuctuRe

(𝑀 ⊗ 𝐼) ⊗ 𝐼 (𝑀 ⊗ 𝑀) ⊗ 𝐼 𝑀 ⊗ 𝐼

𝑀 ⊗ (𝐼 ⊗ 𝐼) 𝑀 ⊗ (𝑀 ⊗ 𝐼) (𝑀 ⊗ 𝑀) ⊗ 𝑀 𝑀 ⊗ 𝑀

𝑀 ⊗ (𝐼 ⊗ 𝑀) 𝑀 ⊗ (𝑀 ⊗ 𝑀)

𝑀 ⊗ 𝐼 𝑀 ⊗ 𝑀 𝑀𝜇𝑀⊗𝜂

𝛼𝑀,𝐼,𝐼

𝑀⊗𝜆𝐼 𝜇

𝑀⊗𝜂

𝜇⊗𝐼(𝑀⊗𝜂)⊗𝐼

𝛼𝑀,𝑀,𝐼

𝑀⊗(𝜂⊗𝐼)

𝛼𝑀,𝑀,𝑀

𝑀⊗𝜇

𝜇⊗𝑀

id⊗𝜂

𝑀⊗(𝜂⊗𝑀)

𝑀⊗(𝑀⊗𝜂)
𝑀⊗(𝐼⊗𝜂)

𝑀⊗𝜆𝑀

𝛼 2

𝛼 3

𝜆

𝜂𝜇

𝜇𝜇

The compatibility Diagram (⊗𝑝) (which establishes 𝜂 as a module homomorphism) is:

𝐼 ⊗ 𝐼 𝑀 ⊗ 𝐼

𝐼 ⊗ 𝑀

𝐼 𝑀 𝑀 ⊗ 𝑀

𝜆𝐼

𝜇

𝑀⊗𝜂

𝜂⊗𝐼

𝜂

𝜆𝑀
𝜂⊗𝑀

𝐼⊗𝜂

𝜂𝜇
𝜆

□

We will call monoids seen as invariant 𝐼 -modules invariant monoids, and write IMod(V) for
the category of invariant monoids in V: its objects are monoids with a compatible monoid and
module structures, and morphisms are monoid and module homomorphisms.

Example 5.2.15. In the familial model, the proposition above demonstrates that any family
equipped with a substitution structure can also be endowed with a renaming structure, sim-
ply by interpreting variable renaming as substitution of variable terms. However, in the case
of the initial model of a syntax – that is, the inductive datatype generated by constructors
and variables – substitution depends on renaming, particularly because substituting under
binders necessitates weakening. Thus, the module structure must be established first. Once
the monoid structure is subsequently induced, we can prove that the resulting monoid is in-
variant – that is, substitution of variables for variables is extensionally equal to renaming. This
invariant property is a recurring requirement in mechanised formalisations – see Allais et al.
(2021, Figure 86) or the Substitution chapter of the PLFA textbook. ⌟

Parametrised maps When working with modules over 𝐼 , properties of parametrised maps
are also simplified. Without the need for bimodules, middle-linearity for 𝑋 � 𝐵 → 𝐶 ∈ C

reduces to the diagram on the left, and left-linearity for 𝐴 ⊗ 𝐵 → 𝐶 is automatic:

(𝑋 � 𝐼) � 𝐵 𝑋 � (𝐼 ⊗ 𝐵) 𝑋 � 𝐵

𝑋 � 𝐵 𝑌

𝛼�𝑋,𝐼,𝐵 𝑋�𝜆⊗𝐵

𝑥�𝐵 𝑓

𝑓

(𝐼 �𝑋) � 𝐵 𝐼 �(𝑋 � 𝐵) 𝐼 �𝑌

𝑋 �𝐵 𝑌

𝜆 �
𝑌𝜆 �

𝑋 �𝐵

𝑓

𝐼 �𝑓𝛼𝐼 ,𝑋,𝐵

𝜆 �
𝑋 �𝐵

𝜆𝛼

𝜆

https://plfa.github.io/Substitution/#plfa_plfa-part2-Substitution-13472

monoids and modules 121

Middle- and right-linearity requires all three objects in the map to be 𝐼 -modules, and expresses
preservation of themodule structure in twoways. If the objects are also pointed, we can ask for
themap to preserve all points – this is a stronger condition than simply being a homomorphism
𝐴 ⊗ 𝐵 → 𝐶 ∈ 𝐼/V, as the points of the input tensor are specified separately.

Definition 5.2.12 A parametrised map 𝑓 : 𝐴 ⊗ 𝐵 → 𝐶 ∈ V is pointed if 𝐴, 𝐵,𝐶 are pointed
objects, and the following diagram commutes:

𝐼 ⊗ 𝐼

𝐴 ⊗ 𝐵 𝐶

𝜆𝐼

𝑝𝐶𝑝𝐴⊗𝑝𝐵

𝑓

(𝑓 P)

⌟

Example 5.2.16. Linearity and pointedness for maps with one parameter capture a form of
renaming-invariance, but it is limited: the incompatibility due to the lack of quotienting can
still be triggered by maps with more parameters. This, again, is no issue in the presheaf model,
where a tensor of multiple components ((𝑃 ⊗𝑄) ⊗𝑅) bakes in two quotienting conditions and
two renaming-invariance properties at different elements of the tuple: for 𝑡 ∈ 𝑃 [𝑖], 𝜌 ∈ [𝑗]𝑖 ,
𝜎 : [𝑗] ⇒ 𝑄 [𝑘], 𝜚 ∈ [𝑙]𝑘 , 𝜍 : [𝑙] ⇒ 𝑅 [𝑚] we have identification of tuples in ((𝑃 ⊗𝑄) ⊗ 𝑅) [𝑚]:

([𝑙], ([𝑗], 𝑃 (𝜌)𝑡,𝑄 (𝜚) ◦ 𝜎), 𝜍) ∼ ([𝑘], ([𝑖], 𝑡, 𝜎 ◦ 𝜌), 𝜍 ◦ 𝜚)

A middle-linear map of families (𝑊 ⊕ 𝑋) ⊕ 𝑌 → 𝑍 could only capture the transposition of 𝜚
and would not go “deep enough” to account for 𝜌 . ⌟

This motivates the following generalisation, inspired by 𝑛-left-linear maps in skew-monoidal
categories by Fiore and Saville (2018).

Definition 5.2.13 For 1 ≤ 𝑛, an 𝑛-parametrised map in C, denoted (𝑋 � 𝐴1≤𝑖≤𝑛)𝑛 → 𝑌 for
1 ≤ 𝑖 ≤ 𝑛, is a map of the form (· · · ((𝑋 � 𝐴1) � 𝐴2) · · ·) � 𝐴𝑛 → 𝑌 . The bounds on 𝑖 are
shown if they differ from 1 and the exponent 𝑛, otherwise we write (𝑋 � 𝐴𝑖)𝑛 → 𝑌 . ⌟

Note that any𝑛-parametrisedmap can be seen as a𝑘-parametrised one for 1 ≤ 𝑘 ≤ 𝑛, grouping
together the first 𝑛 − 𝑘 parameters with 𝑋 into 𝑋 ′ ≜ (𝑋 � 𝐴𝑖)𝑛−𝑘 and (𝑋 ′ � 𝐴𝑛−𝑘<𝑖)𝑘 → 𝑌 .

Definition 5.2.14 An 𝑛-parametrised map 𝑓 : (𝑋 � 𝐴𝑖)𝑛 → 𝑌 is 𝑛-middle-linear if (𝑋, 𝑥) is an
𝐼 -module, and the following diagram commutes:

((𝑋 � 𝐼) � 𝐴𝑖)𝑛 ((𝑋 � (𝐼 ⊗ 𝐴1)) � 𝐴2≤𝑖)𝑛 ((𝑋 � 𝐴1) � 𝐴2≤𝑖)𝑛

(𝑋 � 𝐴𝑖)𝑛 𝑌

𝑓

𝑓

(𝑥�𝐴𝑖)𝑛

(𝛼𝑋,𝐼,𝐴1�𝐴2≤𝑖)𝑛 ((𝑋�𝜆𝐴1)�𝐴2≤𝑖)𝑛

An𝑛-parametrisedmap is𝑘-linear for 1 ≤ 𝑘 ≤ 𝑛 if the𝑘-parametrisedmap (𝑋 ′�𝐴𝑛−𝑘<𝑖)𝑘 → 𝑌

for𝑋 ′ = (𝑋 �𝐴𝑖)𝑛−𝑘 is𝑘-middle-linear, provided (𝐴𝑛−𝑘 , 𝑎𝑛−𝑘) is an 𝐼 -module so that (𝑋 �𝐴𝑖)𝑛−𝑘
is an 𝐼 -module with structure map

(𝑋 �𝐴𝑖)𝑛−𝑘 � 𝐼
𝛼
(𝑋�𝐴𝑖)𝑛−𝑘−1,𝐴𝑛−𝑘 ,𝐼(𝑋 �𝐴𝑖)𝑛−𝑘−1� (𝐴𝑛−𝑘 ⊗ 𝐼)

id�𝑎𝑛−𝑘 (𝑋 �𝐴𝑖)𝑛−𝑘−1�𝐴𝑛−𝑘 = (𝑋 �𝐴𝑖)𝑛−𝑘

122 sKew-monoidal closed stRuctuRe

⌟

We extend the arity of parametrisation to 𝑛 = 0 by taking a 0-parametrised map to simply be
𝑋 → 𝑌 , and 0-middle-linearity to be right-linearity in the sense before (namely, that it is a
module homomorphism, assuming 𝑋 and 𝑌 are modules). Middle linearity as defined above
then corresponds to 1-middle-linearity. We define multilinear maps to be linear in all available
parameters.

Definition 5.2.15 An 𝑛-parametrised map 𝑓 : (𝑋 � 𝐴𝑖)𝑛 → 𝑌 is called multilinear if 𝑋,𝑌 and
𝐴𝑖 are all 𝐼 -modules, and it is 𝑘-middle-linear for all 0 ≤ 𝑘 ≤ 𝑛. If the map (𝐴 ⊗ 𝐵𝑖)𝑛 → 𝐶

resides in V, it is pointed multilinear if all its objects are pointed 𝐼 -modules, and the 𝑛-ary
point-preservation condition holds, where 𝜆𝑛𝐼 is the obvious sequence of nested left unitors
collapsing the left-biased tensor of units into the unit:

(𝐼 ⊗ 𝐼𝑖)𝑛 𝐼

(𝐴 ⊗ 𝐵𝑖)𝑛 𝐶

(𝑝⊗𝑝𝑖)𝑛 𝑞

𝑓

𝜆𝑛𝐼

⌟

The hom-set functors from before can now be generalised to

MLin(−,−, . . .−;−) : (Mod(C) ×Mod(V)𝑛)op ×Mod(C) → Set

PMLin(−,−, . . . ,−;−) : (𝐼/Mod(V) × (𝐼/Mod(V))𝑛)op × 𝐼/Mod(V) → Set

Example 5.2.17. A parametrised map (𝑃 ⊗𝑄𝑖)𝑛 → 𝑅 in F̃ is natural and dinatural in all compo-
nents. It is equivalent to a multilinear map (𝐴 ⊕ 𝐵𝑖)𝑛 → 𝐶 in Ñ, which equates all tuples that
are identified by the quotienting condition of the coend in the presheaf model. Writing 𝐴𝜌𝑡
for 𝑎(𝑡, 𝜌) with 𝑎 : 𝐴 ⊕ 𝐼 → 𝐴, a multilinear map 𝑓 : (𝐴 ⊕ 𝐵𝑖)𝑛 → 𝐶 satisfies, in 𝐶𝑚:

𝑓 (. . . ((𝑡, 𝜎1 ◦ 𝜌1), 𝜎2 ◦ 𝜌2), . . . , 𝜎𝑛 ◦ 𝜌𝑛) = 𝑓 (. . . ((𝐴(𝜌1)𝑡, 𝐵1𝜌2 ◦ 𝜎1), 𝐵2𝜌3 ◦ 𝜎2), . . . , 𝜎𝑛)

for 𝑡 ∈ 𝐴𝑙 , 𝜌1 : [𝑘1]𝑙 , 𝜎𝑛 : (𝐵𝑛)𝑘𝑛𝑚 for 1 < 𝑛, and 𝜌𝑖 : [𝑘𝑖−2]𝑘𝑖 and 𝜎 𝑗 : (𝐵 𝑗)
𝑘 𝑗
𝑘 𝑗+1

for 1 < 𝑖, 𝑗 < 𝑛. ⌟

We show some examples of multilinear transformations next.

Lemma 5.2.1 The following morphisms and natural transformations are multilinear. When the
modular category is V, they are furthermore pointed.

1. The left unitor 𝜆𝐵 : 𝐼 ⊗ 𝐵 → 𝐵 for a module 𝐵.

2. The module structure 𝑥 : 𝑋 � 𝐼 → 𝑋 for a module 𝑋 .

3. The multiplication 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀 for an invariant monoid𝑀 .

PRoof The properties for the left unitor follow from naturality, skew-monoidal axioms and
module laws. For 𝑏 : 𝐵 ⊗ 𝐼 → 𝐵, point-preservation is Diagram (⊗𝑝), middle-linearity and
left-linearity both reduce to the module associativity law Diagram (�𝜇).

Let (𝑀,𝜂, 𝜇) be an invariant monoid, with its 𝐼 -module structure given by the pullback
module 𝑀 ⊗ 𝐼 𝑀⊗𝜂

𝑀 ⊗ 𝑀 𝜇
𝑀 . We show that 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀 is a multilinear map.

The pointedness condition is

monoids and modules 123

𝐼 ⊗ 𝐼 𝐼

𝐼 ⊗ 𝑀

𝑀 ⊗ 𝑀 𝑀

𝜆𝐼

𝜂𝜂⊗𝜂

𝜇

𝜆𝑀

𝐼⊗𝜂

𝜂⊗𝑀

𝜆

𝜂𝜇

The multilinearity conditions expand as

(𝑀 ⊗ 𝐼) ⊗ 𝑀 𝑀 ⊗ (𝐼 ⊗ 𝑀) 𝑀 ⊗ 𝑀

(𝑀 ⊗ 𝑀) ⊗ 𝑀 𝑀 ⊗ (𝑀 ⊗ 𝑀)

𝑀 ⊗ 𝑀 𝑀

𝛼𝑀,𝐼,𝑀

𝜇

𝜇

𝜇⊗𝑀

(𝑀⊗𝜂)⊗𝑀

𝑀⊗𝜆𝑀

𝑀⊗(𝜂⊗𝑀)
𝑀⊗𝜇

𝛼𝑀,𝑀,𝑀

𝛼 2
𝜂𝜇

𝜇𝜇

(𝑀 ⊗ 𝑀) ⊗ 𝐼 𝑀 ⊗ (𝑀 ⊗ 𝐼) 𝑀 ⊗ (𝑀 ⊗ 𝑀)

(𝑀 ⊗ 𝑀) ⊗ 𝑀 𝑀 ⊗ 𝑀

𝑀 ⊗ 𝐼 𝑀 ⊗ 𝑀 𝑀

𝜇⊗𝐼

𝑀⊗𝜂 𝜇

𝛼𝑀,𝑀,𝐼

𝜇

𝑀⊗𝜇

𝑀⊗(𝑀⊗𝜂)

id⊗𝜂 𝛼𝑀,𝑀,𝑀

𝜇⊗𝑀

𝛼 3

𝜇𝜇

□

Tensoring of modules Pointed multilinear maps will play an essential role in the charac-
terisation of pointed strengths, allowing us to collapse tensors that could not be identified
otherwise. Their necessity arises from a more fundamental problem that stands at the heart
of our work: skew-monoidal structure on a category does not lift to categories of algebras
or modules without the use of coequalisers (Fiore and Saville, 2018, 2021). Families form a
skew-monoidal category, but coequalisers correspond to quotienting, which is not supported
by a dependently-typed formalisation. Thus, the skew substitution structure does not lift to
the category of 𝐼 -modules: even though the tensor product has an 𝐼 -module structure if 𝐵 does

(𝐴, 𝑎 : 𝐴⊗ 𝐼 → 𝐵) ⊗ (𝐵,𝑏 : 𝐵⊗ 𝐼 → 𝐵) ≜ (𝐴⊗𝐵, (𝐴⊗𝐵) ⊗ 𝐼
𝛼𝐴,𝐵,𝐼

𝐴⊗ (𝐵⊗ 𝐼) 𝐴⊗𝑏
𝐴⊗𝐵) (†)

this only extends to a left (𝐼 -Mod(V))-action (−) �(−) : V × 𝐼 -Mod(V) → 𝐼 -Mod(V), with
transformations 𝜆 and 𝛼 . The right unitor 𝜌 (𝐴,𝑎) : (𝐴, 𝑎) → 𝐴 � (𝐼 , id) is not necessarily an
𝐼 -module homomorphism, as 𝑎 is only a left inverse of 𝜌 :

𝐴 ⊗ 𝐼 (𝐴 ⊗ 𝐼) ⊗ 𝐼

𝐴 ⊗ (𝐼 ⊗ 𝐼)

𝐴 𝐴 ⊗ 𝐼

𝜌𝐴⊗𝐼

𝜌𝐴

𝑎

𝛼𝐵,𝐼,𝐼

𝐴⊗𝜆𝐼

𝜆𝛼𝜌

?

Even worse, the point 𝐼 → 𝐴 ⊗ 𝐵 of the tensor product of (𝐴, 𝑝𝐴), (𝐵, 𝑝𝐵) ∈ 𝐼/V defined as
𝐼

𝜌𝐼 𝐼 ⊗ 𝐼 𝑝𝐴⊗𝑝𝐵
𝐴 ⊗ 𝐵 is not an 𝐼 -module homomorphism either, so 𝐴 ⊗ 𝐵 has no pointed

module structure.
These limitations are not merely due to our abstraction level: for the substitution tensor

product ⊕ in Ñ, the unitor homomorphism diagram above reduces to the equality of tuples
([𝑛], 𝑎([𝑚], 𝑡, 𝜌), id) and ([𝑚], 𝑡, 𝜌) in (𝑋 ⊕ 𝑌)𝑛 , which are not identifiable without quotient-

124 sKew-monoidal closed stRuctuRe

ing. As a result, we cannot claim that pointed 𝐼 -modules form a skew-monoidal category.
This poses a challenge for the familial model: skew-monoidal structure on pointed modules is
essential for a coherent axiomatization of the pointed strength

𝐹𝑋 � 𝐵 → 𝐹 (𝑋 � 𝐵) : Ñ × 𝐼/𝐼 -Mod→ Ñ

as a right 𝐼/𝐼 -Mod-modular functor. This strength operation is central to several key con-
structions, including the specification of syntax with substitution, the definition of models for
a second-order signature, and more.

The crux of the problem lies in the associativity law for strength: it requires tensoring
elements of 𝐼/𝐼 -Mod, a process that – even when performed naïvely as in (†) – results in
unprovable equations for signature endofunctors that involve variable binding, such as context
extension 𝛿 (𝑋)𝑛 = 𝑋𝑛+1. Since associativity underpins numerous critical results involving
renaming, substitution, and lifting (see Section 2.1.3), its omission is not an option.

To address this, we propose a generalisation of strength via multilinear maps. Specifi-
cally, a functor 𝐹 : C → D between skew right (𝐼/𝐼 -Mod)-modular categories is said to be
“multilinear-strong” if its strength

s𝑋,𝐴 : 𝐹𝑋 	 𝐴→ 𝐹 (𝑋 	 𝐴)

satisfies the standard unit law (Diagram (𝑠𝜌�)), and the following associativity law formulated
for all pointed multilinear maps 𝑓 : 𝐴 ⊕ 𝐵 → 𝐶 in PMLin(𝐴, 𝐵;𝐶):

(𝐹𝑋 	 𝐴) 	 𝐵 𝐹𝑋 	 (𝐴 ⊗ 𝐵)

𝐹 (𝑋 � 𝐴) 	 𝐵 𝐹𝑋 	 𝐶

𝐹 ((𝑋 � 𝐴) � 𝐵) 𝐹 (𝑋 � (𝐴 ⊗ 𝐵)) 𝐹 (𝑋 � 𝐶)

𝛼𝐹𝑋,𝐴,𝐵

s𝑋,𝐴	𝐵 𝐹𝑋	𝑓

s𝑋⊕𝐴,𝐵 s𝑋,𝐶

𝐹𝛼𝑋,𝐴,𝐵 𝐹 (𝑋�𝑓)

(𝑠𝛼�𝐿)

For the context extension endofunctor 𝛿 , the associativity law for strength is provable: the
problematic tuples in the original diagram, which resist identification, are collapsed by the
action of the pointed multilinear map 𝑓 , and the pointed multiilinearity axioms are sufficient
to carry through the calculation. Furthermore, the pointed multilinearity properties of 𝑓 en-
able a complete and coherent derivation (see Theorem 10.3.1). This adapted notion of pointed
strength is familiar from the literature – for instance, the “coalgebraic strength” in our Agda
formalisation (Fiore and Szamozvancev, 2022), or the “structural strength” and Lemma A.5 in
Borthelle et al. (2020) – yet a satisfying theoretical justification has so far remained elusive.

In the next section, we begin to address this gap, outlining initial steps toward a generalised
theory of strength that accounts for these phenomena in a principled and modular fashion.

c h a p t e R 6

Synthetic constructions

A central challenge in reformulating the presheaf model in the category of indexed sets lies in
the absence – or inadequacy – of several core constructions necessary for the formal theory.
In the previous chapter, we traced the origin of these inconsistencies to the abstract setting of
skew-monoidal closed categories and their modules. Chief among these issues is the observa-
tion that the category of modules over the unit in a skew-monoidal category does not inherit a
tensor product whose underlying object corresponds to the skew-monoidal tensor. This failure
makes the standard axiomatisation of pointed-strong functors in this setting impossible.

The guiding intuition toward a resolution is as follows: the category of (pointed) 𝐼 -modules
for a skew-monoidal category often appears monoidal – until one inspects the coherence con-
ditions closely. That is, while we may act as if the category possesses a monoidal structure, the
purported unit and tensor product generally fail to satisfy the axioms needed to make them
actual 𝐼 -modules. More broadly, for a skew-monoidal category V, a category A of V-objects
equipped with some additional structure may not itself be monoidal, as the tensor of underly-
ing V-objects may fail to preserve that extra structure. Nevertheless, we can behave as though
A is monoidal insofar as we avoid explicitly tensoring its objects. Functors between such cat-
egories may similarly simulate monoidality by interacting with the monoidal structure of V
in regular, predictable ways. Naturally, in cases where A is genuinely monoidal, the real and
simulated structures should coincide.

To formally capture this phenomenon, we introduce the notion of synthetic monoidal cat-
egories. Synthetic modular categories and synthetic functors are the topic of Section 6.2, and
Section 6.3 discusses elevators and liftings between synthetic monoidal/modular functors.

6.1 Synthetic monoidal categoRies

A synthetic monoidal category A consists of objects that cannot be tensored formally, but
which can be embedded into a skew-monoidal category V such that a distinguished class of
morphisms in A correspond to multi-parametrised morphisms in V. This is the situation we
encounter with families and modules: although Ñ is skew-monoidal, the category Mod(Ñ) is
not; however, the underlying morphism of a multilinear map 𝑓 ∈ MLin((𝐴, 𝑎), (𝐵,𝑏); (𝐶, 𝑐))

126 synthetic constRuctions

is a morphism 𝑓 : 𝐴 ⊗ 𝐵 → 𝐶 . If a synthetic monoidal category happens to be skew-monoidal
in its own right, the embedding functor becomes a formally skew-monoidal functor. Func-
tors between synthetic monoidal categories preserve the distinguished class of morphisms
in a manner that respects the embedding. The most important example for our purposes is
the equivalence 𝐿 : Mod → F̃ (with the latter category actually monoidal), which transforms
multilinear maps to equivalent parametrised natural transformations.

The benefit of this generalisation is that the strength transformation for functors be-
tween synthetic modular categories (over synthetic monoidal categories) can incorporate
parametrised multilinear morphisms in a way that makes the unit and associativity axioms
constructively provable. The collapsing of tensor structure, which would otherwise lead to
the need for quotienting, is encoded directly into the associativity axiom. This provides the
correct axiomatization of signature strength in the familial model – accounting for, in partic-
ular, the modified strength associativity condition for the context extension endofunctor in ⁇
– supported by the fact that this form of strength associativity generalises familiar syntactic
interaction and fusion properties.

Remark. Finding the right formal setting for this notion of strength has been one of the main
technical challenges of our work. While the axioms can be explicitly stated easily enough (see
Diagram (𝑠𝛼�𝐿)) we sought to find a setting where this modified and slightly ad hoc notion
of strength is the canonical axiomatisation of modular functors. The theory presented in this
chapter is a first approximation, but a better presentation would be using the language of
promonoidal categories (Day, 1970) or multicategories (Hermida, 2000; Leinster, 2004), which
exactly describe situations where objects of a category are combined without a formal tensor
product being available. We give a brief description of this view in Section 14.2, and leave
working out the details to future work. ⌟

Fix skew-monoidal categories (V, 𝐼 , ⊗) and (W, 𝐽 , ⊕).

Definition 6.1.1 Given a skew-monoidal category V, a synthetic monoidal category over V

is an object (A, 𝐸) ∈ Cat/V of the slice category associated with profunctors 𝒰 ∈ 1→ A

and ℳ : A × A→ A, and natural families of maps 𝓊 = {𝒰[𝐶] → V(𝐼 , 𝐸𝐶) }𝐶∈A and 𝓂 =
{ℳ[𝐴, 𝐵;𝐶] → V(𝐸𝐴 ⊗ 𝐸𝐵, 𝐸𝐶) }𝐴,𝐵,𝐶∈A. A is representable if 𝓊 and𝓂 are isomorphisms. ⌟

Notation. A synthetic monoidal category A over V will be denoted (A|V,𝒰,ℳ) or just A|V.
Application of 𝐸 on objects and 𝓊 and𝓂 on morphisms will generally be written as underlin-
ing: for𝐶 ∈ A, 𝐸𝐶 ∈ V is denoted𝐶

A
, and for 𝑓 ∈ 𝒰[𝐶] and 𝑔 ∈ℳ[𝐴, 𝐵;𝐶], 𝑓

A
: 𝐼 → 𝐶

A
and

𝑔
A
: 𝐴

A
⊗ 𝐵

A
→ 𝐶

A
, with the category subscript omitted where clear. ⌟

Definition 6.1.2 For synthetic monoidal categories A|V and B|W, a synthetic monoidal functor
𝐹 : A|V → B|W is a functor 𝐹 : A→ B with associated unit and multiplication operators

𝑢 [−] : 𝒰A [𝐶] → 𝒰B [𝐿𝐶] 𝑚[−] : ℳA [𝐴, 𝐵;𝐶] →ℳB [𝐿𝐴, 𝐿𝐵;𝐿𝐶]

satisfying the following axioms:

• If for all 𝑓 ∈ 𝑈A [𝐶], 𝑔 ∈ℳA [𝐴, 𝐵;𝐶] and ℎ : 𝐶 → 𝐵 ∈ A the diagram on the left commutes

synthetic monoidal categoRies 127

in V, so does the diagram on the right commute in W:

𝐼 ⊗ 𝐵
A

𝐴
A
⊗ 𝐵

A

𝐵
A

𝐶
A

𝜆⊗𝐵

𝑓 ⊗id

𝑔

ℎ

𝐽 ⊕ 𝐿𝐵
B

𝐿𝐴
B
⊕ 𝐿𝐵

B

𝐿𝐵
B

𝐿𝐶
B

𝜆⊕𝐿𝐵

𝑢 [𝑓]⊕id

𝑚[𝑔]

𝐿ℎ

• If for all 𝑓 ∈ 𝒰A [𝐵], 𝑔 ∈ℳA [𝐴, 𝐵;𝐶] and ℎ : 𝐴→ 𝐶 ∈ A the diagram on the left commutes
in V, so does the diagram on the right commute in W:

𝐴
A

𝐶
A

𝐴
A
⊗ 𝐼 𝐴

A
⊗ 𝐵

Aid⊗𝑓

𝜌⊗𝐴

ℎ

𝑔

𝐿𝐴
B

𝐿𝐶
B

𝐿𝐴
B
⊕ 𝐽 𝐿𝐴

B
⊕ 𝐿𝐵

B

𝑚[𝑔]

𝐿ℎ

𝜌⊕𝐿𝐴

id⊕𝑢 [𝑓]

• If for all 𝑒 ∈ ℳA [𝐴, 𝐵;𝐷], 𝑓 ∈ ℳA [𝐵,𝐶 ;𝐸], 𝑔 ∈ ℳA [𝐷,𝐶; 𝐹] and ℎ ∈ ℳA [𝐴, 𝐸; 𝐹] the left
diagram commutes in V, so does the right diagram commute in W:

(𝐴
A
⊗ 𝐵

A
) ⊗ 𝐶

A
𝐴

A
⊗ (𝐵

A
⊗ 𝐶

A
)

𝐷
A
⊗ 𝐶

A
𝐹

A
𝐴

A
⊗ 𝐸

A

𝛼⊗𝐴,𝐵,𝐶

𝑒⊗id id⊗𝑓

𝑔 ℎ

(𝐿𝐴
B
⊕ 𝐿𝐵

B
) ⊕ 𝐿𝐶

B
𝐿𝐴

B
⊕ (𝐿𝐵

B
⊕ 𝐿𝐶

B
)

𝐿𝐷
B
⊕ 𝐿𝐶

B
𝐿𝐹

B
𝐿𝐴

B
⊕ 𝐿𝐸

B

𝛼⊕𝐿𝐴,𝐿𝐵,𝐿𝐶

𝑚[𝑒]⊕id id⊕𝑚[𝑓]

𝑚[𝑔] 𝑚[ℎ]

A functor between representable synthetic monoidal categories is itself representablewhen the
unit and multiplication operators restrict to (di)natural transformations

𝑢 [−] : V
(
𝐼 ,𝐶

A

)
→ W

(
𝐽 , 𝐿𝐶

B

)
𝑚[−] : V

(
𝐴

A
⊗ 𝐵

A
,𝐶

A

)
→ W

(
𝐿𝐴

B
⊕ 𝐿𝐵

B
, 𝐿𝐶

B

)
⌟

Definition 6.1.3 A synthetic monoidal natural transformation 𝜅 : 𝐿 =⇒ 𝑁 : A|V → B|W pre-
serves the unit and multiplication transformations: for all 𝑓 : 𝒰A [𝐶] and 𝑔 : ℳA [𝐴, 𝐵;𝐶],

𝐼 𝐿𝐶
B

𝑁𝐶
B

𝑢𝐿 [𝑓]

𝑢𝑁 [𝑓]
𝜅𝐶

𝐿𝐴 ⊕ 𝐿𝐵
B

𝐿𝐶
B

𝑁𝐴 ⊕ 𝑁𝐵
B

𝑁𝐶
B

𝑚𝐿 [𝑔]

𝜅𝐶𝜅𝐴⊕𝜅𝐵

𝑚𝑁 [𝑔]
⌟

Example 6.1.1. If (A, �̂� , ⊗̂) is skew-monoidal and 𝐸 : A → V is a skew-monoidal functor, A
is in particular synthetic monoidal with 𝒰[𝐶] ≜ A(�̂� ,𝐶) and ℳ[𝐴, 𝐵;𝐶] ≜ A(𝐴 ⊗̂ 𝐵,𝐶).
Consequently, every skew-monoidal category is synthetic monoidal over itself. ⌟

Example 6.1.2. A representable synthetic monoidal functor V|V → W|W between skew-
monoidal categories (presented as synthetic categories as above) is skew-monoidal, with unit
andmultiplication given by𝑢 ≜ 𝑢 [id𝐼] : 𝐽 → 𝐿𝐼 andm𝐴,𝐵 ≜ 𝑚[id𝐴⊗𝐵] : 𝐿𝐴⊕𝐿𝐵 → 𝐿(𝐴⊗𝐵). ⌟

128 synthetic constRuctions

Example 6.1.3. The category of 𝐼 -modules is synthetic monoidal over Ñ via the forgetful func-
tor 𝑈 : Mod → Ñ, with 𝒰[𝑍] ≜ Mod(𝐼 , 𝑍) given by module-homomorphic points, and
ℳ[𝑋,𝑌 ;𝑍] ≜ MLin(𝑋,𝑌 ;𝑍) given by multilinear maps, with 𝓊 and 𝓂 extracting the un-
derlying family maps from the homomorphisms. Notably, while modules cannot be tensored,
the family of indices is an 𝐼 -module with 𝜆𝐼 : 𝐼 ⊕ 𝐼 → 𝐼 , so (𝐼 , 𝜆𝐼) ∈ Mod and the embedding𝑈
strictly preserves this unit: 𝑈 (𝐼 , 𝜆𝐼) = 𝐼 .

The category of presheaves embeds into Ñ with a monoidal forgetful functor ★ : F̃ → Ñ,
making F̃ a synthetic monoidal category with 𝒰[𝑅] ≜ F̃ (𝑉 , 𝑅) andℳ[𝑃,𝑄 ;𝑅] ≜ F̃ (𝑃 ⊗𝑄, 𝑅).
It is also synthetic monoidal over itself.

The equivalence 𝐿 : 𝐼 -Mod→ F̃ is a synthetic monoidal functor 𝐿 : Mod|Ñ → F̃ |F̃ , mapping
a module homomorphism (𝐼 , id) → (𝑍, 𝑧) ∈ Mod to a natural transformation𝑉 =⇒ 𝐿(𝑍, 𝑧) ∈
F̃ , and a multilinear map 𝑓 : 𝑋 ⊕𝑌 → 𝑍 to the corresponding natural transformation 𝐿(𝑋, 𝑥) ⊗
𝐿(𝑌,𝑦) =⇒ 𝐿(𝑍, 𝑧)with components given by 𝑓 , and the naturality and dinaturality conditions
by the multilinearity properties. In addition, we have 𝐿(𝐼 , 𝜆𝐼) � 𝑉 with 𝐼 � ★𝑉 � ★𝐿(𝐼 , 𝜆𝐼). ⌟

Skew-monoidal functors between base categories lift to representable synthetic monoidal cat-
egories along the embeddings.

Proposition 6.1.1 If A|V and B|W are representable synthetic monoidal categories, and a
monoidal functor 𝐾 : V → W lifts to a 𝐿 : A → B with 𝐾𝐴

A
= 𝐿𝐴

B
, then 𝐿 is representable

synthetic monoidal A|V → B|W.

PRoof See the Appendix on page 324. □

Monoids and the monoid-preservation result of lax monoidal functors have an analogue in the
synthetic monoidal setting as well.

Definition 6.1.4 A synthetic monoid in a synthetic monoidal category A|V is an object𝑀 ∈ A,
and morphisms 𝜂 ∈ 𝒰[𝑀] and 𝜇 ∈ℳ[𝑀,𝑀 ;𝑀] such that (𝑀,𝜂 : 𝐼 → 𝑀, 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀) is
a monoid in V. ⌟

Proposition 6.1.2 Synthetic monoidal functors preserve synthetic monoids.

PRoof Let 𝐿 : A|V → B|W be a synthetic monoidal functor and (𝑀,𝜂𝑀, 𝜇𝑀) a synthetic
monoid inA. Then, 𝐿𝑀 is a synthetic monoid inBwith operations 𝜂𝐿𝑀 ≜ 𝑢 [𝜂𝑀] ∈ 𝒰[𝐿𝑀] and
𝜇𝐿𝑀 ≜ 𝑚[𝜇𝑀] ∈ ℳ[𝐿𝑀, 𝐿𝑀 ;𝐿𝑀], because (𝐿𝑀 ∈ W, 𝑢 [𝜂𝑀] : 𝐽 → 𝐿𝑀,𝑚[𝜇𝑀] : 𝐿𝑀 ⊕ 𝐿𝑀 →
𝐿𝑀) is a monoid in W. The monoid laws in W follow by instantiating the V-diagrams in the
structural laws of 𝐿 with the monoid laws of𝑀 in V. □

The definition of synthetic modular categories and functors follows a similar pattern.

6.2 Synthetic modulaR categoRies

A modular category over a monoidal category V can be weakened to a synthetic modular
category over a synthetic monoidal category A|V using a similar approach to the previous
section. Identifying when such modular categories are representable is more subtle, as an
action bifunctor may exist even if the acting category is only synthetic monoidal.

synthetic modulaR categoRies 129

We give the most general definition, where A|V is a synthetic monoidal category and and C

has no actions.

Definition 6.2.1 A synthetic A|V-modular category (C|E,𝒮) consists of a V-modular category
(E, � : E × V → E), a category C, a functor 𝐸 : C → E, and a profunctor 𝒮 : C × A→ C

with natural family of maps 𝓈 = {𝒮[𝑋, 𝐵;𝑌] → E(𝑋
C
� 𝐵

A
, 𝑌

C
) }𝑋,𝑌∈C,𝐵∈A. The category is

representable if the natural transformation 𝓈 is an isomorphism. As before, application of 𝐸
and 𝓈 will be denoted by underlining. ⌟

Our definition of synthetic modular functor will also incorporate a change of the acting
synthetic monoidal category via restricting the action along a monoidal functor. In a non-
synthetic setting, the total category of modular categories can be defined as the Grothendieck
construction of the functor (−)-Mod, consisting of pairs (V, C ∈ V-Mod) as objects and pairs
(𝐾, 𝐹) : (V, C) → (W,D) as morphisms, comprising a skew-monoidal functor 𝐾 : V→W and
a functor 𝐹 : C → D with 𝐾-relative strength s𝐹,𝐾𝑋,𝐵 : 𝐹𝑋 	 𝐾𝐵 → 𝐹 (𝑋 � 𝐵) : C × V → D. This
generalises the notion of a strong relative monad by Uustalu (2010) and coincides with the
morphism of actions defined by Zsido (2010, Section 4.8).

Definition 6.2.2 A morphism of synthetic modular categories (𝐿, 𝐹) : (A|V, C|E) → (B|W,D|F)
consists of a pair of a relative monoidal functor 𝐿 : A → B and a functor 𝐹 : C → D with an
associated 𝐿-relative strength operator

𝑠 [−] : 𝒮C(𝑋, 𝐵;𝑌) → 𝒮D(𝐹𝑋, 𝐿𝐵; 𝐹𝑌)

satisfying the following axioms:

• If for all 𝑓 ∈ 𝒰A [𝐵], 𝑔 ∈ 𝒮C [𝑋, 𝐵;𝑌] and ℎ : 𝑋 → 𝑌 ∈ C the diagram on the left commutes
in E, so does the diagram on the right commute in F:

𝑋
C

𝑌
C

𝑋
C
� 𝐼 𝑋

C
� 𝐵

A

ℎ

𝜌E
𝑋

id�𝑓

𝑔

𝐹𝑋
D

𝐹𝑌
D

𝐹𝑋
D
	 𝐽 𝐹𝑋

D
	 𝐿𝐵

B

𝐹ℎ

𝜌F
𝐹𝑋

id	𝑢 [𝑓]

𝑠 [𝑔]

• If for all 𝑒 ∈ 𝒮C [𝑋, 𝐵;𝑌], 𝑓 ∈ 𝒮C [𝑌,𝐶 ;𝑍], 𝑔 ∈ℳA [𝐵,𝐶 ;𝐷] and ℎ ∈ 𝒮C [𝑋, 𝐷 ;𝑍] the diagram
on the left commutes in E, then so does the diagram on the right commute in F:

(𝑋
C
� 𝐵

A
) � 𝐶

A
𝑋

C
� (𝐵

A
⊗ 𝐶

A
)

𝑌
C
� 𝐶

A
𝑍

C
𝑋

C
� 𝐷

A

𝛼E
𝑋,𝐵,𝐶

𝑒�id id�𝑔

𝑓 ℎ

(𝐹𝑋
D
	 𝐿𝐵

B
) 	 𝐿𝐶

B
𝐹𝑋

D
	 (𝐿𝐵

B
⊕ 𝐿𝐶

B
)

𝐹𝑌
D
	 𝐿𝐶

B
𝐹𝑍

D
𝐹𝑋

D
	 𝐿𝐷

B

𝛼F
𝐹𝑋,𝐿𝐵,𝐿𝐶

𝑠 [𝑒]	id id	𝑚[𝑔]

𝑠 [𝑓] 𝑠 [ℎ]

The strength is representable when the operator restricts to a (di)natural transformation

𝑠 [−] : E(𝑋
C
� 𝐵

A
, 𝑌

C
) → F(𝐹𝑋

D
	 𝐿𝐵

B
, 𝐹𝑌

D
)

⌟

130 synthetic constRuctions

Definition 6.2.3 A natural transformation of synthetic modular functors (𝜅, 𝜑) : (𝐿, 𝐹) =⇒
(𝑁,𝐺) : (A|V, C|E) → (B|W,D|F) is a pair of a relative monoidal natural transformation
𝜅 : 𝐿 =⇒ 𝑁 : A|V → B|W and a natural transformation 𝜑 : 𝐹 =⇒ 𝐺 : C|E → D|F that preserves
the strength operator: for all ℎ ∈ 𝒮C [𝑋, 𝐵;𝑌], we have

𝐹𝑋
D
	 𝐿𝐵

A
𝐹𝑌

D

𝐺𝑋
D
	 𝑁𝐵

A
𝐺𝑌

D

s𝐹,𝐿 [ℎ]

𝜑𝑌𝜑𝑋	𝜅𝐵

s𝐺,𝑁 [ℎ]

(𝜑𝜅 b𝑠e)

⌟

Synthetic modular categories, functors and natural transformations form the total 2-category
SynMod. If (A, �̂� , ⊗̂) is skew-monoidal and (C, �̂ : C × A → C) is a A-modular category, C
can be equipped with synthetic modular category structure with 𝒮[𝑋, 𝐵;𝑌] ≜ C(𝑋 �̂𝐵,𝑌).
More generally, one can talk about representable modular categories over synthetic monoidal
categories, which amounts to a category C with an action � : C × A → C and representable
synthetic unitor 𝜌 [−]𝑋 : 𝒰[𝐶] → C(𝑋,𝑋 �𝐶) and 𝛼 [−]𝑋 : ℳ[𝐴, 𝐵;𝐶] → C((𝑋 �𝐴)�𝐵,𝑋 �𝐶)
satisfying axioms. While this view is appropriate in our setting – where pointed strength for
a signature endofunctor is on the modular category Ñ over the synthetic monoidal category
𝐼/Mod, with an action 𝑋 � (𝐵, 𝑝, 𝑏) ≜ 𝑋 ⊗ 𝐵 – using the language of fully synthetic modular
categories will be sufficient. The example below demonstrates the value of the generalisation:
it encapsulates the correct notion of pointed strength in the familial model.

Example 6.2.1. 𝐼/Mod is a synthetic monoidal category over Ñ with 𝒰 and ℳ given by point-
preserving module homomorphisms and pointed multilinear maps, respectively. Then Ñ is a
synthetic 𝐼/Mod-modular category with𝒮[𝑋, 𝒀 ;𝑍] ≜ Ñ(𝑋 ⊗𝑌, 𝑍), where the pointed module
𝒀 = (𝑌, 𝑝 : 𝐽 → 𝑌,𝑦 : 𝑌 ⊕ 𝐽 → 𝑌) satisfies 𝒀 = 𝑌 . An Id-relative 𝐼/Mod-modular endofunctor
Σ : Ñ → Ñ satisfies the unit and associativity laws for the synthetic strength transformation
𝑠 [−] : 𝒮(𝑋, 𝒀 ;𝑍) → 𝒮(Σ𝑋, 𝒀 ; Σ𝑍). Instantiating the hypothesis of the synthetic strength
associativity law with the diagram

(𝑊 ⊕ 𝑋) ⊕ 𝑌 𝑊 ⊕ (𝑋 ⊕ 𝑌)

(𝑊 ⊕ 𝑋) ⊕ 𝑌 𝑊 ⊕ 𝑍 𝑊 ⊕ 𝑍

𝛼𝑊,𝑋,𝑌

id 𝑊 ⊕𝑔

(𝑊 ⊕𝑔)◦𝛼𝑊,𝑋,𝑌 id

where 𝑔 : 𝑋 ⊕ 𝑌 → 𝑍 ∈ PMLin(𝑿 , 𝒀 ;𝒁) is a pointed multilinear map, we get the diagram

(𝐹𝑊 ⊕ 𝑋) ⊕ 𝑌 𝐹𝑊 ⊕ (𝑋 ⊕ 𝑌)

𝐹 (𝑊 ⊕ 𝑋) ⊕ 𝑌 𝐹𝑊 ⊕ 𝑍

𝐹 ((𝑊 ⊕ 𝑋) ⊕ 𝑌) 𝐹 (𝑊 ⊕ (𝑋 ⊕ 𝑌)) 𝐹 (𝑊 ⊕ 𝑍)

𝛼𝐹𝑊 ,𝑋,𝑌

s𝑊,𝑋⊕𝑌 𝐹𝑊 ⊕𝑔

s𝑊 ⊕𝑋,𝑌 s𝑊,𝑍

𝐹𝛼𝑊,𝑋,𝑌 𝐹 (𝑊 ⊕𝑔)

which is exactly the associativity law in Diagram (𝑠𝛼�𝐿) we wished to capture. For 𝐹 = 𝛿 , the

synthetic modulaR categoRies 131

law becomes provable, as the postcomposition with the pointed multilinear map collapses ten-
sor products that would otherwise only be equal up to quotienting. The standard associativity
law Diagram (𝑠𝛼�) of modular functors is not derivable for 𝛿 , as the identity 𝑋 ⊕ 𝑌 → 𝑋 ⊕ 𝑌
is not a pointed multilinear map. ⌟

Example 6.2.2. The canonical map 〈𝜋1⊕𝑌, 𝜋2⊕𝑌 〉 : (𝑋×𝑋)⊕𝑌 → (𝑋 ⊕𝑌)×(𝑋 ⊕𝑌) exhibits the
functor 𝐹 (𝑋) ≜ 𝑋×𝑋 : Ñ→ Ñ as skew Ñ-modular, ormore generally, representable Id-relative
synthetic Ñ |Ñ-modular. The synthetic strength associativity law can now be instantiated with

(𝑊 ⊕ 𝑋) ⊕ 𝑌 𝑊 ⊕ (𝑋 ⊕ 𝑌)

(𝑊 ⊕ 𝑋) ⊕ 𝑌 𝑊 ⊕ (𝑋 ⊕ 𝑌) 𝑊 ⊕ (𝑋 ⊕ 𝑌)

𝛼𝑊,𝑋,𝑌

id⊕𝑌 𝑊 ⊕id

𝛼𝑊,𝑋,𝑌 id

where all parametrised morphisms are just the identities, as we do not ask for any constraints
(e.g. multilinearity) on any of 𝑒 , 𝑓 , 𝑔 or ℎ. Upon application of 𝐹 , the law expands to

((𝑊 ×𝑊) ⊕ 𝑋) ⊕ 𝑌 (𝑊 ×𝑊) ⊕ (𝑋 ⊕ 𝑌)

((𝑊 ⊕ 𝑋) × (𝑊 ⊕ 𝑋)) ⊕ 𝑌 (𝑊 ⊕ (𝑋 ⊕ 𝑌)) × (𝑊 ⊕ (𝑋 ⊕ 𝑌))

((𝑊 ⊕ 𝑋) ⊕ 𝑌) × ((𝑊 ⊕ 𝑋) ⊕ 𝑌)

𝛼𝑊 ×𝑊,𝑋,𝑌

s𝑊,𝑋⊕𝑌 s𝑊,𝑋⊕𝑌

s𝑊 ⊕𝑋,𝑌 𝛼𝑊,𝑋,𝑌×𝛼𝑊,𝑋,𝑌

which expresses the mapping of (((𝑡1, 𝑡2), 𝜎), 𝜍) to
(
((𝑡1, 𝜎), 𝜍), ((𝑡2, 𝜎), 𝜍)

)
. ⌟

An analogue of Proposition 6.1.1 is stated as follows.

Proposition 6.2.1 Let (𝐾,𝐻) : (V, (E, �)) → (W, (F,)) be a modular functor with 𝐾-relative
strength s𝐻,𝐾𝑋,𝐵 : 𝐻𝑋 	 𝐾𝐵 → 𝐻 (𝑋 � 𝐵) : E × V → F and suppose 𝐿 : A → B lifts 𝐾 with
𝐿𝐴

B
= 𝐾𝐴

A
and 𝑁 : C→ D lifts 𝐻 with 𝑁𝑋

D
= 𝐻𝑋

C
. Also suppose A|V,B|W are representable

synthetic monoidal and C|E,D|F are representable synthetic modular categories. Then (𝑁, 𝐿) is a
representable synthetic modular functor from (A|V, C|E) to (B|W,D|F).

PRoof The strength transformation for (𝑁, 𝐿) is as follows:

𝑠 [ℎ : 𝑋
C
� 𝐵

A
→ 𝑌

C
] ≜ 𝑁𝑋

D
	 𝐿𝐵

B
= 𝐻𝑋

C
	 𝐾𝐵

A

s𝐻,𝐾𝑋,𝐵
𝐻 (𝑋

C
� 𝐵

A
) 𝐻ℎ 𝐻𝑌

C
= 𝑁𝑌

D

The synthetic strength laws are proved similarly to Proposition 6.1.1, by applying the lifting
equalities to the target diagrams and using naturality and skew monoidal axioms. □

Finally, let us consider module objects in synthetic modular categories, and what parametrised
and multilinear maps look like in this setting.

Definition 6.2.4 Let𝑀 ∈ A be a synthetic monoid inA|V. A synthetic𝑀-module in a synthetic
A|V-modular category C|E is an object 𝑋 ∈ C with map 𝑥 : 𝒮(𝑋,𝑀 ;𝑋) such that (𝑋, 𝑥) is an
𝑀-module in E. ⌟

132 synthetic constRuctions

Proposition 6.2.2 For a synthetic monoidal 𝐾 : A→ B, a 𝐾-relative synthetic modular functor
𝐹 : C→ D maps a synthetic𝑀-module 𝑋 to a synthetic 𝐾𝑀-module 𝐹𝑋 .

PRoof The action 𝑥 ∈ 𝒮C [𝑋,𝑀 ;𝑋] is mapped to 𝑠 [𝑥] ∈ 𝒮D [𝐹𝑋, 𝐾𝑀 ; 𝐹𝑋], and the module
axioms for 𝐹𝑋 follow by instantiating the laws for a synthetic modular functor with module
axioms for 𝑋 . □

We can adapt the notion of linear maps to the setting of synthetic modular categories.

Definition 6.2.5 If 𝐹 : C→ C is a Id-relative syntheticA|V-modular functor, 𝐵 ∈ A is an object,
and (𝑋, 𝑥), (𝑌,𝑦) are 𝐹 -algebras, a map 𝑓 : 𝒮[𝑋, 𝐵;𝑌] is synthetic 𝐹 -linear if the following
diagram commutes in E:

𝐹𝑋
C
� 𝐵

A
𝐹𝑌

C

𝑋
C
� 𝐵

A
𝑌

C

𝑠 [𝑓]

𝑦𝑥�𝐵

𝑓

(𝐹𝑠 [𝑓])

An synthetic 𝐹 -module over 𝑀 for a synthetic monoid 𝑀 ∈ A is an 𝐹 -algebra (𝑋, 𝑥) ∈ C such
that𝑋 is a synthetic𝑀-module and the action 𝑥 ∈ 𝒮[𝑋,𝑀 ;𝑋] is synthetic 𝐹 -linear. A synthetic
𝐹 -monoid for 𝐹 : A → A is a synthetic monoid 𝑀 ∈ A such that 𝑀 is a synthetic 𝐹 -module
over𝑀 . ⌟

Definition 6.2.6 Given a syntheticA|V-modular category C|E, a map 𝑓 ∈ 𝒮(𝑋, 𝐵;𝑌) for𝑋,𝑌 ∈
C and 𝐵 ∈ A is synthetic multilinear if 𝑓 : 𝑋

C
� 𝐵

A
→ 𝑌

C
is multilinear in E. ⌟

Proposition 6.2.3 Given a multilinear map 𝑓 ∈ 𝒮C [𝑋, 𝐵;𝑌] and an Id-relative synthetic modu-
lar functor 𝐹 : C→ D, the map 𝑠 [𝑓] : 𝒮D [𝐹𝑋, 𝐵; 𝐹𝑌] is also multilinear.

PRoof Follows by instantiating the associativity axiom of synthetic modular functors with
the multilinearity laws. □

The last two sections introduced synthetic monoidal categories and associated notions, giving
a general enough definition of strength to encompass context extension and therefore sig-
nature endofunctors to be discussed in ⁇. We next investigate liftings and elevators in the
categories discussed.

6.3 Synthetic liftings

The 2-category SynMod is quite intricate, so it is worth spelling out some important construc-
tions explicitly: namely, liftings and distributive laws, as introduced in Chapter 3. Since the fa-
milial model employs a variety of functors and strengths, some synthetic, some representable,
some lifted, etc., having a clean framework to compare and relate them will be useful.

Given two endo-1-cells in the category SynMod of synthetic modules and strong functors

(𝐾, 𝐹) :
(
A|V, C|E

)
→

(
A|V, C|E

)
(𝐿,𝐺) :

(
B|W,D|F

)
→

(
B|W,D|F

)

synthetic l ift ings 133

an elevator between them is a 1-cell (𝑁,𝐻) : (A|V, C|E) → (B|W,D|F) and a 2-cell
(𝜅, 𝜑) : (𝐿,𝐺) ◦ (𝑁,𝐻) =⇒ (𝑁,𝐻) ◦ (𝐾, 𝐹). Explicitly, we have functors with operators

s𝐹,𝐾 [−] : 𝒮C [𝑋, 𝐵;𝑌] → 𝒮C [𝐹𝑋, 𝐾𝐵; 𝐹𝑌]
s𝐺,𝐿 [−] : 𝒮D [𝑋, 𝐵;𝑌] → 𝒮D [𝐺𝑋, 𝐿𝐵;𝐺𝑌]
s𝐻,𝑁 [−] : 𝒮C [𝑋, 𝐵;𝑌] → 𝒮D [𝐻𝑋, 𝑁𝐵;𝐻𝑌]

a synthetic monoidal natural transformation 𝜅 : 𝐿𝑁 =⇒ 𝑁𝐾 : A|V → B|W, and a natural
transformation 𝜑 : 𝐺𝐻 =⇒ 𝐻𝐹 : C→ D satisfying, for all ℎ ∈ 𝒮C [𝑋, 𝐵;𝑌],

𝐺𝐻𝑋
D
	 𝐿𝑁𝐵

B
𝐺𝐻𝑌

D

𝐻𝐹𝑋
D
	 𝑁𝐾𝐵

B
𝐻𝐹𝑌

D

s𝐺,𝐿 [s𝐻,𝑁 [ℎ]]

𝜑𝑋	𝜅𝐵 𝜑𝑌

s𝐻,𝑁 [s𝐹,𝐾 [ℎ]]

Restriction of modular functors along monoidal transformations has its synthetic analogue:
given (𝐿, 𝐹) : (A|V, C|E) → (B|W,D|F) and a synthetic monoidal transformation 𝜑 : 𝐾 =⇒ 𝐿,
we can construct a 1-cell (𝐾,𝜑∗(𝐿, 𝐹)) with 𝐹 : C→ D and an 𝐾-relative strength operator

s𝐹,𝐾 [−] : 𝒮C [𝑋, 𝐵;𝑌]
s𝐹,𝐿 [−]

𝒮D [𝐹𝑋, 𝐿𝐵; 𝐹𝑌]
𝒮[𝐹𝑋,𝜑𝐵 ;𝐹𝑌]

𝒮D [𝐹𝑋, 𝐾𝐵; 𝐹𝑌]

The following lemma concerns the interaction of elevators in SynMod and restrictions of 1-
cells along natural transformations.

Lemma 6.3.1 For synthetic monoidal transformations 𝛼 : 𝐾′ =⇒ 𝐾 and 𝛽 : 𝐿′ =⇒ 𝐿, an eleva-
tor

(
(𝑁,𝐻), (𝜑, 𝜑′)

)
from (𝐾, 𝐹) to (𝐿,𝐺) in SynMod extends to one from 𝛼∗(𝐾, 𝐹) to 𝛽∗(𝐿,𝐺)

provided 𝜑 : 𝐿𝑁 =⇒ 𝑁𝐾 lifts to 𝜑′ : 𝐿′𝑁 =⇒ 𝑁𝐾′ with 𝜑 ◦ 𝛽𝑁 = 𝑁𝛼 ◦ 𝜑′.

PRoof Take an elevator in SynMod, consisting of a synthetic monoidal transformation
𝜑 : 𝐿𝑀 =⇒ 𝑀𝐾 and a natural transformation 𝜑 : 𝐺𝐻 =⇒ 𝐻𝐹 satisfying the square above.
Assume further that there is a 𝜑′ : 𝐿′𝑁 =⇒ 𝑁𝐾′ such that

𝐿′𝑁 𝐿𝑁

𝑁𝐾′ 𝑁𝐾

𝛽𝑁

𝜑𝜑 ′

𝑁𝛼

(†)

We construct the elevator 𝛽∗(𝐿,𝐺) ◦ (𝑁,𝐻) =⇒ (𝑁,𝐻) ◦𝛼∗(𝐾, 𝐹) with the synthetic monoidal
transformation 𝜑′ : 𝐿′𝑁 =⇒ 𝑁𝐾′ : A|V → B|W, and natural transformation 𝜑 : 𝐺𝐻 =⇒ 𝐻𝐹

satisfying the strength-preservation condition

𝐺𝐻𝑋
D
	 𝐿′𝑁𝐵

B
𝐺𝐻𝑋

D
	 𝐿𝑁𝐵

B
𝐺𝐻𝑌

𝐻𝐹𝑋
D
	 𝑁𝐾 ′𝐵

B
𝐻𝐹𝑋

D
	 𝑁𝐾𝐵

B
𝐻𝐹𝑌

id�𝛽𝑁𝐵

𝜑𝑋�𝜑 ′𝐵

s𝐺,𝐿 [s𝐻,𝐿 [ℎ]]

𝜑𝑋�𝜑𝐵 𝜑𝑌

id�𝑁𝛼𝐵 s𝐻,𝐿 [s𝐹,𝐾 [ℎ]]

† 𝜑𝜅 b𝑠 e

□

134 synthetic constRuctions

Example 6.3.1. Given a synthetic monoidal transformation 𝜂 : Id =⇒ 𝐾 , a 𝐾-relative synthetic
strength s𝐹,𝐾 : 𝒮C [𝑋, 𝐵;𝑌] → 𝒮D [𝐹𝑋, 𝐾𝐵; 𝐹𝑌] can be restricted to an Id-relative strength from
(A|V, C|E) to (A|V,D|F):

𝜂∗(s𝐹,𝐾𝑋,𝐵) : 𝒮C [𝑋, 𝐵;𝑌] → 𝒮D [𝐹𝑋, 𝐵; 𝐹𝑌] ⌟

With the framework of synthetic modular categories and liftings now set up, the main theorem
of this section is straightforward.
Theorem 6.3.1

Given Id-relative synthetic module endofunctors 𝐹 : C|E → C|E and 𝐺 : D|F → D|F, if there
is a lifting (𝑁,𝐻) : (A|V, C|E) → (B|W,D|F) from 𝐹 to𝐺 , then every synthetic 𝐹 -linear map
ℎ ∈ 𝒮C [𝑋, 𝐵;𝑌] becomes a synthetic 𝐺-linear map s𝐻,𝑁 [ℎ] ∈ 𝒮D [𝐻𝑋, 𝑁𝐵;𝐻𝑌].

PRoof Take endofunctors 𝐹 : C→ C and 𝐺 : D→ D with strength operators

s𝐹 [−] : 𝒮C [𝑋, 𝐵;𝑌] → 𝒮C [𝐹𝑋, 𝐵; 𝐹𝑌] s𝐺 [−] : 𝒮D [𝑋, 𝐵;𝑌] → 𝒮D [𝐺𝑋, 𝐵;𝐺𝑌]

and a lifting (𝑁,𝐻) : (A|V, C|E) → (B|W,D|F) with a synthetic monoidal functor 𝑁 : A → B,
a functor 𝐻 : C→ D with strength operator

s𝐻,𝑁 [−] : 𝒮C [𝑋, 𝐵;𝑌] → 𝒮D [𝐻𝑋, 𝑁𝐵;𝐻𝑌]

and a natural transformation 𝜑 : 𝐺𝐻 =⇒ 𝐻𝐹 : C→ D. Let (𝑋, 𝑥), (𝑌,𝑦) ∈ C be 𝐹 -algebras and
ℎ ∈ 𝒮C [𝑋, 𝐵;𝑌] an 𝐹 -linear map. We show that s𝐻,𝑁 [ℎ] ∈ 𝒮D [𝐻𝑋, 𝑁𝐵; 𝐹𝑌] is a 𝐺-linear map.
The𝐺-algebra structure on 𝐻𝑋 and 𝐻𝑌 is given by the elevator𝐺𝐻 =⇒ 𝐻𝐹 , and the linearity
condition is stated as follows:

𝐺𝐻𝑋
D
	 𝑁𝐵

B
𝐺𝐻𝑌

D

𝐻𝐹𝑋
D
	 𝑁𝐵

B
𝐻𝐹𝑌

D

𝐻𝑋
D
	 𝑁𝐵

B
𝐻𝑌

D

s𝐺 [s𝐻,𝑁 [ℎ]]

𝜑𝑋�id 𝜑𝑌

s𝐻,𝑁 [s𝐹 [ℎ]]
𝐻𝑥�id 𝐻𝑦

s𝐻,𝑁 [ℎ]

The bottom rectangle is the application of s𝐻,𝑁 [−] to the 𝐹 -linearity axiom for ℎ, and using the
naturality of the strength operator to extract the algebra applications. The top rectangle is the
strength-preservation condition of the elevator 𝜑 . □

Corollary 6.3.1 For Id-relative synthetic module endofunctors 𝐹 : C|E → C|E and𝐺 : D|F → D|F,
if there is a lifting (𝑁,𝐻) : (A|V, C|E) → (B|W,D|F) from 𝐹 to𝐺 , then𝐻 : C→ Dmaps synthetic
𝐹 -modules over𝑀 ∈ A to synthetic 𝐺-modules over 𝑁𝑀 ∈ B.

PRoof From Proposition 6.2.2 we know that (𝑁,𝐻) preserves synthetic modules, mapping
(𝑋, 𝑓 ∈ 𝒮C [𝑋,𝑀 ;𝑋]) to (𝐻𝑋, s𝐻,𝑁 [𝑓] ∈ 𝒮D [𝐻𝑋, 𝑁𝑀 ;𝐻𝑋]). The 𝐺-algebra structure com-
posed as𝐺𝐻𝑋 → 𝐻𝐹𝑋 → 𝐹𝑋 is compatible with the module structure by Theorem 6.3.1. □

synthetic l ift ings 135

As every synthetic monoidal category A|V is a synthetic modular category over itself, the
following lifting result of synthetic 𝐹 -monoids follows from the preceding corollary.

Corollary 6.3.2 Given Id-relative module endofunctors 𝐹 : A|V → A|V and 𝐺 : B|W → B|W
(modular over A|V and B|W, respectively), if there is a synthetic monoidal lifting 𝐻 : A|V → B|W
from 𝐹 to𝐺 , then𝐻 : A→ Bmaps synthetic 𝐹 -monoids𝑀 ∈ A to synthetic𝐺-monoids𝐻𝑀 ∈ B.

These lifting results will be used in the next section to show that algebraic monoids in
presheaves map to algebraic monoids in families, establishing one half of the equivalence of
syntactic models in presheaves and families.

Having singled out our categorical setting – the total category of synthetic modules, functors,
and natural transformations – we will turn to an orthogonal categorical tool for constructing
and relating skew-monoidal categories.

136 synthetic constRuctions

c h a p t e R 7

Warped constructions

Our mathematical theory involves monoidal structures across several categories, and relating
them formally is one of our main undertakings. A useful categorical tool for this is a warping,
introduced by Booker and Street (2013) as theminimal structure needed on a functor 𝐹 : V→ V

to make 𝐴 ⊕ 𝐵 ≜ 𝐹𝐴 ⊗ 𝐵 a tensor product, and thereby transport monoidal structure across
categories. Lack and Street generalised this concept to skew-monoidal categories (Lack and
Street, 2012b), and then to actions thereof (Lack and Street, 2015). In Section 7.1, we recap the
definition and main constructions in the monoidal case, then adapt the notion to the closed
setting, proving an equivalence result between warpings along adjoint functors. We finally
analyse the liftings of categorical structures across warping functors in Section 7.2, justify-
ing the lifting properties we rely on when adapting properties of presheaves to properties of
families and co/algebras.

7.1 SKew waRpings

We recall the definition of a skew-monoidal warping from Lack and Street (2012b) and define
closed warpings, followed by a discussion of adjoint warpings and their equivalence.

7.1.1 Monoidal warpings

In this section, we let (V, 𝐼 , ⊗) be a skew-monoidal category and (C, �: V×C→ C) a skew left
V-modular category.

Definition 7.1.1 A skew-monoidal warping over (C, �) consists of

• a functor 𝐹 : C→ V

• an object 𝐽 ∈ C
• a morphism 𝑣 : 𝐹 𝐽 → 𝐼 ∈ V
• a natural family of maps k𝑋 : 𝑋 → 𝐹𝑋 �𝐽 : C→ C

• a natural family of maps p𝑋,𝑌 : 𝐹 (𝐹𝑋 �𝑌) → 𝐹𝑋 ⊗ 𝐹𝑌 : C × C→ V

138 waRped constRuctions

satisfying the following axioms:

𝐹𝑋 𝐹𝑋 ⊗ 𝐼

𝐹 (𝐹𝑋 �𝐽) 𝐹𝑋 ⊗ 𝐹 𝐽

𝜌⊗𝐹𝑋

𝐹k𝑋

p𝑋,𝐽

id⊗𝑣 (𝜌𝑝)

𝐹𝑋 �𝑌 𝐹𝑋 �(𝐹𝑌 �𝐽)

𝐹 (𝐹𝑋 �𝑌) �𝐽 (𝐹𝑋 ⊗ 𝐹𝑌) �𝐽

id �k𝑌

k𝐹𝑋 �𝑌

p𝑋,𝑌 �𝐽

𝛼 �
𝐹𝑋,𝐹𝑌,𝐽

(𝛼𝑘)

𝐽 𝐽

𝐹 𝐽 �𝐽 𝐼 �𝐽
k𝐽

𝑣 �𝐽

𝜆 �
𝐽

(𝜆𝑣)
𝐹 (𝐹 𝐽 �𝑌) 𝐹 𝐽 ⊗ 𝐹𝑌 𝐼 ⊗ 𝐹𝑌

𝐹 (𝐼 �𝑌) 𝐹𝑌

𝜆⊗𝐹𝑌

𝐹𝜆 �
𝑌

𝐹 (𝑣 �𝑌)

p𝐽 ,𝑌 𝑣⊗𝐹𝑌

(𝜆𝑝)

𝐹 (𝐹 (𝐹𝑋 �𝑌) �𝑍) 𝐹 (𝐹𝑋 �𝑌) ⊗ 𝐹𝑍

𝐹 ((𝐹𝑋 ⊗ 𝐹𝑌) �𝑍) (𝐹𝑋 ⊗ 𝐹𝑌) ⊗ 𝐹𝑍

𝐹 (𝐹𝑋 �(𝐹𝑌 �𝑍)) 𝐹𝑋 ⊗ 𝐹 (𝐹𝑌 �𝑍) 𝐹𝑋 ⊗ (𝐹𝑌 ⊗ 𝐹𝑍)

p𝐹𝑋 �𝑌,𝑍

p𝑋,𝑌 �𝐹𝑍

𝛼⊗𝐹𝑋,𝐹𝑌,𝐹𝑍𝐹𝛼 �
𝐹𝑋,𝐹𝑌,𝑍

p𝐹𝑋,𝐹𝑌 �𝑍

𝐹 (p𝑋,𝑌 �𝑍)

𝐹𝑋⊗p𝑌,𝑍

(𝛼𝑝)

⌟

The main application is transporting the skew-monoidal structure of V along 𝐹 to one on C.
Theorem 7.1.1

For a skew warping (𝐽 ∈ C, 𝐹 : C → V) over (C, �), C can be equipped with another skew-
monoidal structure with tensor 𝑋 ⊕ 𝑌 ≜ 𝐹𝑋 �𝑌 : C × C→ C and unit 𝐽 ∈ C.

PRoof First, the structural transformations:

• The left unitor 𝜆⊕𝑋 : 𝐽 ⊕ 𝑌 → 𝑌 is 𝐹 𝐽 �𝑌 𝑣 �𝑌
𝐼 �𝑌 𝜆 �

𝑌 𝑌

• The right unitor 𝜌⊕𝑋 : 𝑋 → 𝑋 ⊕ 𝐽 is k𝑋 : 𝑋 → 𝐹𝑋 �𝐽 ;
• The associator 𝛼 ⊕𝑋,𝑌,𝑍 : (𝑋 ⊕ 𝑌) ⊕ 𝑍 → 𝑋 ⊕ (𝑌 ⊕ 𝑍) is

𝐹 (𝐹𝑋 �𝑌) �𝑍 p𝑋,𝑌 �𝑍 (𝐹𝑋 ⊗ 𝐹𝑌) �𝑍
𝛼 �
𝐹𝑋,𝐹𝑌,𝑍

𝐹𝑋 �(𝐹𝑌 �𝑍)

We construct the coherence diagrams for a skew-monoidal category as follows.

𝐽 𝐽

𝐹 𝐽 �𝐽 𝐼 �𝐽
k𝐽

𝑣 �𝐽

𝜆 �
𝐽

𝜆𝑣

𝐹𝑋 �𝑌 𝐹𝑋 �𝑌

(𝐹𝑋 ⊗ 𝐼) �𝑌 𝐹𝑋 �(𝐼 �𝑌)

𝐹 (𝐹𝑋 �𝐽) �𝑌 (𝐹𝑋 ⊗ 𝐹 𝐽) �𝑌 𝐹𝑋 �(𝐹 𝐽 �𝑌)

𝐹k𝑋 �𝑌

p𝑋,𝐽 �𝑌 𝛼 �
𝐹𝑋,𝐹 𝐽 ,𝑌

id �(𝑣 �𝑌)

id �𝜆 �
𝑌

(id⊗𝑣) �𝑌
𝛼 �
𝐹𝑋,𝐼,𝑌

𝜌⊗𝐹𝑋 �𝑌
𝜆𝛼𝜌

𝜌𝑝 𝛼 2

sKew waRpings 139

𝐹 (𝐹 𝐽 �𝑌) �𝑍 (𝐹 𝐽 ⊗ 𝐹𝑌) �𝑍 𝐹 𝐽 �(𝐹𝑌 �𝑍)

(𝐼 ⊗ 𝐹𝑌) �𝑍

𝐹 (𝐼 �𝑌) �𝑍 𝐹𝑌 �𝑍 𝐼 �(𝐹𝑌 �𝑍)

p𝐽 ,𝑌 �𝑍 𝛼 �
𝐹 𝐽 ,𝐹𝑌,𝑍

𝐹 (𝑣 �𝑌) �𝑍

𝐹𝜆 �
𝑌 �𝑍 𝜆 �

𝐹𝑌 �𝑍

𝑣 �id

(𝑣⊗𝐹𝑌) �𝑍

𝜆 �
𝐹𝑌 �𝑍

𝛼 �
𝐼 ,𝐹𝑌,𝑍

𝜆𝑝

𝛼 1

𝜆𝛼

𝐹𝑋 �𝑌 𝐹𝑋 �(𝐹𝑌 �𝐽)

𝐹 (𝐹𝑋 �𝑌) �𝐽 (𝐹𝑋 ⊗ 𝐹𝑌) �𝐽

k𝐹𝑋 �𝑌

id �k𝑌

𝛼 �
𝐹𝑋,𝐹𝑌,𝐽

p𝑋,𝑌 �𝐽

𝛼𝑘

𝐹
(
𝐹 (𝐹𝑊 �𝑋) �𝑌

)
�𝑍

(
𝐹 (𝐹𝑊 �𝑋) ⊗ 𝐹𝑌

)
�𝑍 𝐹 (𝐹𝑊 �𝑋) �(𝐹𝑌 �𝑍)

𝐹
(
(𝐹𝑊 ⊗ 𝐹𝑋) �𝑌

)
�𝑍

(
(𝐹𝑊 ⊗ 𝐹𝑋) ⊗ 𝐹𝑌

)
�𝑍 (𝐹𝑊 ⊗ 𝐹𝑋) �(𝐹𝑌 �𝑍)

𝐹𝑊 �
(
𝐹𝑋 �(𝐹𝑌 �𝑍)

)
(
𝐹𝑊 ⊗ (𝐹𝑋 ⊗ 𝐹𝑌)

)
�𝑍 𝐹𝑊 �

(
(𝐹𝑋 ⊗ 𝐹𝑌) �𝑍

)
𝐹
(
𝐹𝑊 �(𝐹𝑋 �𝑌)

)
�𝑍

(
𝐹𝑊 ⊗ 𝐹 (𝐹𝑋 �𝑌)

)
�𝑍 𝐹𝑊 �

(
𝐹 (𝐹𝑋 �𝑌) �𝑍

)

𝐹 (p𝑊,𝑋 �𝑌) �𝑍

𝐹𝛼 �
𝐹𝑊 ,𝐹𝑋,𝑌 �𝑍

p𝑊,𝐹𝑋 �𝑌 𝛼 �
𝐹𝑊 ,𝐹 (𝐹𝑋 �𝑌),𝑍

id �(p𝑋,𝑌 �𝑍)

id �𝛼 �
𝐹𝑋,𝐹𝑌,𝑍

𝛼 �
𝐹𝑊 ,𝐹𝑋,𝐹𝑌 �𝑍

p𝑊,𝑋 �id

𝛼 �
𝐹 (𝐹𝑊 �𝑋),𝐹𝑌,𝑍p𝐹𝑊 �𝑋,𝑌 �𝑍

(id⊗p𝑋,𝑌) �𝑍

(p𝑊,𝑋⊗id) �𝑍

𝛼⊗𝐹𝑊 ,𝐹𝑋,𝐹𝑌 �𝑍

𝛼 �
𝐹𝑊 ,𝐹𝑋⊗𝐹𝑌,𝑍

𝛼 �
𝐹𝑊 ⊗𝐹𝑋,𝐹𝑌,𝑍

𝛼𝑝

𝛼 1

𝛼𝛼

𝛼 2

We furthermore have that 𝐹 : C → V lifts to a skew opmonoidal functor (C, 𝐽 , ⊕) → (V, 𝐼 , ⊗)
with unit morphism 𝑣 : 𝐹 𝐽 → 𝐼 and multiplication p𝑋,𝑌 : 𝐹 (𝑋 ⊕ 𝑌) → 𝐹𝑋 ⊗ 𝐹𝑌 . □

Example 7.1.1. The mixed substitution action (−) �(=) : F̃ × Ñ → Ñ of the skew-monoidal
(in fact, monoidal) F̃ on Ñmay be turned into a tensor product using the free presheaf functor
■ : Ñ → F̃ which – as we will show later – has the structure of a warping. The Ñ-tensor
𝑋 ⊕ 𝑌 ≜ ■𝑋 �𝑌 is isomorphic to the definition we have been using thus far by Yoneda:∫ 𝑚∈N (∑

𝑘∈N
𝑋𝑘 × [𝑚]𝑘

)
× (𝑌𝑛)𝑚 �

∑
𝑘∈N

𝑋𝑘 × (𝑌𝑛)𝑘
⌟

7.1.2 Closed warpings

The notion of a warping for skew-closed categories has not appeared in literature before, but
it can be easily reverse-engineered from the motivating theorem: given a functor 𝐺 : V → C

and object 𝐽 ∈ C for a skew-closed category (V, 𝐼 , [−,=]) and a left skew V-modular category
(C, 〈−,=〉 : Cop×C→ V), what extra structure and properties are required to make Cwith unit
𝐽 and hom 𝐺 〈−,=〉 : Cop × C→ C a skew-closed category?

Definition 7.1.2 A skew-closed warping over (C, 〈−,=〉) consists of

• a functor 𝐺 : V→ C

• an object 𝐽 ∈ C

140 waRped constRuctions

• a morphism 𝑢 : 𝐽 → 𝐺𝐼 ∈ C
• a natural family of maps l𝑋 : 𝐺 〈𝐽 , 𝑋 〉 → 𝑋 : C→ C

• a natural family of maps q𝐴,𝐵 : 𝐺 [𝐴, 𝐵] → 𝐺 〈𝐺𝐴,𝐺𝐵〉 : Vop × V→ C

satisfying the following axioms:

𝐺 [𝐼 , 𝐵] 𝐺𝐵

𝐺 〈𝐺𝐼,𝐺𝐵〉 𝐺 〈𝐽 ,𝐺𝐵〉

𝐺 i[]𝐵

q𝐼 ,𝐵

𝐺 〈𝑢,id〉

l𝐺𝐵 (𝑖𝑞)

𝐺𝐼

𝐺 [𝐴,𝐴] 𝐺 〈𝐺𝐴,𝐺𝐴〉

𝐺 j []𝐴 𝐺 j 〈〉𝐺𝐴

q𝐴,𝐴

(𝑗𝑞)

𝐽 𝐽

𝐺𝐼 𝐺 〈𝐽 , 𝐽 〉
𝑢

𝐺 j 〈〉𝐽

l𝐽 (𝑗𝑢)
𝐺 〈𝑌, 𝑍 〉 𝐺 [〈𝐽 , 𝑌 〉, 〈𝐽 , 𝑍 〉]

𝐺 〈𝐺 〈𝐽 , 𝑌 〉, 𝑍 〉 𝐺 〈𝐺 〈𝐽 , 𝑌 〉,𝐺 〈𝐽 , 𝑍 〉〉
𝐺 〈l𝑌 ,𝑍 〉

𝐺L〈〉 𝐽𝑌 ,𝑍

q〈 𝐽 ,𝑌 〉,〈 𝐽 ,𝑍 〉

𝐺 〈id,l𝑍 〉

(𝐿𝑙)

𝐺 [𝐵,𝐶] 𝐺 〈𝐺𝐵,𝐺𝐶〉 𝐺 [〈𝐺𝐴,𝐺𝐵〉, 〈𝐺𝐴,𝐺𝐶〉]

𝐺 [[𝐴, 𝐵], [𝐴,𝐶]] 𝐺 〈𝐺 〈𝐺𝐴,𝐺𝐵〉,𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺 〈𝐺 [𝐴, 𝐵],𝐺 [𝐴,𝐶]〉 𝐺 〈𝐺 [𝐴, 𝐵],𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺L[]𝐴𝐵,𝐶

q[𝐴,𝐵],[𝐴,𝐶] 𝐺 〈q𝐴,𝐵,id〉

q𝐵,𝐶 𝐺L〈〉𝐺𝐴𝐺𝐵,𝐺𝐶

q〈𝐺𝐴,𝐺𝐵〉,〈𝐺𝐴,𝐺𝐶 〉

𝐺 〈id,q𝐴,𝐶〉

(𝐿𝑞)

⌟

As intended, the main transport property is an easy consequence of the axioms.
Theorem 7.1.2

For a skew-closed warping (𝐺 : V→ C, 𝐽 ∈ C) over (C, �), C can be equipped with another
skew-closed structure with internal hom J𝑋,𝑌 K ≜ 𝐺 〈𝑋,𝑌 〉 and unit 𝐽 ∈ C.

PRoof First, the structural transformations:

• The left unitor jJK𝑋 : 𝐽 → J𝑋,𝑋 K is 𝐽 𝑢 𝐺𝐼
𝐺 j 〈〉𝑋 𝐺 〈𝑋,𝑋 〉;

• The right unitor iJK𝑋 : J𝐽 , 𝑋 K→ 𝑋 is l𝑋 : 𝐺 〈𝐽 , 𝑋 〉 → 𝑋 ;

• The compositor LJK𝑋𝑌,𝑍 : J𝑌, 𝑍K→ JJ𝑋,𝑌 K, J𝑋,𝑍KK is

𝐺 〈𝑌, 𝑍 〉
𝐺L〈〉𝑋𝑌,𝑍

𝐺 [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉] q〈𝑋,𝑌 〉,〈𝑋,𝑍 〉𝐺 〈𝐺 〈𝑋,𝑌 〉,𝐺 〈𝑋,𝑍 〉〉

We construct the coherence diagrams for a skew-closed category as follows:

𝐺 〈𝑌, 𝑍 〉 𝐺 [〈𝐽 , 𝑌 〉, 〈𝐽 , 𝑍 〉]

𝐺 〈𝐺 〈𝐽 , 𝑌 〉, 𝑍 〉 𝐺 〈𝐺 〈𝐽 , 𝑌 〉,𝐺 〈𝐽 , 𝑍 〉〉
𝐺 〈l𝑌 ,𝑍 〉

𝐺L𝐽𝑌 ,𝑍

q〈 𝐽 ,𝑌 〉,〈 𝐽 ,𝑍 〉

𝐺 〈id,l𝑍 〉

𝐿𝑞

𝐽 𝐺𝐼 𝐺 〈𝐺 〈𝑋,𝑌 〉,𝐺 〈𝑋,𝑌 〉〉

𝐺 〈𝑌,𝑌 〉 𝐺 [〈𝑋,𝑌 〉, 〈𝑋,𝑌 〉]

𝑢

𝐺 j𝑌

𝐺L𝑋𝑌,𝑌

𝐺q〈𝑋,𝑌 〉,〈𝑋,𝑌 〉
𝐺 j〈𝑋,𝑌 〉

𝐺 j𝐺 〈𝑋,𝑌 〉

Lj
𝑗𝑞

sKew waRpings 141

𝐽 𝐽

𝐺𝐼 𝐺 〈𝐽 , 𝐽 〉

l𝐽𝑢

𝐺 j 〈〉𝐽

𝑗𝑢

𝐺 〈𝑋,𝑌 〉 𝐺 〈𝑋,𝑌 〉

𝐺 [〈𝑋,𝑋 〉, 〈𝑋,𝑌 〉] 𝐺 [𝐼 , 〈𝑋,𝑌 〉] 𝐺 〈𝐽 ,𝐺 〈𝑋,𝑌 〉〉

𝐺 〈𝐺 〈𝑋,𝑋 〉,𝐺 〈𝑋,𝑌 〉〉 𝐺 〈𝐺𝐼,𝐺 〈𝑋,𝑌 〉〉

l𝐺 〈𝑋,𝑌 〉𝐺L〈〉𝑋𝑋,𝑌

q〈𝑋,𝑋 〉,〈𝑋,𝑌 〉

𝐺 〈𝐺 j𝑋 ,id〉

𝐺 〈𝑢,id〉
𝐺 [j 〈〉𝑋 ,id]

𝐺 i[]〈𝑋,𝑌 〉

q𝐼 ,〈𝑋,𝑌 〉

ijL

𝑞 1

𝑖𝑞

𝐺 〈𝑌, 𝑍 〉 𝐺 [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉] 𝐺 〈𝐺 〈𝑋,𝑌 〉,𝐺 〈𝑋,𝑍 〉〉

𝐺 [〈𝑋,𝑌 〉, [〈𝑊,𝑋 〉, 〈𝑊,𝑍 〉]] 𝐺 〈𝐺 〈𝑋,𝑌 〉,𝐺 [〈𝑊,𝑋 〉, 〈𝑊,𝑍 〉]〉

𝐺 [〈𝑊,𝑌 〉, 〈𝑊,𝑍 〉] 𝐺 [[〈𝑊,𝑋 〉, 〈𝑊,𝑌 〉], [〈𝑊,𝑋 〉, 〈𝑊,𝑍 〉]]

𝐺 〈𝐺 〈𝑊,𝑌 〉,𝐺 〈𝑊,𝑍 〉〉 𝐺 〈𝐺 [〈𝑊,𝑋 〉, 〈𝑊,𝑌 〉],𝐺 [〈𝑊,𝑋 〉, 〈𝑊,𝑍 〉]〉

𝐺 [〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑌 〉〉, 〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑍 〉〉]

𝐺 〈𝐺 〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑌 〉〉,𝐺 〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑍 〉〉〉 𝐺 〈𝐺 〈𝑋,𝑌 〉,𝐺 〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑍 〉〉〉

𝐺 〈𝐺 [〈𝑊,𝑋 〉, 〈𝑊,𝑌 〉],𝐺 〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑍 〉〉〉

𝐺L〈〉𝑋𝑌,𝑍 q〈𝑋,𝑌 〉,〈𝑋,𝑍 〉

𝐺 〈id,𝐺L〈〉𝑊𝑋,𝑍 〉

𝐺 〈id,q〈𝑊,𝑋 〉,〈𝑊,𝑍 〉〉

𝐺L〈〉𝑊𝑌,𝑍

q〈𝑊,𝑌 〉,〈𝑊,𝑍 〉

𝐺L〈〉𝐺 〈𝑊,𝑋 〉
𝐺 〈𝑊,𝑌 〉,𝐺 〈𝑊,𝑍 〉

q〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑌 〉〉,〈𝐺 〈𝑊,𝑋 〉,𝐺 〈𝑊,𝑍 〉〉

𝐺 〈q〈𝑊,𝑋 〉,〈𝑊,𝑌 〉,id〉 𝐺 〈𝐺L〈〉𝑊𝑋,𝑌 ,id〉

𝐺L[] 〈𝑊,𝑋 〉
〈𝑊,𝑌 〉,〈𝑊,𝑍 〉

𝐺 [id,L〈〉𝑊𝑋,𝑍]

𝐺 [L〈〉𝑊𝑋,𝑌 ,id]

q[〈𝑊,𝑋 〉,〈𝑊,𝑌 〉],[〈𝑊,𝑋 〉,〈𝑊,𝑍 〉]

𝐺 〈id,q〈𝑊,𝑋 〉,〈𝑊,𝑍 〉〉

q〈𝑋,𝑌 〉,[〈𝑊,𝑋 〉,〈𝑊,𝑍 〉]

𝐺 〈𝐺L〈〉𝑊𝑋,𝑌 ,id〉

𝐿𝐿

𝑞 2

𝐿𝑞

𝑞 1

□

7.1.3 Adjoint warpings

Since the functors for monoidal and closed warpings go in opposite directions, it is worth
investigating the interaction between warpings on adjoint functors. Indeed, we find that the
monoidal and closed warping structures are equivalent.
Theorem 7.1.3

Suppose we have an adjunction 𝐹 a 𝐺 : C → V for (V, 𝐼 , ⊗, [−,=]) skew-monoidal closed
and (C, �, 〈−,=〉) a left skew-monoidal closed action. Then, 𝐹 is a skew-monoidal warping
riding �if and only if 𝐺 is a skew-closed warping riding 〈−,=〉.

PRoof See the Appendix on page 325. □

Corollary 7.1.1 Given an adjoint warping 𝐹 a 𝐺 : C → V, the skew left V-modular category C

inherits the skew-monoidal closed structure of V.

PRoof Above we showed that skew-monoidal closed warpings can be used to equip the
category C with a tensor 𝑋 ⊕ 𝑌 ≜ 𝐹𝑋 �𝑌 , and a hom J𝑋,𝑌 K ≜ 𝐺 〈𝑋,𝑌 〉, both with unit
𝐽 ≜ 𝐺𝐼 . To show that the category is then skew-monoidal closed, it is sufficient to establish
the tensor-hom adjunction (−) ⊕𝑌 a J𝑌,=K – but it is merely a composition of the adjunction
(−) �𝑌 a 〈𝑌,=〉 and 𝐹 a 𝐺 . □

142 waRped constRuctions

The following theorem gives an efficient way of inducing adjoint warpings and will be appli-
cable in the case of our adjoint modalities in Section 9.3.2.
Theorem 7.1.4

For an adjoint triple 𝐹 a 𝐺 a 𝐻 : C→ V, if𝐺 : V→ C is a strong V �-module functor, then 𝐹
and 𝐺 form adjoint warpings.

PRoof See the Appendix on page 332. □

The lemma above uses an adjoint triple as it offers a streamlined construction of the warping,
and is the situation we will encounter in Section 9.3.2; however, the existence of a right adjoint
to 𝐺 is not essential for the result.

Example 7.1.2. The free-forgetful-cofree adjunction ■ a ★ a ■ satisfies★(𝑃 ⊗𝑄) � 𝑃 �★𝑄 so
induces an adjoint warping between ■ and ★, with the skew-monoidal closed structure on Ñ

given by 𝑋 ⊕ 𝑌 ≜ ■𝑋 �𝑌 and J𝑋,𝑌 K ≜ ★〈𝑋,𝑌 〉. ⌟

Adjoint warpings can be induced with the minimal assumption of the right/middle adjoint
being a strong module functor, allowing us to transport skew-monoidal closed structure on
a category to one on its modular category. The skew-monoidal closed substitution structure
on families is induced in this way from the analogous (but stronger) structure on presheaves.
We next investigate the interaction between co/monads induced by the adjunction and the
respective skew-monoidal closed structures, and establish some equivalence results in the case
that the warping 𝐺 is monadic.

7.2 WaRped adjoint tRiples

The adjoint situation discussed in the previous section and assumed throughout this section –
namely, an adjoint triple 𝐹 a 𝐺 a 𝐻 : C → V, with 𝐺 a strong V �-module functor – provides
rich opportunities for studying the interaction of the induced skew-monoidal closed structure
on C with functors thereon and objects within.

7.2.1 Warpings and co/monads

The adjoint triple 𝐹 a 𝐺 a 𝐻 with 𝐴 �𝐺𝐵 � 𝐺 (𝐴 ⊗ 𝐵) induces a skew-monoidal closed
structure (⊕, J−,=K) on C, as well as an adjoint monad-comonad pair 𝑇 a 𝐶 : C → C, with
𝑇 ≜ 𝐺𝐹 and 𝐶 ≜ 𝐺𝐻 . In this section we analyse co/algebras for these in C, relating them
to the modules over 𝐽 . To strengthen the results, assume further that V is right-normal, i.e.
𝜌𝐴 : 𝐴 � 𝐴 ⊗ 𝐼 and i𝐴 : [𝐼 , 𝐴] � 𝐴 are isomorphisms.

As is the case in any skew-monoidal category, every monoid𝑀 ∈ C gives rise to the monad
(−) ⊕𝑀 : C→ C (Proposition 5.2.2). Modules over the unit 𝐽 are of particular interest, as they
coincide with 𝑇 -algebras and 𝐶-coalgebras.

Proposition 7.2.1 We have the following natural isomorphisms:

𝑇 � ⊕ 𝐽 JK𝐽 � 𝐶

waRped adjoint tRiples 143

PRoof The natural isomorphism 𝑇 � (−) ⊕ 𝐽 has components

𝑇𝑋 = 𝐺𝐹𝑋 � 𝐺 (𝐹𝑋 ⊗ 𝐼) � 𝐹𝑋 �𝐺𝐼 ≜ 𝑋 ⊕ 𝐽

Similarly,
𝐶𝑋 = 𝐺𝐻𝑋 � 𝐺 [𝐼 , 𝐻𝑋] � 𝐺 〈𝐺𝐼, 𝑋 〉 = J𝐽 , 𝑋 K □

Naturally isomorphic functors have isomorphic categories of co/algebras.

Corollary 7.2.1 We have the following isomorphisms of categories:

𝑇 -Alg(C) � C⊕ � CJK � 𝐶-Coalg(C)
This allows us to translate between results about categories of co/algebras and 𝐽 -modules
(Section 5.2.1). For example, we know that 𝑋 ⊕ (−) : C → C lifts to 𝐽 -modules, and therefore
to 𝑇 -algebras: for a 𝑇 -algebra (𝑌,𝑦), 𝑋 ⊕ 𝑌 has 𝑇 -algebra structure with

𝑇 (𝑋 ⊕ 𝑌) � (𝑋 ⊕ 𝑌) ⊕ 𝐽
𝛼⊕𝑋,𝑌,𝐽

𝑋 ⊕ (𝑌 ⊕ 𝐽) � 𝑋 ⊕ 𝑇𝑌 𝑋⊕𝑦
𝑋 ⊕ 𝑌

In the presence of the strength s𝐴,𝐵 : 𝐺 (𝐴 ⊗ 𝐵) � 𝐴 �𝐺𝐵, this can be expanded in terms of �:

𝑇 (𝑋 ⊕ 𝑌) = 𝐺𝐹 (𝑋 ⊕ 𝑌)
𝐺m𝐹

𝑋,𝑌
𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)

s𝐺𝐹𝑋,𝐹𝑌
𝐹𝑋 �𝐺𝐹𝑌 id �𝑦

𝐹𝑋 �𝑌 ≜ 𝑋 ⊕ 𝑌

The internal hom J𝑋,𝑌 K has a canonical 𝐶-coalgebra structure, independent of whether 𝑋,𝑌
are coalgebras (that is, it is a skew left V[]-action J−,=K : Cop × C→ V):

J𝑋,𝑌 K ≜ 𝐺 〈𝑋,𝑌 〉 𝐺𝜋〈𝑋,𝑌 〉
𝐺𝐻𝐺 〈𝑋,𝑌 〉 ≜ 𝐶J𝑋,𝑌 K

Of course, as we know from Section 5.2.3, these identities do not claim that𝑇 -Alg(C) is skew-
monoidal or𝐶-Coalg(C) is skew-closed – the same issues with the𝑇 -algebra homomorphism
property of the right unitor𝑋 → 𝑋 ⊕ 𝐽 apply, which requires us to show that𝑇𝑋 → 𝑋 → 𝑋 ⊕ 𝐽
is the identity. We must therefore be careful not to assume that 𝑇 -Alg(C) is monoidal, even
though both V and C are.

Example 7.2.1. The monoidal category of presheaves is in particular right-normal, with 𝑃 �
𝑃 ⊗ 𝑉 . Thus, the monad ^ and comonad □ induced by the adjoint triple ■ a ★ a ■ are
equivalent to the right 𝐼 -module structure, with ^𝑋 � 𝑋 ⊕ 𝐼 and □𝑋 � J𝐼 , 𝑋 K. ⌟

We now consider the relationship between the functors that make up the adjoint triple, and
the induced warped monoidal closed structure.

Proposition 7.2.2 In the context of the adjoint warped triple 𝐹 a 𝐺 a 𝐻 , 𝐹 : C → V is an oplax
monoidal functor, and 𝐺 : V→ C is lax monoidal closed.

PRoof The first part follows from the fact that 𝐹 is a warping; the second part is a standard
result about adjoints to oplax monoidal functors, equipping 𝐺 with monoidal structure

𝑢𝐺 : 𝐽 = 𝐺𝐼

144 waRped constRuctions

m𝐺
𝐴,𝐵 : 𝐺𝐴 ⊕ 𝐺𝐵

𝜏𝐺𝐴⊕𝐺𝐵
𝐺𝐹 (𝐺𝐴 ⊕ 𝐺𝐵)

𝐺m𝐹
𝐺𝐴,𝐺𝐵

𝐺 (𝐹𝐺𝐴 ⊗ 𝐹𝐺𝐵) 𝐺 (𝜏𝐴⊗𝜏𝐵)𝐺 (𝐴 ⊗ 𝐵)

Since the multiplication is defined in terms of𝑚𝐹 which is itself derived from 𝑠 , the composite
can be simplified to:

𝐺𝐴 ⊕ 𝐺𝐵 s𝐹𝐺𝐴,𝐵
𝐺 (𝐹𝐺𝐴 ⊗ 𝐵) 𝐺 (𝜏𝐴⊗𝐵)𝐺 (𝐴 ⊗ 𝐵)

The lax closed structure of 𝐺 is the warping

m𝐺
𝐴,𝐵 ≜ q𝐴,𝐵 : 𝐺 [𝐴, 𝐵] → 𝐺 〈𝐺𝐴,𝐺𝐵〉 ≜ J𝐺𝐴,𝐺𝐵K

which can be equivalently expressed in terms of the transpose isomorphism

𝐺 [𝐴, 𝐵] 𝐺 [𝐴,𝜋𝐵] 𝐺 [𝐴,𝐻𝐺𝐵] t𝐴,𝐺𝐵
𝐺 〈𝐺𝐴,𝐺𝐵〉 ≜ J𝐺𝐴,𝐺𝐵K □

Lemma 7.2.1 We have the following identities relating the isomorphisms of Proposition 7.2.1 and
the monoidal/closed transformations

𝐺𝐴 ⊕ 𝐽 𝐺 (𝐴 ⊗ 𝐼)

𝑇𝐺𝐴 𝐺𝐴
𝐺𝜏𝐴

m𝐺
𝐴,𝐼

𝐺𝜌𝐴�

𝐺𝐴 𝐶𝐺𝐴

𝐺 [𝐼 , 𝐴] J𝐽 ,𝐺𝐴K
𝐺𝜋𝐴

�𝐺 i𝐴

m𝐺
𝐼,𝐴

PRoof These follow from the expansion properties shown above.

𝐺𝐴 ⊕ 𝐽 𝐺 (𝐴 ⊗ 𝐼)

𝐺 (𝐹𝐺𝐴 ⊗ 𝐼)

𝑇𝐺𝐴 𝐺𝐴
𝐺𝜏𝐴

𝐺𝜌𝐴

m𝐺
𝐴,𝐼

s𝐹𝐺𝐴,𝐼

𝐺𝜌𝐹𝐺𝐴

𝐺 (𝜏𝐴⊗𝐼)

𝜌

𝐺𝐴 𝐶𝐺𝐴

𝐺 [𝐼 , 𝐻𝐺𝐴]

𝐺 [𝐼 , 𝐴] J𝐽 ,𝐺𝐴K

𝐺𝜋𝐴

𝐺 i𝐴

m𝐺
𝐼,𝐴

𝐺 i𝐻𝐺𝐴

t𝐼 ,𝐺𝐴
𝐺 [𝐼 ,𝜋𝐴]

𝑖

□

7.2.2 Monadic warpings

The adjunction 𝐹 a 𝐺 : V → C induces the canonical comparison functor 𝐾 : V → 𝑇 -Alg(C),
mapping objects𝐴 ∈ V to objects𝐺𝐴 ∈ Cwith𝑇 -algebra structure given by the counit (𝑇𝐺𝐴 =

𝐺𝐹𝐺𝐴) 𝐺𝜏𝐴 𝐺𝐴. As𝐺 is monoidal, it maps monoids in V to monoids in C, which themselves
are canonically 𝑇 -algebras due to Proposition 5.2.7: every monoid 𝑁 ∈ C is invariant, and the
𝐽 -module structure is equivalently a 𝑇 -algebra:

𝑡 : 𝑇𝑁 � 𝑁 ⊕ 𝐽 𝑁⊕𝜂
𝑁 ⊕ 𝑁 𝜇

𝑁

If an endofunctor Σ : C → C lifts to Ω : V → V along 𝐺 , any Ω-monoid in V induces a Σ-
monoid in C by 𝐺 . In this section we identify the sufficient conditions for this mapping to
be invertible, establishing the equivalence of Σ-monoids in C and Ω-monoids in V. In the

waRped adjoint tRiples 145

presheaf and familial models, this will prove a precise alignment between models of second-
order syntax in families and presheaves (see Theorem 10.2.2).

Start by assuming that𝐺 : V→ C is monadic, so the comparison functor𝐾 : V→ 𝑇 -Alg(C)
has a weak inverse 𝐿 : 𝑇 -Alg(C) → V. Assume further that the equivalence extends to pointed
categories 𝐼/V ' 𝐽/C𝑇 (where C𝑇 abbreviates 𝑇 -Alg(C)), with corresponding functors de-
noted 𝑲 and 𝑳, respectively. We show that the equivalence extends to categories of algebraic
monoids using the framework of synthetic monoidal categories: the algebra/modular categories
C𝑇 or 𝐽/C𝑇 are not monoidal, but they embed into the skew-monoidal category C so monoidal
structure within may be indirectly connected to V.

Consider the situation below, where boldface symbols denote pointed variants of cate-
gories and functors (e.g.C𝑻 = 𝐽/C𝑇), C𝑇 is synthetic monoidal with unit andmultiplication pro-
functors C𝑻 (𝑱 ,−) and PMLin(−,−;−), and V is skew-monoidal with unit and multiplication
profunctors V(𝑰 ,−) and V(− ⊗ −,−), where the pointed unit and tensor are 𝑰 = (𝐼 , id) ∈ 𝐼/V
and 𝑷 ⊗ 𝑸 = (𝑃 ⊗ 𝑄, 𝐼 𝜌𝐼 𝐼 ⊗ 𝐼 𝑝𝑃⊗𝑝𝑄

𝑃 ⊗ 𝑄):

C𝑇 C

V V

(−)
C

𝑳

Σ

𝑲

(−)
V

𝐺

Ω

Proposition 7.2.3 If 𝑳 is a synthetic monoidal functor from C𝑻
|C to V|V, the categories Mon(C)

and Mon(V) are equivalent.

PRoof The mapping of monoids in V to monoids in C is performed by the skew-monoidal
functor 𝐺 : V → C, which is the underlying functor of the comparison functor 𝐾 : V → C𝑇 .
Conversely, let (𝑁,𝜂 : 𝐼 → 𝑁, 𝜇 : 𝑁 ⊕ 𝑁 → 𝑁) be a monoid in C, which is also a pointed
invariant monoid 𝑵 ∈ C𝑻 by Proposition 5.2.7 and the point 𝜂 : 𝐽 → 𝑁 , which is a pointed
algebra homomorphism 𝜼 : 𝑱 → 𝑵 . The multiplication of an invariant monoid is a pointed
multilinear map by Lemma 5.2.1, so 𝑵 is a synthetic monoid object in C𝑻 . As 𝑳 is synthetic
monoidal, it maps the synthetic monoid 𝑵 ∈ C𝑻 to the synthetic monoid 𝑳𝑵 ∈ V by Propo-
sition 6.1.2. Its underlying object is 𝐿(𝑁, 𝑎 : 𝑁 ⊗ 𝐼 → 𝑁) ∈ V. The mappings form an
equivalence, as 𝑀 ∈ V ↦→ 𝐺𝑀 ∈ C ↦→ 𝐾𝑀 ∈ C𝑇 ↦→ 𝐿𝐾𝑀 ∈ V � 𝑀 , and conversely
𝑀 ∈ C ↦→ (𝑁, 𝑎) ↦→ C𝑇 ↦→ 𝐿(𝑁, 𝑎) ∈ V ↦→ 𝐺𝐿(𝑁, 𝑎) ∈ C � 𝑈 (𝑁, 𝑎) = 𝑁 . □

To relate algebraic monoids, we need to make further assumptions on the signature endofunc-
tors Σ : C → C and Ω : V → V. Given the forgetful functor C𝑻 → C, we can define the right
C𝑻 -action (−) 	 (=) : C × C𝑻 → C as 𝑋 	 𝒀 ≜ 𝑋 ⊕ 𝑌 and consider C to be an Id-relative syn-
thetic C𝑻

|C-modular category, with profunctor𝒮(𝑋, 𝒀 ;𝑍) ≜ C(𝑋 ⊕𝑌, 𝑍). A synthetic modular
endofunctor on C then has the strength operator sΣ [−] : C(𝑋 ⊕ 𝑌, 𝑍) → C(Σ𝑋 ⊕ 𝑌, Σ𝑍), with
associativity law given in terms of pointed multilinear maps (as the modular category is over
C𝑻
|C). Similarly, a V-modular functor Ω : V → V with strength sΩ𝐴,𝑩 : Ω𝐴 � 𝑩 → Ω(𝐴 � 𝑩)

(for 𝐴 � 𝑩 ≜ 𝐴 ⊗ 𝐵) can be turned into a representable synthetic V-modular endofunctor,
with strength operator sΩ [−] : V(𝐴 � 𝑩,𝐶) → V(Ω𝐴 � 𝑩,Ω𝐶) that maps 𝑓 : 𝐴 � 𝑩 → 𝐶 to

Ω𝐴 � 𝑩
sΩ𝐴,𝑩

Ω(𝐴 � 𝑩) Ω𝑓
Ω𝐶 .

Theorem 7.2.1
If two unital endofunctors (Σ : C → C, 𝜂Σ : Id =⇒ Σ) and (Ω : V → V, 𝜂Ω : Id =⇒ Ω) form
1-cells and 2-cells in SynMod

(id, 𝜂Σ) : (Id, Id) =⇒ (Id, Σ) : (C𝑻
|C, C|C) → (C𝑻

|C, C|C)
(id, 𝜂Ω) : (Id, Id) =⇒ (Id,Ω) : (V|V,V|V) → (V|V,V|V)

(𝑲 ,𝐺) : (V|V,V|V) → (C𝑻
|C, C|C) is a strong elevator between them, and 𝑳 : C𝑻

|C → V|V is
synthetic monoidal, then the categories of Ω-monoids in V and Σ-monoids in C are equiva-
lent.

PRoof See the Appendix on page 334. □

Themain value of the theorem is in giving confidence that the structure of second-order syntax
with algebraic structure can be equivalently represented both in presheaves (as understood
from the presheaf model) and families as well. Combined with the other core results of this
thesis – the initial algebra-lifting theorem, and the free Σ-monoid theorem – we obtain a full
and precise correspondence between the two models.

In the next chapter we move away from abstract skew-monoidal structure and introduce the
components of the familial model.

§ Summary of Part II

This part of the thesis focused on skew-monoidal closed categories and
related notions, including modular categories, warpings, and synthetic
monoidal structure. Part III puts these pieces together to precisely ax-
iomatise the relationship between the presheaf and familial models, cul-
minating with the derivation of the free Σ-monoid structure for the
datatype of terms via initial-algebra semantics.

148 waRped constRuctions

paRt i

T H E F A M I L I A L M O D E L

Parts I and II established the abstract categorical groundwork: categories of alge-
bras, clones, skew-monoidal structures, and modular functors. With these in place,
Part III turns to the familial model of second-order abstract syntax, grounding it in
the well-understood presheaf setting.

We begin in Chapter 8 with a review of presheaves over small categories, high-
lighting properties relevant to our model-theoretic framework. Since indexed fam-
ilies are presheaves on discrete categories, we then explore substitution from ab-
stract principles to its concrete realisation in Chapter 9. Chapter 10 introduces
the familial model proper, detailing the constructions and proofs used to recon-
struct the presheaf theory within this restricted setting. The culmination comes in
Chapter 11, where we derive the algebraic monoid structure of the initial syntactic
algebra and examine the second-order features of the resulting formalism.

150

c h a p t e R 8

Presheaves

Though a simple concept on the surface, presheaves – or Set-valued functors – have a rich
and extensive theory that permeates the study of categories (Bunge, 1966; Reyes et al., 2004;
MacLane and Moerdijk, 2012). In this section we briefly recall some of the core constructions
on presheaves, covering their categorical structure and universal properties (Section 8.2), and
the notions of nerve and realisation that underlie the substitution structure in the subsequent
Section 8.3. Before that, we introduce a useful categorical tool for manipulating presheaves.

8.1 Calculus of categoRies

We review a powerful categorical formalism for defining constructions and presenting proofs
in an elegant, calculational manner: co/ends and their calculus. Kan extensions – a direct
application of co/ends – form the backbone of much of category theory and feature extensively
in our work as well. A detailed account of many concepts in this chapter is given by Loregian
(2021), so we restrict ourselves to the main definitions and results in order to fix the notation.

Definition 8.1.1 A covariant presheaf 𝑃 on a small category C is a functor C → Set. The
category of covariant presheaves and natural transformations is denoted C̃ = SetC.
A contravariant presheaf is a functor Cop → Set. The category of contravariant presheaves and
natural transformations is denoted Ĉ = SetC

op . ⌟

Notation. In this and subsequent chapters, objects of the base category C will be written in
lowercase, and presheaves in uppercase. ⌟

Definition 8.1.2 The covariant Yoneda embedding is the functor ょ

: Cop → C̃, mapping an
object 𝑎 ∈ C to the hom-functor C(𝑎,−) : C → Set. The contravariant Yoneda embedding is
the functorょ: C→ Ĉ, mapping 𝑏 ∈ C to C(−, 𝑏). ⌟

Lemma 8.1.1 (Yoneda lemma) For any presheaves 𝑃 : C̃ and 𝑄 : Ĉ and objects 𝑎 ∈ C, we have
the natural isomorphisms

C̃(ょ𝑎, 𝑃) � 𝑃 (𝑎) Ĉ(ょ𝑎,𝑄) � 𝑄 (𝑎) (ょ�)

152 pResheaves

Lemma 8.1.2 The Yoneda embedding is fully faithful: 𝑎 � 𝑏 iff ょ

𝑎 � ょ

𝑏 ∈ C̃ iffょ𝑎 �ょ𝑏 ∈ Ĉ.

8.1.1 Co/ends

Co/ends are both a generalisation and an instance of co/limits, defined in terms of dinatural
transformations, the appropriate notion of naturality for functors of mixed variance.

Definition 8.1.3 A dinatural transformation 𝛼 : 𝑃 =� 𝑄 between functors 𝑃,𝑄 : Cop × C→ D

is a family of morphisms

𝛼𝑎 : 𝑃 (𝑎, 𝑎) → 𝑄 (𝑎, 𝑎) : Cop × C→ D

such that for all 𝑓 : 𝑎 → 𝑏 ∈ C, the following hexagon commutes:

𝑃 (𝑎, 𝑎) 𝑃 (𝑏, 𝑎) 𝑃 (𝑏, 𝑏)

𝑄 (𝑎, 𝑎) 𝑄 (𝑏, 𝑎) 𝑄 (𝑏, 𝑏)

𝑃 (𝑓 ,𝑎) 𝑃 (𝑏,𝑓)

𝛼𝑎 𝛼𝑏

𝑄 (𝑓 ,𝑎) 𝑄 (𝑏,𝑓) ⌟

Since co/ends intend to generalise co/limits, we also have an analogue of co/cones as natural
transformations between a diagram and the constant functor.

Definition 8.1.4 A wedge of a mixed variance functor 𝑃 : Cop × C→ D is a dinatural transfor-
mation Δ𝐴 =� 𝑃 : Cop × C → D from the constant functor Δ𝐴 : Cop × C → D = Δ𝐴 (_, _) = 𝐴
which we may also simply write 𝐴. Dually, a cowedge is a dinatural transformation 𝑃 =� 𝐴.
The value 𝐴 of the constant bivariant functor is called the apex of the co/wedge.

Amorphism of co/wedges on the same functor 𝑃 is amorphism of the apices that commutes
with the dinatural transformation; accordingly, co/wedges over 𝑃 form a category. ⌟

Definition 8.1.5 The end of a functor 𝑃 : Cop×C→ D is its terminal wedge, with apex denoted
end(𝑃) or

∫
𝑎∈C 𝑃 (𝑎, 𝑎) and dinatural transformation 𝜋 :

(∫
𝑎∈C 𝑃 (𝑎, 𝑎)

)
=� 𝑃 . The coend of 𝑃 is

the terminal cowedge, with apex denoted coend(𝑃) or
∫ 𝑎∈C

𝑃 (𝑎, 𝑎) and dinatural transforma-
tion 𝜛 : 𝑃 =�

(∫ 𝑎∈C
𝑃 (𝑎, 𝑎)

)
. ⌟

The dinaturality and universality condition of co/ends can be pictured as follows: for any
co/wedge 𝛽 of 𝑃 with apex𝑊 , there is a unique co/wedge map ℎ between it and the co/end.

𝑊

∫
𝑐∈C 𝑃 (𝑐, 𝑐) 𝑃 (𝑎, 𝑎)

𝑃 (𝑏, 𝑏) 𝑃 (𝑎,𝑏)

𝜋𝑎

𝜋𝑏

𝑃 (𝑓 ,𝑏)

𝑃 (𝑎,𝑓)

ℎ

𝛽𝑎

𝛽𝑏

𝑃 (𝑎, 𝑏) 𝑃 (𝑎, 𝑎)

𝑃 (𝑏, 𝑏)
∫ 𝑐∈C

𝑃 (𝑐, 𝑐)

𝑊

𝜛𝑎

𝜛𝑏

𝑃 (𝑓 ,𝑏)

𝑃 (𝑎,𝑓)

ℎ

𝛽𝑎

𝛽𝑏

The definition of co/ends is a mouthful and rather hard to unpack, but they admit several prop-
erties that allow us to calculate isomorphisms directly and in a satisfyingly elegant manner.

calculus of categoRies 153

The practical benefit of this calculus of co/ends is that we rarely have to think about co/wedges,
apices, or even dinaturality in its full “hexagonal” form, instead turning proofs into symbolic,
calculational arguments. We now lay out the essential elements of the co/end calculus with
brief proof sketches where instructive – for details, see Loregian (2021, Chapters 1-2).

Proposition 8.1.1 (Naturality) For 𝐹,𝐺 : C → D, the set of natural transformations 𝐹 =⇒ 𝐺

can be expressed as:

DC(𝐹,𝐺) �
∫
𝑐∈C

D(𝐹𝑐,𝐺𝑐) (∫NT)

Proposition 8.1.2 (Continuity) For 𝑃 : Cop × C→ D:

D
(
𝑎,
∫
𝑐∈C 𝑃 (𝑐, 𝑐)

)
�
∫
𝑐∈C

D(𝑎, 𝑃 (𝑐, 𝑐)) (∫↔)

D
(∫ 𝑐∈C

𝑃 (𝑐, 𝑐), 𝑏
)
�
∫
𝑐∈C

D(𝑃 (𝑐, 𝑐), 𝑏) (∫l)

PRoof Co/ends are co/limits and are therefore preserved/reversed by the hom-functor. □

Corollary 8.1.1 (Ninja Yoneda lemmas) For presheaves 𝑃 ∈ C̃ and 𝑄 ∈ Ĉ,

𝑃 �
∫
𝑐∈C
ょ𝑐 ⇒ 𝑃𝑐 𝑄 �

∫
𝑐∈C

ょ

𝑐 ⇒ 𝑄𝑐 (∫ ょ⇒)

𝑃 �
∫ 𝑐∈C ょ

𝑐 × 𝑃𝑐 𝑄 �
∫ 𝑐∈C

ょ𝑐 ×𝑄𝑐 (∫ ょ×)

PRoof Expanding the RHS of the first isomorphism, we have∫
𝑐∈C

C(𝑎, 𝑐) ⇒ 𝑃𝑐 �
∫
𝑐∈C

Set(C(𝑎, 𝑐), 𝑃𝑐)

and since ends are natural transformations this is isomorphic to the instance of the standard
Yoneda lemma ∫

𝑐∈C
Set(C(𝑎, 𝑐), 𝑃𝑐) � SetC(C(𝑎,−), 𝑃) � 𝑃𝑎

To establish the second isomorphism, we reason via the isomorphism of the Yoneda embed-
dings: Set

(∫ 𝑐∈C
C(𝑐, 𝑑) × 𝑃𝑐,𝑌

)
� Set(𝑃𝑑,𝑌).

Set
(∫ 𝑐∈C

C(𝑐, 𝑑) × 𝑃𝑐,𝑌
)
�

∫
𝑐∈C

Set
(
C(𝑐, 𝑑) × 𝑃𝑐,𝑌

)
(∫l)

�
∫
𝑐∈C

Set
(
C(𝑐, 𝑑), Set(𝑃𝑐,𝑌)

)
(currying)

� Set(𝑃𝑑,𝑌) (∫ ょ×)

□

Remark. The presentation of the lemmas above favours syntactic elegance to notational rigour:
sinceょ𝑐 is a presheaf and 𝑃𝑐 is a set, their cartesian product or function space is not defined.

154 pResheaves

More appropriate would be to write

𝑃 (−) �
∫
𝑐∈C
ょ(𝑐) (−) ⇒ 𝑃𝑐 =

∫
𝑐∈C

C(−, 𝑐) ⇒ 𝑃𝑐

𝑃 (−) �
∫ 𝑐∈C ょ(𝑐)(−) × 𝑃𝑐 �

∫
𝑐∈C

C(𝑐,−) × 𝑃𝑐

making it clear how the right-hand side is itself a presheaf with index placeholder (−). Alter-
natively, we may formally write

𝑃 �
∫ 𝑐∈C

𝑃𝑐 · ょ𝑐 𝑄 �
∫ 𝑐∈C

𝑄𝑐 ·ょ𝑐

using the fact that presheaves are Set-copowered; this will be relevant in Section 8.2. ⌟

Below is a useful generalisation of cartesian products and function sets which interacts nicely
with co/ends.

Definition 8.1.6 Given a co/complete category C, the power (resp. copower) of an object𝐴 ∈ C
by a set 𝑋 ∈ Set is an object 𝑋 ⋔ 𝐴 ∈ 𝐶 (resp. 𝑋 · 𝐴 ∈ C) satisfying for all 𝐵 ∈ C:

C(𝐵,𝑋 ⋔ 𝐴) � Set(𝑋, C(𝐵,𝐴)) (⋔�) C(𝑋 · 𝐴, 𝐵) � Set(𝑋, C(𝐴, 𝐵)) (·�)
⌟

Corollary 8.1.2 (Ninja Yoneda lemmas for co/powers) For 𝐹 : C→ D and 𝐾 : Cop → D, if the
relevant co/powers exist,

𝐹 �
∫
𝑐∈C
ょ𝑐 ⋔ 𝐹𝑐 𝐾 �

∫
𝑐∈C

ょ

𝑐 ⋔ 𝐾𝑐 (∫ ょ⋔)

𝐹 �
∫ 𝑐∈C ょ

𝑐 · 𝐹𝑐 𝐾 �
∫ 𝑐∈C

ょ𝑐 · 𝐾𝑐 (∫ ょ·)

PRoof Take 𝐷 ∈ D and 𝑎 ∈ C, and calculate as follows:

D(𝐷,
∫
𝑐∈C

C(𝑎, 𝑐) ⋔ 𝐹𝑐) �
∫
𝑐∈C

D(𝐷,C(𝑎, 𝑐) ⋔ 𝐹𝑐) (∫↔)

�
∫
𝑐∈C

Set(C(𝑎, 𝑐),D(𝐷, 𝐹𝑐)) (⋔�)

� D(𝐷, 𝐹𝑎) (∫ ょ⇒)

By the isomorphism of the Yoneda embeddings,
∫
𝑐∈C C(𝑎, 𝑐) ⋔ 𝐹𝑐 � 𝐹𝑎, as required. The ninja

Yoneda lemma for copowers 𝐹𝑎 �
∫ 𝑐∈C

C(𝑐, 𝑎) · 𝐹𝑐 follows via a similar reasoning as above:

D

(∫ 𝑐∈C
C(𝑐, 𝑎) · 𝐹𝑐, 𝐷

)
�
∫
𝑐∈C

D(C(𝑐, 𝑎) · 𝐹𝑐, 𝐷) �
∫
𝑐∈C

Set(C(𝑐, 𝑎),D(𝐹𝑐, 𝐷)) � D(𝐹𝑎, 𝐷)

□

calculus of categoRies 155

Proposition 8.1.3 (Fubini Rule) For 𝑃 : Cop ×C ×Dop ×D→ E, when all relevant co/ends exist,∫
(𝑎,𝑏)∈C×D

𝑃 (𝑎, 𝑎, 𝑏, 𝑏) �
∫
𝑎∈C

∫
𝑏∈D

𝑃 (𝑎, 𝑎, 𝑏, 𝑏) �
∫
𝑏∈D

∫
𝑎∈C

𝑃 (𝑎, 𝑎, 𝑏, 𝑏) (∫∫•)∫ (𝑎,𝑏)∈C×D
𝑃 (𝑎, 𝑎, 𝑏, 𝑏) �

∫ 𝑎∈C∫ 𝑏∈D
𝑃 (𝑎, 𝑎, 𝑏, 𝑏) �

∫ 𝑏∈D∫ 𝑎∈C
𝑃 (𝑎, 𝑎, 𝑏, 𝑏) (∫∫ •)

PRoof See Loregian (2021, Theorem 1.3.1) and Loregian (2019). □

Co/complete categories are always Set-co/powered, with

𝑋 · 𝐴 ≜
∐
𝑥∈𝑋

𝐴 𝑋 ⋔ 𝐴 ≜
∏
𝑥∈𝑋

𝐴

The following identities could be computed through these definitions, but the alternative proof
showcases the convenience of the co/end calculus.

Corollary 8.1.3 For D copowered by Set, functors 𝑃 : Cop × C → Set and 𝑄 : Cop × C → D,
𝐴, 𝐵 ∈ D, 𝑋 ∈ Set, we have:

coend(𝑃) ⋔ 𝐵 �
∫
𝑐∈C

𝑃 (𝑐, 𝑐) ⋔ 𝐵 𝑋 ⋔ end(𝑄) �
∫
𝑐∈C

𝑋 ⋔ 𝑄 (𝑐, 𝑐) (∫⋔)

coend(𝑃) · 𝐴 �
∫ 𝑐∈C

𝑃 (𝑐, 𝑐) · 𝐴 𝑋 · coend(𝑄) �
∫ 𝑐∈C

𝑋 ·𝑄 (𝑐, 𝑐) (∫ ·)

PRoof By the Yoneda isomorphism, we have the following calculations:

D
(
𝐴, coend(𝑃) ⋔ 𝐵

)
� Set

(
coend(𝑃),D(𝐴, 𝐵)

)
(⋔�)

�
∫
𝑐∈C

Set
(
𝑃 (𝑐, 𝑐),D(𝐴, 𝐵)

)
(∫l)

�
∫
𝑐∈C

D
(
𝐴, 𝑃 (𝑐, 𝑐) ⋔ 𝐵

)
(⋔�)

� D

(
𝐴,

∫
𝑐∈C

𝑃 (𝑐, 𝑐) ⋔ 𝐵
)

(∫↔)

D
(
𝐴,𝑋 ⋔ end(𝑄)

)
� Set

(
𝑋,D

(
𝐴, end(𝑄)

))
(⋔�)

�
∫
𝑐∈C

Set
(
𝑋,D(𝐴,𝑄 (𝑐, 𝑐))

)
(∫↔)

�
∫
𝑐∈C

D
(
𝐴,𝑋 ⋔ 𝑄 (𝑐, 𝑐)

)
(⋔�)

� D

(
𝐴,

∫
𝑐∈C

𝑋 ⋔ 𝑄 (𝑐, 𝑐)
)

(∫↔)

D
(
coend(𝑃) · 𝐴, 𝐵

)
� Set

(
coend(𝑃),D

(
𝐴, 𝐵

))
(·�)

�
∫
𝑐∈C

Set
(
𝑃 (𝑐, 𝑐),D(𝐴, 𝐵)

)
(∫l)

�
∫
𝑐∈C

D
(
𝑃 (𝑐, 𝑐) · 𝐴, 𝐵

)
(·�)

� D

(∫ 𝑐∈C
𝑃 (𝑐, 𝑐) · 𝐴, 𝐵

)
(∫l)

D
(
𝑋 · coend(𝑄), 𝐵

)
� Set

(
𝑋,D(coend(𝑄), 𝐵)

)
(·�)

� Set
(
𝑋,

∫
𝑐∈C

D
(
𝑄 (𝑐, 𝑐), 𝐵

))
(∫l)

�
∫
𝑐∈C

Set
(
𝑋,D(𝑄 (𝑐, 𝑐), 𝐵)

)
(∫↔)

�
∫
𝑐∈C

D
(
𝑋 ·𝑄 (𝑐, 𝑐), 𝐵

)
(·�)

� D

(∫ 𝑐∈C
𝑋 ·𝑄 (𝑐, 𝑐), 𝐵

)
(∫l)
□

An important example of constructions based on co/ends is next.

156 pResheaves

8.1.2 Kan extensions

Kan extensions are often regarded as the “most universal” construction in category theory
– their constitutional role in the field is captured by the slogan “all concepts are Kan exten-
sions”: see Mac Lane (1971, Chapter IX), Riehl (2017, Chapter 6), Lehner (2014). Indeed, many
fundamental definitions in our theory will be expressible as a Kan extension, allowing us to
prove important results in highly abstract ways. We only recall the essential properties and
definitions used in the thesis, without trying to give a fully comprehensive account.

Definition 8.1.7 Given functors 𝐹 : A → B and 𝐺 : A → C, the left Kan extension of 𝐺 along
𝐹 is the functor Lan𝐹𝐺 : B → C together with a unit 𝜂 : 𝐺 =⇒ Lan𝐹𝐺 ◦ 𝐹 satisfying the
following universality property: for any other extension (𝐿 : B → C, 𝛼 : 𝐺 =⇒ 𝐿 ◦ 𝐹), there
exists a unique natural transformation 𝛾 : Lan𝐹𝐺 =⇒ 𝐿 such that 𝛼 = 𝛾𝐹 ◦ 𝜂.

A B

C

𝐹

𝐺
Lan𝐹 𝐺

𝜂

𝐺 Lan𝐹𝐺 ◦ 𝐹

𝐿 ◦ 𝐹

𝛾◦𝐹𝛼

𝜂

Dually, a right Kan extension of𝐺 along 𝐹 is the functor Ran𝐹𝐺 : B→ C together with a counit
𝜀 : Ran𝐹𝐺 ◦ 𝐹 =⇒ 𝐺 satisfying the following universality property: for any other extension
(𝑅 : B→ C, 𝛽 : 𝑅 ◦ 𝐹 =⇒ 𝐺), there exists a unique 𝛿 : 𝑅 =⇒ Ran𝐹𝐺 such that 𝛽 = 𝜀 ◦ 𝛿𝐹 .

A B

C

𝐹

𝐺
Ran𝐹 𝐺

𝜀

𝐿 ◦ 𝐹

Ran𝐹𝐺 ◦ 𝐹 𝐺

𝛿◦𝐹
𝛽

𝜀 ⌟

Example 8.1.1. Co/limits are instances of Kan extensions of a functor 𝐺 : A → C along the
canonical functor ! : A→ > into the terminal category (Mac Lane, 1971, Theorem X.7.1). ⌟

We now assume that every functor A→ C extends along 𝐹 : A→ B (which is the case if C is
co/complete), implying that Lan𝐹 , Ran𝐹 : CA → CB are functorial.

Notation. We will also use the notation

■𝐹 : C
A → CB ★𝐹 : C

B → CA and ■𝐹 : C
A → CB

for the left Kan extension, precomposition, and right Kan extension functors, respectively,
omitting the subscripts if the base functor (𝐹 throughout this section) is clear from context. ⌟

Theorem 8.1.1
The Kan extensions along 𝐹 : A → B are two-sided adjoints of the precomposition functor
(−) ◦ 𝐹 = ★ : CB → CA:

Lan𝐹 a ★ a Ran𝐹

calculus of categoRies 157

PRoof The following hom-set isomorphism for all 𝐺 : A→ C and 𝐿 : B→ C

CB(Lan𝐹𝐺, 𝐿) � CA(𝐺, 𝐿 ◦ 𝐹) (Lana)

is nothing but the universal property of the left Kan extension: any candidate extension
(𝐿 : B → C, 𝛼 : 𝐺 =⇒ 𝐿𝐹) factors through the unit 𝜂 : 𝐺 =⇒ Lan𝐹𝐺 via a unique natural
transformation 𝛾 : Lan𝐹𝐺 =⇒ 𝐿, giving the bijective correspondence above. The universal
property of the right Kan extension dually gives the isomorphism

BA(𝑅 ◦ 𝐹,𝐺) � CB(𝑅, Ran𝐹𝐺) (aRan)

which establish the required adjunctions. □

A direct application of this theorem is the following preservation property of Kan extensions:

Proposition 8.1.4 Left/right adjoints preserve left/right Kan extensions.

PRoof Let 𝐿 : C→ D be left adjoint to 𝑅 : D→ C. We show that 𝐿 ◦ Lan𝐹𝐺 = Lan𝐹 (𝐿 ◦𝐺)
using the following calculation of adjoint transposes:

DB
(
𝐿 ◦ Lan𝐹𝐺,𝐾

)
� CB

(
Lan𝐹𝐺, 𝑅𝐾

)
(𝐿 a 𝑅)

� CA
(
𝐺, 𝑅𝐾𝐹

)
(Lana)

� DA
(
𝐿𝐺,𝐾𝐹

)
(𝐿 a 𝑅)

� DB
(
Lan𝐹 (𝐿𝐺), 𝐾

)
(Lana)

The dual calculation shows that right adjoints preserve right Kan extensions. □

This theorem, along with uniqueness of adjoints, allows us to find a concrete formula to cal-
culate Kan extensions in terms of co/ends.
Theorem 8.1.2

Let 𝐹 : A → B and 𝐺 : A → C, with C cocomplete/complete. Then, the left/right Kan
extensions of 𝐺 along 𝐹 satisfy the isomorphism:

Lan𝐹𝐺 �
∫ 𝑎∈A

B(𝐹𝑎,−) ·𝐺𝑎 (Lan∫) Ran𝐹𝐺 �
∫
𝑎∈A

B(−, 𝐹𝑎) ⋔ 𝐺𝑎 (Ran∫)

PRoof By Theorem 8.1.1, if Lan𝐹𝐺 or Ran𝐹𝐺 exist, they must be left/right adjoint to the pre-
composition functor★ – thus, we merely need to show that the co/end formulae above satisfy
the required hom-set isomorphisms. The proofs are elegant demonstrations of the convenience
of the co/end calculus.

158 pResheaves

CB
(∫ 𝑎∈A

B(𝐹𝑎,−) ·𝐺𝑎, 𝐿
)

�
∫
𝑏∈B

C

(∫ 𝑎∈A
B(𝐹𝑎, 𝑏) ·𝐺𝑎, 𝐿𝑏

)
(∫NT)

�
∫
𝑏∈B

∫
𝑎∈A

C
(
B(𝐹𝑎, 𝑏) ·𝐺𝑎, 𝐿𝑏

)
(∫l)

�
∫
𝑏∈B

∫
𝑎∈A

Set
(
B(𝐹𝑎, 𝑏), C(𝐺𝑎, 𝐿𝑏)

)
(·�)

�
∫
𝑎∈A

∫
𝑏∈B

Set
(
B(𝐹𝑎, 𝑏), C(𝐺𝑎, 𝐿𝑏)

)
(∫∫•)

�
∫
𝑎∈A

SetB
(ょ

B
(𝐹𝑎), C(𝐺𝑎, 𝐿−)

)
(∫NT)

�
∫
𝑎∈A

C(𝐺𝑎, 𝐿𝐹𝑎) (∫ ょ⇒)

� CA(𝐺, 𝐿 ◦ 𝐹) (∫NT)

CB
(
𝑅,

∫
𝑎∈A

B(−, 𝐹𝑎) ⋔ 𝐺𝑎
)

�
∫
𝑏∈B

C

(
𝑅𝑏,

∫
𝑎∈A

B(𝑏, 𝐹𝑎) ⋔ 𝐺𝑎
)

(∫NT)

�
∫
𝑏∈B

∫
𝑎∈A

C(𝑅𝑏,B(𝑏, 𝐹𝑎) ⋔ 𝐺𝑎) (∫↔)

�
∫
𝑏∈B

∫
𝑎∈A

Set
(
B(𝑏, 𝐹𝑎), C(𝑅𝑏,𝐺𝑎)

)
(⋔�)

�
∫
𝑎∈A

∫
𝑏∈B

Set
(
B(𝑏, 𝐹𝑎), C(𝑅𝑏,𝐺𝑎)

)
(∫∫•)

�
∫
𝑎∈A

SetB
(
ょB(𝐹𝑎), C(𝑅−,𝐺𝑎)

)
(∫NT)

�
∫
𝑎∈A

C(𝑅𝐹𝑎,𝐺𝑎) (∫ ょ⇒)

� BA(𝑅 ◦ 𝐹,𝐺) (∫NT)

Since adjoints are unique up to isomorphism, we have that the co/end formulae are isomorphic
to the Kan extensions. □

With these prerequisites in place, we are ready to discuss presheaves and their structure.

8.2 CategoRical stRuctuRes

Presheaves carry over much of the categorical structure of sets through pointwise application,
and Yoneda serves as a fully faithful embedding of C in the category C̃. Nevertheless, some of
the categorical structure of C̃ is subtle and presheaf-specific.

8.2.1 Bicartesian closure

For a small category C, the covariant presheaf category C̃ is bicartesian closed. Products and
coproducts are given pointwise:

(𝑃 ×𝑄) (𝑎) ≜ 𝑃𝑎 ×𝑄𝑎 ∈ Set (𝑃 +𝑄)(𝑎) ≜ 𝑃𝑎 +𝑄𝑎 ∈ Set

but presheaf exponentials need more thought.

Definition 8.2.1 The exponential of presheaves 𝑃,𝑄 ∈ C̃ is

(𝑃 ⊃ 𝑄)(𝑎) ≜ C̃
(ょ

𝑎 × 𝑃,𝑄
)
�
∫
𝑏∈C

Set(C(𝑎, 𝑏) × 𝑃𝑏,𝑄𝑏) �
∫
𝑏∈C

Set(C(𝑎, 𝑏), 𝑃𝑏 ⇒ 𝑄𝑏)
⌟

Notation. When dealing with presheaves over multiple categories, we will use the subscript
of the base category to disambiguate where an operation is taken: e.g. we will write 𝑃 ⊃C 𝑄

to denote the exponential of presheaves in C̃. ⌟

Presheaves are a particularly important categorical construction as they inherit the rich cate-
gorical structure of sets. They also satisfy the following important universal property.

categoRical stRuctuRes 159

Theorem 8.2.1

Ĉ is the free cocompletion of C: given any cocomplete category D and functor 𝐺 : C → D,
there is an essentially unique cocontinuous extension𝐺 ♯ : Ĉ→ D, exhibiting an equivalence
of categories DC and Cocont(Ĉ,D):

C Ĉ

D

𝐺

ょ

𝐺♯
�

PRoof The extension 𝐺 ♯ is nothing but the left Kan extension alongょ. This can be derived
by “wishful thinking”: if𝐺 ♯ were to exist, it must be 1⃝ cocontinuous and satisfy 2⃝𝐺 ♯◦ょ� 𝐺 .
By the ninja Yoneda lemma, every presheaf 𝑃 can be expressed as a coend of a copower of the
Yoneda embedding, so one may calculate the action of 𝐺 ♯ on a presheaf 𝑃 ∈ Ĉ as follows:

𝐺 ♯ (𝑃) � 𝐺 ♯
(∫ 𝑐∈C

𝑃𝑐 ·ょ𝑐
)

(∫ ょ×)

�
∫ 𝑐∈C

𝐺 ♯ (𝑃𝑐 ·ょ𝑐) (1⃝, coend is colimit)

�
∫ 𝑐∈C

𝑃𝑐 ·𝐺 ♯ (ょ𝑐) (1⃝, copower is colimit)

�
∫ 𝑐∈C

𝑃𝑐 ·𝐺𝑐 (2⃝)

�
∫ 𝑐∈C

C̃(ょ𝑐, 𝑃) ·𝐺𝑐 (ょ�)

� Lan ょ𝐺 (𝑃) (Lan∫)

Universality is guaranteed as 𝐺 ♯ � Lanょ𝐺 is a left Kan extension, so is initial among all
cocontinuous extensions of 𝐺 . The intermediate representation 𝐺 ♯ (𝑃) �

∫ 𝑐∈C
𝑃𝑐 · 𝐺𝑐 – also

known as a realisation – will be used extensively in the next section. □

8.2.2 Monoidal closure

The bicartesian structure of presheaves is inherited from that of sets, often by pointwise in-
dexing (in the case of co/limits). If the base category (C, •, 𝑖) is monoidal, presheaves on it can
also be equipped with an additional monoidal closed structure.

Definition 8.2.2 The Day convolution tensor product 5 : C̃ × C̃→ C̃ is defined as the coend

(𝑃 5 𝑄) (𝑎) ≜ ∫ 𝑎1,𝑎2∈C
C(𝑎1 • 𝑎2, 𝑎) × 𝑃𝑎1 ×𝑄𝑎2

⌟

Definition 8.2.3 The Day convolution hom (−) ⊸ (=) : C̃op × C̃→ C̃ is defined as the end

(𝑃 ⊸ 𝑄)(𝑎) ≜
∫
𝑎′∈C

𝑃𝑎′⇒ 𝑄 (𝑎 • 𝑎′)
⌟

160 pResheaves

The above is only one of two possible Day convolution structures that C̃ can be equipped with,
the other one being on the reverse monoidal category (C, •𝑟 , 𝑖):

(𝑃 4 𝑄) (𝑎) ≜ ∫ 𝑎1,𝑎2∈C
C(𝑎2 • 𝑎1, 𝑎) × 𝑃𝑎1 ×𝑄𝑎2 (𝑃 ⊸𝑄) (𝑎) ≜

∫
𝑎′∈C
𝑃𝑎′⇒ 𝑄 (𝑎′ • 𝑎)

Proposition 8.2.1 The two monoidal structures are isomorphic in the sense that:

𝑃 5 𝑄 � 𝑄 4 𝑃 C̃(𝑃,𝑄 ⊸ 𝑅) � C̃(𝑄, 𝑃 ⊸𝑅)

PRoof The first follows easily from commutativity of × and the Fubini rule:

(𝑃 5 𝑄)(𝑎) = ∫ 𝑎1,𝑎2∈C
C(𝑎1 • 𝑎2, 𝑎) × 𝑃𝑎1 ×𝑄𝑎2

�
∫ 𝑎1,𝑎2∈C

C(𝑎1 • 𝑎2, 𝑎) ×𝑄𝑎2 × 𝑃𝑎1

�
∫ 𝑎2,𝑎1∈C

C(𝑎1 • 𝑎2, 𝑎) ×𝑄𝑎2 × 𝑃𝑎1 (∫∫ •)

= (𝑄 4 𝑃) (𝑎)

The second follows from the first using the tensor-hom adjunctions.

C̃(𝑃,𝑄 ⊸ 𝑅) � C̃(𝑃 5 𝑄, 𝑅) � C̃(𝑄 4 𝑃, 𝑅) � C̃(𝑄, 𝑃 ⊸𝑅) □

The following standard result can be established by another set of co/end calculations; since
we have more than enough of those in this thesis, we refer the reader to e.g. Day (1970, Theo-
rem 3.3), Im and Kelly (1986, Proposition 4.1) and Loregian (2021, Proposition 6.2.1).
Theorem 8.2.2

(C̃, ょ𝑖,5,⊸) and (C̃, ょ𝑖,4, ⊸) are monoidal closed categories.

If the base category is symmetric monoidal, the two reverse structures are isomorphic; if C is
furthermore cocartesian, both convolution structures collapse to the pointwise cartesian one.

Proposition 8.2.2 The Day monoidal closed structure over a cocartesian category coincides with
the cartesian closed structure of presheaves

PRoof Assume (C, +,⊥) is cocartesian, and consider the following calculations:

ょ(⊥)(𝑎) = C(⊥, 𝑎) � {∗} = >(𝑎)

(𝑃 5C𝑄)(𝑎) =
∫ 𝑎1,𝑎2∈C

C(𝑎1 + 𝑎2, 𝑎) × 𝑃𝑎1 ×𝑄𝑎2

�
∫ 𝑎1,𝑎2∈C

C(𝑎1, 𝑎) × C(𝑎2, 𝑎) × 𝑃𝑎1 ×𝑄𝑎2 (UP of +)

�
∫ 𝑎1∈C

C(𝑎1, 𝑎) × 𝑃𝑎1 ×
∫ 𝑎2∈C

C(𝑎2, 𝑎) ×𝑄𝑎2
� 𝑃𝑏 ×𝑄𝑏 = (𝑃 ×C 𝑄)(𝑎) (∫ ょ×)

categoRical stRuctuRes 161

Thus, ょ⊥ � > and 𝑃 5 𝑄 � 𝑃 × 𝑄 , so the two structures are isomorphic. By uniqueness
of adjoints, we also have that 𝑃 ⊸ 𝑄 � 𝑃 ⊃ 𝑄 . Moreover, since cocartesian categories are
symmetric, the reverse Day convolution structure is again isomorphic: 𝑃 5 𝑄 � 𝑃 4 𝑄 � 𝑃×𝑄
and 𝑃 ⊸ 𝑄 � 𝑃 ⊸𝑄 � 𝑃 ⊃𝑄 . □

This property shows that the Day convolution structure over rich enough base categories is
uninteresting – indeed, in the presheaf model, we work with presheaves over the free cocarte-
sian category F , so the Day structure on F̃ is isomorphic to the cartesian closed one. This is
not the case in Ñ, and our familial model will make extensive use of the Day internal hom in
favour of the family exponential.

The Day convolution satisfies its own universal property, enriching that of presheaves in
the case that the base category is monoidal. We outline the argument below; for details, see
the classic paper by Im and Kelly (1986).

Definition 8.2.4 A category C is monoidally cocomplete if it is monoidal, and the tensor prod-
uct is cocontinuous in both operands. ⌟

Lemma 8.2.1 For a category C co/powered over Set, with 𝑋,𝑌 ∈ Set and 𝐴, 𝐵 ∈ C, we have
(𝑋 × 𝑌) · 𝐴 � 𝑋 · (𝑌 · 𝐴) (×·) (𝑋 × 𝑌) ⋔ 𝐴 � 𝑋 ⋔ (𝑌 ⋔ 𝐴) (×⋔)

PRoof By Yoneda, we have the following calculations:

C
(
(𝑋 × 𝑌) · 𝐴, 𝐵

)
� Set

(
𝑋 × 𝑌, C(𝐴, 𝐵)

)
(≜ ·)

� Set
(
𝑋, Set(𝑌, C(𝐴, 𝐵))

)
(currying)

� Set
(
𝑋, C(𝑌 · 𝐴, 𝐵)

)
(≜ ·)

� C
(
𝑋 · (𝑌 · 𝐴), 𝐵

)
(≜ ·)

C
(
𝐶, (𝑋 × 𝑌) ⋔ 𝐴

)
� Set

(
𝑋 × 𝑌, C(𝑋,𝐴)

)
(≜⋔)

� Set
(
𝑋, Set(𝑌, C(𝑋,𝐴))

)
(currying)

� Set
(
𝑋, C(𝑋,𝑌 ⋔ 𝐴)

)
(≜⋔)

� C
(
𝐶,𝑋 ⋔ (𝑌 ⋔ 𝐴)

)
(≜ ·)
□

Lemma 8.2.2 For (C, ⊗, 𝐼) monoidally cocomplete, 𝑋,𝑌 ∈ Set and 𝐴, 𝐵 ∈ C, we have the follow-
ing interchange law:

(𝑋 × 𝑌) · (𝐴 ⊗ 𝐵) � (𝑋 · 𝐴) ⊗ (𝑌 · 𝐵) (·×⊗)

PRoof We use the fact that copowering by Set is the colimit𝑋 ·𝐴 ≜
∐
𝑥∈𝑋 𝐴 so it is preserved

by the tensor ⊗. We calculate as follows:

(𝑋 × 𝑌) · (𝐴 ⊗ 𝐵) � 𝑋 · (𝑌 · (𝐴 ⊗ 𝐵)) (×·)

� 𝑋 · (𝐴 ⊗ (𝑌 · 𝐵)) (𝐴 ⊗ (−) cocontinuous)

� (𝑋 · 𝐴) ⊗ (𝑌 · 𝐵) ((−) ⊗ (𝑌 · 𝐵) cocontinuous)

□
Theorem 8.2.3 (Im and Kelly (1986, Theorem 5.1))

Ĉ is the free monoidal cocompletion of a monoidal C: given any monoidally cocom-
plete category D and a monoidal functor 𝐹 : C → D, there is a unique cocontinuous
monoidal extension 𝐹 ♯ : Ĉ → D, exhibiting an equivalence of categories Mon(C,D) and
MonCocont(Ĉ,D).

162 pResheaves

PRoof For a monoidalC, Ĉ is equipped with a monoidal structure given by Day convolution.
This is monoidally cocomplete, since the convolution expands into a coend of cartesian prod-
ucts, × is cocontinuous and colimits commute with coends. Given a monoidal 𝐹 : C → D for
(C, •, 𝑖) and (D, ⊗, 𝐽), the obvious extension to Ĉ is the cocontinuous 𝐹 ♯ : Ĉ→ D as given in
Theorem 8.2.1; it remains to show that it is monoidal. The preservation of the unit 𝐹 ♯ (ょ𝑖) � 𝐽
follows from the ninja Yoneda lemma and unit-preservation of 𝐹 itself:

𝐹 ♯ (ょ𝑖) =
∫ 𝑎∈C ょ(𝑖)(𝑎) · 𝐹𝑎 � 𝐹𝑖 � 𝐽

We now prove that 𝐹 ♯ (𝑋 5 𝑌) � 𝐹 ♯𝑋 ⊗ 𝐹 ♯𝑌 as follows:

𝐹 ♯ (𝑋 5 𝑌) � ∫ 𝑎∈C
(𝑋 5 𝑌) (𝑎) · 𝐹𝑎

�
∫ 𝑎∈C (∫ 𝑎1,𝑎2∈C

C(𝑎, 𝑎1 • 𝑎2) × 𝑋𝑎1 × 𝑌𝑎2
)
· 𝐹𝑎 (5≜)

�
∫ 𝑎1,𝑎2∈C ∫ 𝑎∈C

(C(𝑎, 𝑎1 • 𝑎2) × 𝑋𝑎1 × 𝑌𝑎2) · 𝐹𝑎 (∫∫ •,∫ ·)

�
∫ 𝑎1,𝑎2∈C ∫ 𝑎∈C

C(𝑎, 𝑎1 • 𝑎2) ·
(
(𝑋𝑎1 × 𝑌𝑎2) · 𝐹𝑎

)
(×·)

�
∫ 𝑎1,𝑎2∈C

(𝑋𝑎1 × 𝑌𝑎2) · 𝐹 (𝑎1 • 𝑎2) (∫ ょ·)

�
∫ 𝑎1,𝑎2∈C

(𝑋𝑎1 × 𝑌𝑎2) · (𝐹𝑎1 ⊗ 𝐹𝑎2) (𝐹 monoidal)

�
∫ 𝑎1,𝑎2∈C (

𝑋𝑎1 · 𝐹𝑎1
)
⊗
(
𝑌𝑎2 · 𝐹𝑎2

)
(·×⊗)

�
(∫ 𝑎1∈C

𝑋𝑎1 · 𝐹𝑎1
)
⊗
(∫ 𝑎2∈C

𝑌𝑎2 · 𝐹𝑎2
)

(∫ ·, ⊗ cocontinuous)

� 𝐹 ♯𝑋 ⊗ 𝐹 ♯𝑌

If 𝐹 is lax monoidal, so is 𝐹 ♯ – the applications of monoidality above become one-way trans-
formations. The property dualises in the obvious way. □

Corollary 8.2.1 A monoidal 𝐹 : A→ B, induces a cocontinuous monoidal Lan𝐹 : Ã→ B̃.

PRoof The universal property of convolution induces the functor Lan ょ

A
(ょ

B
◦ 𝐹) : Ã→ B̃:

A Ã

B B̃

ょ

A

ょ

B

𝐹

ょ

B
◦𝐹

(ょ

B
◦𝐹)♯

However, this is just the left Kan extension along 𝐹 :

(ょ

B
◦ 𝐹)♯ (𝑃) (𝑏) =

∫ 𝑎∈C
𝑃𝑎 × B(𝐹𝑎, 𝑏) � Lan𝐹 𝑃 (𝑏) □

neRves and Real isations 163

We next consider some presheaf-specific constructions derived from the left Kan extension.

8.3 NeRves and Realisations

Combining Kan extensions with presheaves and the Yoneda embedding gives rise to functors
that have particularly simple expressions thanks to the co/end calculus, and they will form the
basis of the substitution tensor product and hom to be introduced in the next chapter.

Definition 8.3.1 Given a functor𝐺 : Aop → C, its left Kan extension along the Yoneda embed-
ding ょ

: Aop → Ã is called the realisation of 𝐺 :

Re𝐺 ≜ Lan ょ𝐺 : Ã→ C

Given a functor 𝐻 : Aop → B, the left Kan extension of the Yoneda embedding ょ

: Aop → Ã

along 𝐻 will be called the nerve of 𝐻 :

Nr𝐻 ≜ Lan𝐻

ょ

: B→ Ã

The two notions fit into a diagram as follows:

Aop Ã Aop B

C Ã

ょ

𝐺
Re𝐺 ょ

𝐻

Nr𝐻𝜂 𝜂

⌟

Both concepts can be reduced to simpler expressions using the unfolding of the left extension
as a coend.

Proposition 8.3.1 The realisation and nerve functors satisfy the following isomorphisms, for
𝐺 : Aop → C and 𝐻 : Aop → B:

Re𝐺 (𝑃) �
∫ 𝑎∈A

𝑃𝑎 ·𝐺𝑎 (Re�) Nr𝐻 (𝑏) � B(𝐻−, 𝑏) (Nr�)

PRoof Consider the following calculations, for 𝑃 ∈ Ã, 𝑏 ∈ B and 𝑎 ∈ A:

Re𝐺 (𝑃)
= Lan ょ𝐺 (𝑃)

�
∫ 𝑎∈A

Ã(ょ𝑎, 𝑃) ·𝐺𝑎 (Lan∫)

�
∫ 𝑎∈A

𝑃𝑎 ·𝐺𝑎 (ょ�)

Nr𝐻 (𝑏)(𝑎)
= Lan𝐻

ょ(𝑏)(𝑎)

�
∫ 𝑎′∈A

B(𝐻𝑎′, 𝑏) × A(𝑎′, 𝑎) (Lan∫)

� B(𝐻𝑎,𝑏) (∫ ょ×)

□

The following lemmas set out some calculational properties of nerves and realisations, based
on the expansions above.

164 pResheaves

Lemma 8.3.1 The realisation and the nerve of the Yoneda embedding ょ

: Aop → Ã is naturally
isomorphic to the identity:

Re ょ� Id � Nr ょ: Ã→ Ã

PRoof Applying the isomorphisms above and the Yoneda lemmas, we have:

Re ょ𝑃 �
∫ 𝑎∈A

𝑃𝑎 × ょ

𝑎 � 𝑃 � Ã(ょ𝑎, 𝑃) � Nr ょ𝑃 □

Lemma 8.3.2 The unit of the realisation of 𝐺 : Aop → C is an isomorphism:

Re𝐺 ◦

ょ� 𝐺 (Re◦ ょ)

PRoof A simple application of the Yoneda lemma of Eq. (∫ ょ·):

Re𝐺 (

ょ(𝑎)) �
∫ 𝑏∈A ょ(𝑎) (𝑏) ·𝐺 �

∫ 𝑏∈A
ょ(𝑏) (𝑎) ·𝐺 � 𝐺 (𝑎) □

Nerves and realisations are also adjoint functors, as established next.

Lemma 8.3.3 For functors 𝐻 : Aop → B and 𝐺 : Aop → C, morphisms Lan𝐻𝐺 (𝑏) → 𝑐 ∈ C are
in natural bijection with natural transformations Nr𝐻 𝑏 =⇒ Nr𝐺 𝑐 :

C
(
Lan𝐻𝐺 (𝑏), 𝑐

)
� Ã

(
Nr𝐻 𝑏,Nr𝐺 𝑐

)
PRoof Consider the following calculation:

C
(
Lan𝐻𝐺 (𝑏), 𝑐

)
� C

(∫ 𝑎∈A
B(𝐻𝑎,𝑏) ·𝐺𝑎, 𝑐

)
(Lan∫)

�
∫
𝑎∈A

C
(
B(𝐻𝑎,𝑏) ·𝐺𝑎, 𝑐

)
(∫l)

�
∫
𝑎∈A

Set
(
B(𝐻𝑎,𝑏),C(𝐺𝑎, 𝑐)

)
(·�)

� Ã
(
B(𝐻−, 𝑏),C(𝐺−, 𝑐)

)
(∫NT)

= Ã
(
Nr𝐻 𝑏,Nr𝐺 𝑐

)
□

Corollary 8.3.1 The realisation and the nerve of a functor 𝐺 : Aop → C are adjoint:

Re𝐺 a Nr𝐺 : Ã→ C (ReaNr)

PRoof The adjunction follows from the hom-set isomorphism constructed from the previous
two propositions:

C(Re𝐺 (𝑃), 𝑐) = C(Lan ょ𝐺 (𝑃), 𝑐) � Ã(Nr ょ𝑃,Nr𝐺 𝑐) � Ã(𝑃,Nr𝐺 𝑐) □

Using the universal properties of presheaves, Day convolution, and the definition of realisa-
tions, we obtain the following result.

Proposition 8.3.2 For cartesian categories C and D and cartesian functor 𝐺 : Cop → D, the
realisation functor Re𝐺 : C̃→ D is cartesian.

neRves and Real isations 165

PRoof C cartesian implies Cop is cocartesian monoidal; the Day convolution based on it
reduces to the cartesian structure on C̃ (Proposition 8.2.2). Since Re𝐺 = Lan ょ𝐺 : C̃→ D is the
freemonoidally cocontinuous extension of𝐺 , by the universal property of theDay convolution
(Theorem 8.2.3) it maps the Day monoidal (i.e. cartesian) structure to the cartesian structure
of D, preserved by the cartesian 𝐺 . □

Further properties of nerves and realisations are the topic of the next section, where we use
the universal properties to extract the substitution structure of presheaves through abstract
and indirect means, then decompose the proof into lower-level operations involving Nr and
Re to reconstruct it in the weaker setting of indexed families.

166 pResheaves

c h a p t e R 9

Substitution

Substitution appears in many guises throughout mathematics: composition and grafting of
multicategories, species, opetopes and operads (Bergeron et al., 1997; Leinster, 2004; Fiore,
2005; Fiore et al., 2008; J. Kock et al., 2010), cut elimination in logic (Dyckhoff, 2015), clones in
universal algebra (Kerkhoff et al., 2014), and of course, substitution of presheaves in abstract
syntax (Fiore et al., 1999; Fiore, 2007; Power, 2007). For the purposes of formalisation, a core
contribution of the presheaf model is an algebraic characterisation of simultaneous substitu-
tion: rather than a singular operation, it is decomposed into the substitution monoidal struc-
ture on presheaves, and the multiplication operation of a monoid therewithin. Objects with
unevaluated substitutions can be manipulated directly and heterogeneously, enabling the def-
initions of algebraic models, parametrised initiality, etc. The practical strength of this perspec-
tive is perhaps best illustrated by how non-categorical implementations of intrinsically typed
syntax have, over time, independently rediscovered many of its core ideas – such as renaming,
substitution, parametrised traversal, and semantic models – as seen in the implementation-
driven work of McBride (2005), Benton et al. (2012), and Allais et al. (2021).

In this chapter we give three related accounts of simultaneous substitution for simply-
typed syntax. In Section 9.1, universal properties are used to equip the category of presheaves
over the free cocartesian categorywith amonoidal substitution structure. Section 9.2 rederives
this structure from weaker assumptions, using nerves, realisations, and the co/end calculus to
obtain a more general result over arbitrary small base categories, showing how the results
strengthen in the presence of (free) cocartesian structure. Section 9.3 shows how to build a
richer substitution structure even in the absence of cocartesian structure on the base category,
using an adjoint warping. Throughout, our goal is to identify the minimal assumptions on a
base category C that allow its presheaf category to support a sensible notion of substitution.

Examples in the previous sections used unsorted syntax with the categories Ñ and F̃ . To
encompass simply-typed syntax, we will have to consider objects indexed by a type. We fix a
set 𝑆 of sorts and consider indexed categories C𝑆 as sorted. We also write objects of the slice
category 𝑆/Cat as sorted categories 𝐽A : 𝑆 → A, 𝐽B : 𝑆 → B, etc., with functors 𝐹 : A → B

satisfying 𝐹 ◦ 𝐽A � 𝐽B.

168 substitution

9.1 Substitution thRough univeRsality

First presented is a high-level argument adapted from Trimble (2013), relying on universal
properties of cartesian extensions and monoidal cocompletions: if C is the free cocartesian
category on 𝑆 , C̃𝑆 is strong monoidal closed. While an elegant line of “abstract nonsense”
reasoning, it rests on assumptions we aim to relax: namely, thatCmust be the free cocartesian
category on a set of sorts. After outlining the abstract argument, we dissect elements of the
proof and pinpoint where the properties of C and 𝐽 are required, and explore how much of
the structure can be recovered without these assumptions.
Theorem 9.1.1

Given a set 𝑆 and its generated free cocartesian category C, the category C̃𝑆 is monoidal.

PRoof Let 𝑆 be a set of sorts and C the free cocartesian category generated by 𝑆 , and D

a cocomplete category. Cop is then the free cartesian category, satisfying the equivalence of
categories 1⃝ D𝑆 ' Cart(Cop,D). The UPs of the presheaf construction (Theorem 8.2.1) and
Day convolution (Theorem 8.2.3) in turn say that C̃ is the free monoidal cocompletion of Cop,
exhibiting the equivalence Mon(Cop,D) ' MonCocont(C̃,D); however, if the cocontinuous
monoidal structure on Cop is selected to be cartesian (so the covariant Day convolution struc-
ture on C̃ also coincides with the cartesian one, see Proposition 8.2.2), the equivalence reduces
to 2⃝ Cart(Cop,D) ' CartCocont(C̃,D).

Composing 1⃝ and 2⃝ gives an equivalence betweenD𝑆 and CartCocont(C̃,D). Explicitly,
a sorted Q : D𝑆 is mapped first to the cartesian functor Q× : Cop → D defined as

Q× (𝑎) ≜ Ran𝐽 opQ(𝑎) �
∫
𝜏∈𝑆

C(𝐽𝜏, 𝑎) ⋔ Q𝜏

which, in turn, maps to the cartesian cocontinuous functor (−) � Q : C̃→ D, defined as

𝑋 � Q ≜ ReQ× �
∫ 𝑎∈C

𝑋𝑎 · Q× (𝑎)

where the realisation of a cartesian functor is cartesian by Proposition 8.3.2. In the opposite
direction, the transformations are simply pre-compositions with ょand 𝐽 : a cartesian cocon-
tinuous functor 𝐺 : C̃ → D becomes a cartesian functor 𝐺 ◦ ょ

: Cop → D and then a functor
(or sorted D-object) 𝐺 ◦ ょ◦ 𝐽 op : 𝑆 → D.

Choosing D to be C̃ itself (which is a cocomplete presheaf category), the chain of equiva-
lences D𝑆 ' Cart(Cop,D) ' CartCocont(C̃,D) reduces to:

C̃𝑆 ' CartCocont(C̃, C̃)

The cartesian cocontinuous endofunctor category is strictly monoidal, given by the identity
functor and functor composition. This monoidal structure transfers across the equivalence to
C̃𝑆 , exhibiting it as a monoidal category too. Explicitly, the unit is J ≜ Id ◦ ょ◦ 𝐽 op = ょ◦ 𝐽 op,
and the multiplication is the functor (−) ⊗ (=) : C̃𝑆 × C̃𝑆 → C̃𝑆 calculated as:

P ⊗ Q � ReQ× ◦ ReP× ◦

ょ◦ 𝐽 op

substitution fRom fiRst pRinciples 169

� ReQ× ◦ P× ◦ 𝐽 op

� ReQ× ◦ P

� 𝜏 ↦→
∫ 𝑎∈C

P𝜏 (𝑎) · Q×𝑎

where the middle isomorphisms follow from the invertibility of Re and (−)×. □

The proof above extracts a unital and associative tensor product from an equivalence be-
tween the sorted presheaf category C̃𝑆 and the cartesian cocontinuous endofunctor category
CartCocont(C̃, C̃). Under the assumption that C is the free cocartesian category on 𝑆 , the
theorem sets out the core categorical infrastructure of the presheaf model of abstract syntax:
J acts as the presheaf of variables, and ⊗ as the substitution tensor. However, if C is not freely
cocartesian, or lacks cocartesian structure altogether, crucial elements of the proof collapse:
we lose access to universality conditions needed to establish equivalences and transport the
composition structure into a monoidal tensor product. This raises the central question: how
much can we weaken the assumptions on C while still recovering a workable notion of sub-
stitution, and what categorical structure on C̃𝑆 remains in such cases?

Somewhat surprisingly, a skew-monoidal structure persists even ifC is merely an arbitrary
small category with sorting 𝑆 → C. We now redevelop the proof of Theorem 9.1.1 from the
ground up, starting fromminimal assumptions and building up structure until the proof of the
full strong monoidal structure is possible.

9.2 Substitution fRom fiRst pRinciples

The abstract proof above induces several important constructions by universality, and the con-
struction of the tensor product – transported from the strict monoidal category of endofunc-
tors – guarantees the monoidal structure to be strong. However, the weaker, skew-monoidal
structure arises quite naturally when defining the operations from scratch.

9.2.1 Skew-monoidal structure

Suppose C is a small category and 𝐽 : 𝑆 → C is a sorting. The universal properties of the
abstract proof may be weakened to extensions without the invertibility condition, resulting in
the following situation:

Cop C̃

𝑆 𝑆

D

Q

𝐽 op

Q× (−)�Q

ょ

X

X �Q

Lan

≜Ran

170 substitution

Definition 9.2.1 Given an object Q of the sorted category D𝑆 , the C-extension Q×C : Cop → D

is the right Kan extension Q×C ≜ Ran𝐽 op
C
Q with counit Q×C ◦ 𝐽 op =⇒ Q:

Q×C (𝑎) �
∫
𝜏∈𝑆

Cop(𝑎, 𝐽𝜏) ⋔ Q𝜏 �
∫
𝜏∈𝑆

C(𝐽𝜏, 𝑎) ⋔ Q𝜏 ⌟

Definition 9.2.2 The substitution operator (−) �C (=) : C̃ ×D𝑆 → D is defined as:

(−) �C Q ≜ ReQ×C 𝑋 �C Q ≜
∫ 𝑎∈C

𝑋𝑎 · Q×C𝑎

with unit ょ(−) � Q � Q×C . The substitution action (−) �C (=) : C̃𝑆 ×D𝑆 → D𝑆 is

(X �C Q)𝜏 ≜ X𝜏 �C Q ⌟

Definition 9.2.3 The substitution bracket b−,=eC :
(
D𝑆

)op ×D→ C̃ is defined as:

bP,−eC ≜ NrP×C bP, 𝑄eC ≜ D(P×C−, 𝑄)

with unit ょ→ bP,Q× (−)e. The substitution enrichment 〈−,=〉C :
(
D𝑆

)op ×D𝑆 → C̃𝑆 is then

〈P,Q〉C𝜏 ≜ bP,Q𝜏eC ⌟

From Eq. (ReaNr), the two operators and brackets form the adjunction for all Q ∈ D𝑆 :

(−) �C Q a bQ,=eC : C̃→ D (−) �C Q a 〈Q,=〉C : C̃𝑆 → D𝑆

The category superscripts will be omitted when irrelevant.
The operations above mirror some preservation properties of the underlying extensions,

as first suggested by Fiore and Turi (2001).

Proposition 9.2.1 For all 𝐾 : D→ E, there is a canonical transformation 𝐾 ◦ Q× → (𝐾 ◦ Q)× .

PRoof The transformation 𝐾 ◦ Q× → (𝐾 ◦ Q)× is the transpose derived from the counit of
the right Kan extension:

𝐾 ◦ Q× → Ran𝐽 op (𝐾 ◦ Q)

𝐾 ◦ Q× ◦ 𝐽 op 𝐾𝜀Q 𝐾 ◦ Q □

Corollary 9.2.1 If 𝐿 : D→ E is a left adjoint, we have the natural transformation

𝐿(𝑋 � Q) → 𝑋 � (𝐿 ◦ Q) : C̃ ×D𝑆 → E

PRoof Left adjoints preserve left Kan extensions (Proposition 8.1.4), so

𝐿(− � Q) = 𝐿 ◦ ReQ× � Re𝐿◦Q×
Prop. 9.2.1

Re(𝐿◦Q)× = − � (𝐿 ◦ Q) □

Corollary 9.2.2 If 𝑅 : E→ D is a right adjoint, there is a transformation bP, 𝑄e → b𝑅 ◦ P, 𝑅𝑄e.

substitution fRom fiRst pRinciples 171

PRoof Assuming 𝐿 a 𝑅 : D → E, the Yoneda embedding of 𝐿(𝑋 � P) → 𝑋 � (𝐿 ◦ P) from
Corollary 9.2.1 induces b𝐿 ◦ P, 𝑄e → bP, 𝑅𝑄e as

E(𝑋 � (𝐿 ◦ P), 𝑄) → E(𝐿(𝑋 � P), 𝑄)
C̃(𝑋, b𝐿 ◦ P, 𝑄e) → C̃(𝑋, bP, 𝑅𝑄e)

from which we extract the required transformation as

bP, 𝑄e b𝜀P,𝑄e b𝐿 ◦ 𝑅 ◦ P, 𝑄e → b𝑅 ◦ P,𝐺𝑄e □

In the case thatD is itself a presheaf category, we can turn the Yoneda embedding into a sorted
presheaf to stand for the unit.

Definition 9.2.4 The sorted presheaf of C-embeddings JC ∈ C̃𝑆 is defined as

JC ≜

ょ

C
◦ 𝐽 opC JC

𝜏 (𝑎) = C(𝐽C𝜏, 𝑎) ⌟

Note that the presheaf of embeddings is the nerve Nr𝐽 op (𝑎)(𝜏) � C(𝐽𝜏, 𝑎) with swapped ar-
guments – this is also referred to as the restricted Yoneda embedding. The Yoneda lemma for
embeddings simplifies to

C̃(J𝜏 , 𝑌) =
∫
𝑎∈C

C(𝐽𝜏, 𝑎) ⇒ 𝑌𝑎 � 𝑌 (𝐽𝜏)

and the extension Q× : Cop → D is equivalently
∫
𝜏∈𝑆 J𝜏 (−) ⋔ Q𝜏 .

Notation. The extension into a presheaf Q× : Cop → D̃ becomes a profunctor whose elements
Q× (𝑎)(𝑏) ∈ Set will be denoted Q𝑎

𝑏
. ⌟

Lemma 9.2.1 We have a natural transformation ょ

=⇒ J× .

PRoof The reasoning is as follows, using Proposition 9.2.1 and the unit Id→ Ran𝐽 op 𝐽 op:

ょ→ ょ◦ (𝐽 op)× → (ょ◦ 𝐽 op)× = J× □

We are ready to analyse the categorical properties of the substitution operator and bracket.

Lemma 9.2.2 We have the following natural transformations:

𝜆
Q
: J �C Q→ Q : D𝑆 → D𝑆 𝜌𝑋 : 𝑋 → (𝑋 �C J) : C̃→ C̃

𝛼𝑋,Q,U :
(
𝑋 �C Q

)
�D U → 𝑋 �C

(
Q �D U

)
: C̃ × D̃𝑆 × E𝑆 → E

PRoof For the first, we use the isomorphic unit of ReQ× (Lemma 8.3.2) and the counit of the
C-extension:

J �Q ≜ ReQ× ◦

ょ◦ 𝐽 op � Q× ◦ 𝐽 op → Q

For the second, we have, by Lemma 8.3.1 and Lemma 9.2.1:

Id � Re ょ→ ReJ× = (−) � J

172 substitution

The third is an instance of Corollary 9.2.1, with 𝐿 = (−) �D U = ReU× which is left adjoint to
NrU× and therefore preserves the operator �:(

𝑋 �C Q
)
�D U = ReU× (𝑋 �C Q) → 𝑋 �C (ReU× ◦ Q) = 𝑋 �C

(
Q �D U

)
□

Lemma 9.2.3 We have the following natural transformations:

j
Q
: J → 〈Q,Q〉C : D𝑆 → D𝑆 i𝑌 : bJ, 𝑌 eC → 𝑌 : C̃→ C̃

LP

Q,𝑅 : bP, 𝑅eE → b〈P,Q〉D, bP, 𝑅eDeE : C𝑆 × (C𝑆)op × C→ Ẽ

PRoof The first is the adjoint transpose of 𝜆
Q
: J �Q→ Q via (−) �Q a 〈Q,=〉. The second

is computed using the Yoneda embedding of 𝜌 , and adjunction (−) � Q a bQ,=e:

C̃(𝑋 � J, 𝑌) → C̃(𝑋,𝑌)
C̃(𝑋, bJ, 𝑌 e) → C̃(𝑋,𝑌)

The third is an instance of Corollary 9.2.2, with 𝑅 ≜ bP,−e right adjoint to (−) � P:

bQ, 𝑅eE → bNrP× ◦ Q,NrP× 𝑅eE = b〈P,Q〉D, bP, 𝑅eDeE □

The transformations above are highly heterogeneous, but by instantiatingD with C̃, the oper-
ators and the transformations obtain the shape of tensors, homs, and actions. We will make
the following notational distictions:

� ≜ �C : C̃ × C̃𝑆 → C̃ [−,=〉 ≜ b−,=eC :
(
C̃𝑆

)op × C̃→ C̃

⊗ ≜ �C : C̃𝑆 × C̃𝑆 → C̃𝑆 [−,=] ≜ 〈−,=〉C :
(
C̃𝑆

)op × C̃𝑆 → C̃𝑆

Despite minimal assumptions on C, the properties of the Kan extensions imply the following
(cf. Altenkirch et al. (2010, Theorem 4)):
Theorem 9.2.1

The category C̃𝑆 is skew-monoidal closed, with unit J ∈ C̃𝑆 , tensor ⊗ : C̃𝑆 × C̃𝑆 → C̃𝑆 and
hom [−,=] : (C̃𝑆)op × C̃𝑆 → C̃𝑆 .

Corollary 9.2.3 The substitution operator � : C̃ × C̃𝑆 → C̃ and bracket [−,=〉 : C̃𝑆 × C̃ → C̃

make C̃ a right monoidal closed C̃𝑆-modular category.

Corollary 9.2.4 For allD, the action �C : C̃𝑆×D̃𝑆 → D̃𝑆 and enrichment 〈−,=〉D : (D̃𝑆)op×D̃𝑆 →
C̃𝑆 make D̃𝑆 a left monoidal closed C̃𝑆-modular category.

Although we are ultimately looking for a skew-monoidal structure, the one derived purely
from Kan extensions will not be rich enough for our purposes. In the standard presheaf model,
C is instantiated with the free cocartesian category F [𝑆] on the set of sorts 𝑆 , so the presheaf
of variables V𝜏Γ = F [𝑆] ([𝜏], Γ) represents proof that 𝜏 is in the context Γ. In the familial
model, C is the discrete category 𝑆∗ of lists over 𝑆 , and the embedding reduces to the family
N𝜏Γ = 𝑆∗([𝜏], Γ), which is inhabited onlywhen Γ = [𝜏]. The extension, substitution tensor and
hom also behave in counterintuitive ways (see Section 9.3.2). Thus, some additional structure
on the homsets of C is desirable to model the membership relation appropriately.

substitution fRom fiRst pRinciples 173

9.2.2 Strong monoidal structure

We obtain the classic presheaf model from the above theory by making C the free cocartesian
category over 𝑆 . Theorem 9.1.1 proves that this directly leads to the monoidal structure on
the presheaf category C̃𝑆 by the universal properties of extensions and Day convolution. Here
we spell out the details, showing how the constructions in the previous section strengthen
with the assumption that C is the free cocartesian category F [𝑆] over the set of sorts 𝑆 . The
freeness has several consequences:

• The embedding [−] : 𝑆 → F [𝑆] is fully faithful: for all 𝛼 ∈ 𝑆 , there is exactly one renaming
rule F [𝑆] ([𝛼], [𝛼]).

• The embedding [−] : 𝑆 → F [𝑆] is dense: the nerve Nr[−] : F [𝑆] → Set𝑆 satisfies the full
faithfulness isomorphism Set𝑆 (F [𝑆] ([−], Γ), F [𝑆] ([−],Δ)) � F [𝑆] (Γ,Δ), or equivalently,
Lan[−] [−] : F [𝑆] is naturally isomorphic to IdF [𝑆] .

• For a cartesian category D, every Q ∈ D𝑆 has the free cartesian extension Q× : F [𝑆]op → D

satisfying Q×(Γ+Δ) � Q×Γ × Q×Δ and Q×[𝛼] � Q𝛼 .

Proposition 9.2.2 For all Q ∈ D𝑆 , the substitution action (−) � Q : �F [𝑆] → D is cartesian.

PRoof Q× : F [𝑆]op → D is a cartesian extension, and (−) � Q = ReQ× is cartesian by Propo-
sition 8.3.2.

□

Corollary 9.2.5 The transformations of Proposition 9.2.1 and Corollary 9.2.1 strengthen to the
following isomorphisms, for 𝐾, 𝐿 : D→ E cartesian, and 𝐿 a left adjoint.

𝐾 ◦ Q× � (𝐾 ◦ Q)× 𝐿(− � Q) � (−) � (𝐿 ◦ Q)

PRoof Since (𝐾 ◦Q)× : F [𝑆]op → E is the cartesian extension of 𝐾 ◦Q : 𝑆 → E, it’s sufficient
to show that 𝐾 ◦Q× is cartesian and factorises 𝐾 ◦Q. The first is immediate from composition
of cartesian functors Q× and 𝐾 ; the latter holds since 𝐾 ◦ Q×[−] � 𝐾 ◦ Q by above. The maps
in Corollary 9.2.1 become isomorphisms, establishing 𝐿(− � Q) � (−) � (𝐿 ◦ Q). □

Remark. The transformation bP,Qe → b𝑅 ◦ P, 𝑅Qe is not invertible due to its derivation using
the counit 𝐿 ◦ 𝑅 =⇒ Id. ⌟

Lemma 9.2.4 We have J× � ょ.

PRoof As [−] : 𝑆 → F [𝑆] is dense, the opposite [−]op : 𝑆 → F [𝑆]op is codense, so its right
Kan extension along itself is the identity: Ran[−]op [−]op � Id. As (−)× is a right Kan extension
along [−]op, we can calculate:

J× = (ょ◦ [−]op)× � ょ◦ ([−]op)× � ょ

where ょ

: F [𝑆]op →�F [𝑆] is cartesian (turning coproducts in F [𝑆] into products of hom-sets)
and therefore Corollary 9.2.5 applies. □

Corollary 9.2.6 The structure maps of Lemma 9.2.2 and 𝑖 of Lemma 9.2.3 are invertible.

174 substitution

PRoof The lemmas above allow us to turn the one-waymaps in the definition of the structure
maps into isomorphisms. □

Thus, with our strengthened condition of F [𝑆] being a free cocartesian category, we recover
the expected result, but having arrived at it from first principles.
Theorem 9.2.2

The category�F [𝑆]𝑆 over the free cocartesian category on 𝑆 is strongmonoidal closed, with unit
J ∈�F [𝑆]𝑆 , tensor ⊗ : �F [𝑆]𝑆 ×�F [𝑆]𝑆 →�F [𝑆]𝑆 , and hom [−,=] : (�F [𝑆]𝑆)op ×�F [𝑆]𝑆 →�F [𝑆]𝑆 .

In the presheaf model, with F [𝑆] consisting of lists freely generated from a set of sorts 𝑆 along
a dense and fully faithful 𝐽 : 𝑆 → F [𝑆], and morphisms corresponding to arbitrary renamings
of elements of the list, the preconditions of the above result are satisfied. List concatenation
is the coproduct, with the injections Γ → Γ + Δ and Δ → Γ + Δ representing weakening and
copairing of Γ → Θ and Δ→ Θ to (Γ + Δ) → Θ implemented by case-analysis on the input.

9.3 Substitution thRough waRping

In the previous section, we showed how skew-monoidal structure on a presheaf category
emerges from the definition of substitution operators and brackets (for any base category),
and how the unit, associator, and compositor become invertible under stronger assumptions
– specifically, when the base category is the free cocartesian category on a set of sorts. How-
ever, this richer structure is difficult to formalize: implementing the presheaf model directly
results in a computationally impractical system that requires numerous workarounds in a
dependently-typed setting. Conversely, the weaker skew-monoidal structure is too rigid to
model syntactic substitution, especially in its handling of contexts and renamings (see the end
of Section 9.2.1 and Section 9.3.2). If presheaves over a discrete category of contexts are too
weak to express key syntactic constructs (such as variables, renaming, and substitution), and
presheaves over the cocartesian category are too unwieldy to formalize constructively, we
must seek a middle ground: a lightweight theory of context-indexed families of sets with just
enough renaming structure to serve as a foundation for abstract syntax. The categorical tool
of adjoint warpings, introduced in Section 7.1, provides precisely this framework.

9.3.1 Adjoint modalities

Recall, from Theorem 8.1.1, the adjoint triple induced by a functor 𝐹 : A → B between the
corresponding presheaf categories, with Lan𝐹 a 𝐹 ∗ a Ran𝐹 denoted ■ a ★ a ■. Suppose,
to this end, that we have two small categories connected by a functor 𝐹 : A → B, where B

will generally have a richer structure that A embeds into. The precomposition functor ★ =
𝐹 ∗ = 𝑃 ↦→ 𝑃 ◦ 𝐹 : B̃ → Ã then acts as a forgetful functor that turns “richer” presheaves into
“simpler” ones. This process is adjoint to universal procedures of equipping an A-presheaf
with extra structure to admit functoriality over B: the left Kan extension Lan𝐹 = ■ constructs
a free B-presheaf, while the right one Ran𝐹 = ■ the cofree B-presheaf.

We generalise our running example of naturals that embed into finite sets, with the em-
bedding 𝑛 ∈ N ↦→ [𝑛] ∈ F inducing the forgetful functor ★ : F̃ → Ñ. Let A be the discrete cat-
egory underlying B, so presheaves overA are merely sets indexed by objects with no inherent

substitution thRough waRping 175

reindexing operation (as the hom-sets A(𝑎, 𝑏) are inhabited only if 𝑎 = 𝑏), and the forgetful
functor ★ : B̃ → Ã maps a “proper” presheaf to its underlying indexed set. The extensions
■,■ : Ã→ B̃ are the co/free ways of turning an indexed set into a B-presheaf that can be rein-
dexed along a morphism 𝑓 ∈ B(𝑎, 𝑏): ■𝑋 𝑓 : ■𝑋 (𝑎) → ■𝑋 (𝑏) and ■𝑋 𝑓 : ■𝑋 (𝑎) → ■𝑋 (𝑏).
The adjoint triple also induces an adjoint monad-comonad pair ^ a □ on A that we will be
using extensively.

Proposition 9.3.1 We have the following adjoint situation:

Aop Ã

Bop B̃

★■ ■

^ □a

ょ

A

ょ

B

𝐹 op aa�

where the adjoint monad-comonad pair ^ a □ : Ã→ Ã is

^𝑋 = ■𝑋 ◦ 𝐹 : A→ Set □𝑋 = ■𝑋 ◦ 𝐹 : A→ Set

PRoof The adjoint triple on the right is an instance of Theorem 8.1.1, for C = Set. We also
need to show that

■ ◦ ょ

A
� ょ

B
◦ 𝐹 op : Aop → SetB (■ ょ)

We take 𝑎 ∈ A and 𝑏 ∈ B, and calculate:

■(ょ

A
𝑎)𝑏 �

∫ 𝑎′∈A
B(𝐹𝑎′, 𝑏) × ょ

A
(𝑎) (𝑎′) (Lan∫)

=
∫ 𝑎′∈A

B(𝐹𝑎′, 𝑏) × A(𝑎, 𝑎′)

� B(𝐹𝑎, 𝑏) = ょ

B
(𝐹𝑎)(𝑏) (∫ ょ×)

□

Being adjoints, the co/free functors and modalities satisfy various co/continuity properties.
This connection between the presheaf categories Ã and B̃ is canonically induced by any

functor 𝐹 : A → B, but it deepens in situations when 𝐹 is an embedding in a more formal
sense: it is bijection on objects. From this condition (satisfied, for example, by our running
example of a discrete category embedding) we obtain an equivalent characterisation of a “rich”
B-presheaf as an object of Ã with additional co/algebra structure.
Theorem 9.3.1

If 𝐹 : A→ B is bijective-on-objects, we have the following equivalence of categories:

^-Alg
(
Ã
)
' B̃ ' □-Coalg

(
Ã
)

176 substitution

PRoof We reason by showing that the precomposition functor ★ : B̃ → Ã is co/monadic,
which gives us the required equivalences. Beck’s (1968) crude monadicity theorem says that
★ is monadic if the following properties hold:

It has a left adjoint By assumption, we have the left Kan extension Lan𝐹 : Ã→ B̃.

It reflects isomorphisms Let 𝜑 : 𝑃 → 𝑄 be a morphism in B̃. We show that if★𝜑 : ★𝑃 → ★𝑄

is an isomorphism, then so is𝜑 . To this end, let𝜓 = ★𝜑 : 𝑃 ◦𝐹 → 𝑄◦𝐹 and𝜓 −1 : 𝑄◦𝐹 → 𝑃 ◦𝐹
be the isomorphism in Ã, and define 𝜑−1 : 𝑄 → 𝑃 for all 𝑏 ∈ B as follows:

𝜑−1𝑏 : 𝑄𝑏 = 𝑄 (𝐹𝑎) 𝜓−1𝑎 𝑃 (𝐹𝑎) = 𝑃𝑏

where 𝑎 = 𝐹 −1𝑏 is unique since 𝐹 is bijective-on-objects. Then, the inverse laws follow from
those of𝜓 , and the fact that𝜓𝑎 = (★𝜑)𝑎 = 𝜑𝐹𝑎 = 𝜑𝑏 .

𝑃𝑏 𝑄𝑏

𝑃 (𝐹𝑎) 𝑄 (𝐹𝑎)

𝑃𝑏 𝑃 (𝐹𝑎)

𝜑𝑏

𝜓−1𝑎

𝜓𝑎

𝑄𝑏 𝑄 (𝐹𝑎)

𝑄 (𝐹𝑎) 𝑃 (𝐹𝑎)

𝑄𝑏 𝑃𝑏

𝜓−1𝑎

𝜑𝑏

𝜓𝑎

It preserves reflexive coequalisers ★ is left adjoint to Ran𝐹 so preserves colimits, including
reflexive coequalisers.

Comonadicity of ★ is established analogously: Ran𝐹 is the right adjoint, and Lan𝐹 a ★ so ★

also preserves limits, including reflexive equalisers. □

The theorem states that if 𝐹 is a bijective-on-objects embedding of a simpler category A

into a richer B, then presheaves over B can be equivalently represented as ^-algebras or □-
coalgebras in Ã, with natural transformations corresponding to co/algebra homomorphisms.
The key advantage of this representation is that it separates the object-level data from the
functorial action, expressing a rich presheaf as a simpler one equipped with extra structure.
In the extreme case where A is the discrete category underlying B, every presheaf 𝑃 ∈ B̃

is equivalent to its underlying indexed family 𝑋 = {𝑃𝑎}𝑎∈A, along with an algebra structure
^𝑋 → 𝑋 or a coalgebra structure 𝑋 → □𝑋 . Framed this way, the result is intuitive: the
co/algebra structure encodes precisely the functorial action:

Ã(^𝑋,𝑋)

�
∫
𝑎′∈A
Set(^𝑋𝑎′, 𝑋𝑎′) (∫NT)

�
∫
𝑎′∈A
Set

(∫ 𝑎∈A
B(𝐹𝑎, 𝐹𝑎′) × 𝑋𝑎,𝑋𝑎′

)
(Lan∫)

�
∫
𝑎,𝑎′∈A

Set
(
B(𝐹𝑎, 𝐹𝑎′), Set(𝑋𝑎,𝑋𝑎′)

)
(∫l)

Ã(𝑋,□𝑋)

�
∫
𝑎∈A
Set(𝑋𝑎,□𝑋𝑎) (∫NT)

�
∫
𝑎∈A
Set

(
𝑋𝑎,

∫
𝑎′∈A
Set

(
B(𝐹𝑎, 𝐹𝑎′), 𝑋𝑎′

))
(Ran∫)

�
∫
𝑎,𝑎′∈A

Set
(
B(𝐹𝑎, 𝐹𝑎′), Set(𝑋𝑎,𝑋𝑎′)

)
(∫↔)

and 𝐹 is bijective-on-objects, any morphism B(𝑏, 𝑏′) can be written as B(𝐹𝑎, 𝐹𝑎′) for some
𝑎, 𝑎′ ∈ A, allowing us to functorially apply a B-morphism to any 𝑋 ∈ Ã. By developing the

substitution thRough waRping 177

theory in terms of co/algebras in Ã, we can precisely identify when a co/algebra structure
(i.e. functoriality) is necessary, and when a simple indexed family of sets suffices. This ap-
proach also improves computational tractability: rather than manipulating complex presheaf
constructions throughout, most of the formalisation relies on straightforward indexed sets,
with co/algebra structures introduced only where required.

9.3.2 Warped substitution

The abstract theory of Section 9.2 shows that the definition of substitution operators equips the
category of presheaves C̃ with skew-monoidal structure no matter what C is. For C = F [𝑆],
the structure strengthens to a strong monoidal one, giving rise to the presheaf model with the
syntactically intuitive interpretation for the categorical structure: variables J𝜏Γ correspond to
the predicate 𝜏 ∈ Γ, QΓ Δ is a simultaneous substitution rule from variables in Γ to Q-terms in Δ,
and elements of the tensor (Γ, 𝑡, 𝜎) ∈ (𝑃 � Q) (Δ) associate a term 𝑡 ∈ 𝑃 (Γ) with a substitution
from Γ to Q-terms in Δ. However, if we instantiate C with a discrete category (such as the
set of lists 𝑆∗, the discrete category underlying F [𝑆]) the resulting notions of “variables” and
“substitution” are rather strange: J𝜏Γ is only defined if Γ = [𝜏], a substitution rule YΓ Δ is a
term Y𝜏Δ if Γ = [𝜏] and the singleton set {∗} otherwise, and (𝑋 � Y) (Δ) contains tuples
([𝜏], 𝑡 ∈ 𝑋 [𝜏], 𝑠 ∈ Y𝜏Δ) for Γ = [𝜏], or (Γ, 𝑡 ∈ 𝑋Γ, ∗) if Γ ≠ [𝜏]. Clearly, this is very restrictive
and wouldn’t be suitable for the representation of syntactic metatheory.

Howdowe bring this intuitive structure to the category of indexed families? Looking at the
internals of the monoidal structure proof laid out in Section 9.2.1, that the only place the base
category C appears in is the embedding JC

𝜏 (𝑎) = C(𝐽𝜏, 𝑎), and, consequently, the extension
Q𝑎
𝑏
= Q×C (𝑎)(𝑏) �

∫
𝜏∈𝑆 J

C
𝜏 (𝑎) ⇒ Q𝜏 (𝑏). That is, even if Y ∈ Ã𝑆 is merely an indexed family

of sets, the substitution Y×B (Γ)(Δ) =
∫
𝜏∈𝑆 J

B
𝜏 Γ ⇒ Y𝜏Δ behaves in the expected way: mapping

variables 𝜏 ∈ Γ to Y-terms Y𝜏Δ. The choice of this category is determined by the first operand
of the substitution action (−) �B (=) : B̃𝑆 × Ã𝑆 → Ã𝑆 , which associates a B-presheaf with a
substitution that maps B-variables to A-presheaves. We can exploit this “mixed” operator (a
left action as given in Corollary 9.2.4) to construct an appropriate substitution tensor product
on Ã𝑆 : turn the first operand X into a B-presheaf, then apply the action �B with another
sorted A-presheaf Y to obtain an indexed family that nevertheless behaves like a tensor of
B-presheaves. The crucial step here – turning a A-presheaf into a B presheaf – is precisely
the job of the free presheaf functor ■ : Ã𝑆 → B̃𝑆 .

The story is similar for the substitution bracket and enrichment. The output category of
〈−,=〉C determines the base category of embeddings, so taking the enrichment of two sorted
A-presheaves with 〈−,=〉B : (Ã𝑆)op × Ã𝑆 → B̃𝑆 , then converting the output back into Ã𝑆 using
the forgetful functor★ : B̃𝑆 → Ã𝑆 would give us an internal hom on Ã𝑆 . Rather than verifying
that the tensor and hom thus obtained indeed make Ã𝑆 into a skew-monoidal category, we
make use of the generic framework of adjoint warpings as developed in Section 7.1.3 where
all the hard work has already been done in the abstract.

Proposition 9.3.2 The functors ■ a ★ : Ã𝑆 → B̃𝑆 form adjoint warpings over B̃𝑆 .

PRoof The category B̃𝑆 is skew-monoidal closed byTheorem 9.2.1 (also monoidal closed, but
we do not need this here) and �: B̃𝑆 × Ã𝑆 → Ã𝑆 is a left B̃𝑆-action. Applying Theorem 7.1.4 to

178 substitution

• the adjoint triple ■ a ★ a ■ : Ã𝑆 → B̃𝑆 constructed via Theorem 8.1.1;
• the strong B̃𝑆-module functor ★ : B̃𝑆 → Ã𝑆 , with isomorphism P �★Q � ★(P ⊗ Q) by
Corollary 9.2.5

gives us the required adjoint warping structure on ■ a ★, along the way also inducing the
maps and isomorphisms

[P,Q] → 〈★P,★Q〉 〈X, Y〉 → [■X,■Y] 〈★P, Y〉 � [P,■Y] □

Using Corollary 7.1.1, we transport the skew-monoidal closed structure of B̃𝑆 onto Ã𝑆 .
Theorem 9.3.2

Given 𝐹 : A→ B, the category Ã𝑆 is skew-monoidal closed, with warped unit and operators

I ≜ ★J X ⊕ Y ≜ (■X) �B Y JX, YK ≜ ★〈X, Y〉B

Though not part of the warping framework, the actions corresponding to the operators are
induced in a similar way.

Corollary 9.3.1 The unsorted versions of the operators constitute left C̃𝑆-actions:

𝑋 	 Y ≜ (■𝑋) �B Y JX, 𝑌⦊ ≜ ★bX, 𝑌 eB

Corollary 9.3.2 We have the isomorphisms of categories

I-RMod⊕
(
Ã
)
� ^-Alg

(
Ã
)
� B̃ � □-Coalg

(
Ã
)
� I-RModJK (Ã)

PRoof A combination of Theorem 9.3.1 and Corollary 7.2.1. □

When one operand of a presheaf operator is co/free, the underlying family of the tensor or
hom is equivalently given by a family operator.

Lemma 9.3.1 We have the following isomorphisms:

𝑋 ⊕ (★Q) � ★(■𝑋 ⊗ Q) J★P, 𝑌 K � ★[P,■𝑌]
PRoof We calculate as follows, using the definitions of the warped operators and the isomor-
phisms P �★Q � ★(P ⊗ Q) and 〈★P, Y〉 � [P,■Y]

𝑋 ⊕ (★Q) = (■𝑋) �(★Q) � ★(■𝑋 ⊗ Q) J★P, 𝑌 K = ★〈★P, 𝑌 〉 � ★[P,■𝑌] □

The warped substitution operators give us the valuable abstract results of induced skew-
monoidal structure, but, still being defined in terms of the operations over B̃𝑆 , they are im-
practical: in the formalisation, we need to avoid referring to B-presheaves as they cannot be
captured exactly. The substitution structure of A-presheaves (which will simply be indexed
families of sets) may be defined more directly by a change-of-base-like construction.

9.3.3 Rebased substitution

In the setting of families, a more direct characterisation of substitution structure exists, which
can be shown to be equivalent to the one induced by warping. It directly captures the intu-

substitution thRough waRping 179

ition at the beginning of the chapter of working with A-presheaves, but taking the cartesian
extension in the richer base category of B. As before, fix a functor 𝐹 : A→ B.

Definition 9.3.1 The rebased extension of a sorted object Q ∈ D𝑆 is defined as

Q×𝐹 ≜ Q×B ◦ 𝐹 op : Aop → D

The rebased substitution operator (−) �𝐹 (=) : Ã ×D𝑆 → D is:

(−) �𝐹 Q ≜ ReQ×𝐹 : Ã→ D (𝑋 �𝐹 Q)(𝑏) �
∫ 𝑎∈A

𝑋𝑎 ×
∫
𝜏∈𝑆

B(𝐽B𝜏, 𝐹𝑎) ⇒ Q𝜏 (𝑏)

and, correspondingly, the rebased substitution action (−) �𝐹 (=) : Ã𝑆 ×D𝑆 → D𝑆 is:

(X �𝐹 Q)𝜏 ≜ X𝜏 �𝐹 Q

Similarly, we define the rebased substitution bracket b−,=e𝐹 : (D𝑆)op ×D→ Ã and enrichment
〈−,=〉𝐹 : (D𝑆)op ×D𝑆 → Ã𝑆 :

bQ, 𝑍 e𝐹 (𝑎) ≜ NrQ×𝐹 (𝑍) (𝑎) � D
(
Q×B (𝐹𝑎), 𝑍

)
〈Q,Z〉𝐹𝜏 ≜ bQ,Z𝜏e ⌟

Remark. Note that if 𝐹 were full and faithful, the mixed extension would collapse to the A-
extension:

Y×B (𝐹𝑎) =
∫
𝜏∈𝑆

B(𝐽B𝜏, 𝐹𝑎) ⋔ Y𝜏 �
∫
𝜏∈𝑆

B(𝐹 (𝐽A𝜏), 𝐹𝑎) ⋔ Y𝜏 �
∫
𝜏∈𝑆

A(𝐽A𝜏, 𝑎) ⋔ Y𝜏 = Y×A (𝑎)

In our case, 𝐹 will be a discrete subcategory embedding, which is certainly not fully faithful. ⌟

The rebased substitution operations are defined in terms of precomposition with 𝐹 (same as
the forgetful functor ★ : B̃ → Ã), conceptually simpler than the warping via the left Kan
extension ■. We can show that the two structures are nevertheless equivalent using some
lemmas concerning the adjoint triple ■ a ★ a ■, nerves, and realisations.

Lemma 9.3.2 For 𝑃 : Cop → B̃, we have the isomorphisms

★ ◦ Re𝑃 � Re★◦𝑃 (★Re) Nr𝑃 ◦ ■ � Nr★◦𝑃 (Nr■)

PRoof ★ is a left adjoint, so preserves the left Kan extension that defines Re𝑃 . The second
isomorphism is a right adjoint of the second: ★ a ■ and Re𝑃 a Nr𝑃 composes to the adjunction
★◦ Re𝑃 a Nr𝑃 ◦■, and the latter is isomorphic to the unique right adjoint Nr★◦𝑃 of Re★◦𝑃 . □

Lemma 9.3.3 For 𝐺 : Bop → D, we have the isomorphisms

Re𝐺 ◦ ■ � Re𝐺◦𝐹 op (Re ■) ★ ◦ Nr𝐺 � Nr𝐺◦𝐹 op (★Nr)

PRoof We prove the second isomorphism; the first is its left adjoint. For 𝐶 ∈ C , we have

(★ ◦ Nr𝐺) (𝐶) � C(𝐺 (𝐹−),𝐶) = C((𝐺 ◦ 𝐹 op)−,𝐶) � Nr𝐺◦𝐹 op (𝐶) □

Proposition 9.3.3 The warped and the rebased substitution structures are equivalent:

𝑋 	 Y � 𝑋 �𝐹 Y JX, 𝑌⦊ � bX, 𝑌 e𝐹

180 substitution

PRoof The first isomorphism is an instance of Eq. (Re ■), and the second is its right adjoint:

(−) 	 Y ≜ ■(−) �B Y = ReY×B ◦ ■ � ReY×B◦𝐹 op = ReY×𝐹 = (−) �𝐹 Y □

Thus, the results for thewarped substitution structure equivalently apply to the rebased one, so
the two can be used interchangeably in the theory. In practice, working with the rebased def-
initions is more amenable to formalisation, as it doesn’t assume the existence of the monoidal
structure on B̃𝑆 .

To summarise the results of this section, we use the warping induced by the adjoint triple
■ a ★ a ■ to transport the monoidal-closed structure of B̃𝑆 to a skew-monoidal closed struc-
ture on Ã𝑆 , and a skew Ã𝑆-module structure on Ã. The category of co/algebras on C̃ for the
induced co/monad is then isomorphic to the categories of right modules, and the category of
B-presheaves B̃. The warped structure is equivalent to the one defined via rebasing along the
functor 𝐹 , which is conceptually simpler and possible to formalise. This sets up the universe
of discourse for the familial model, to be discussed next.

c h a p t e R 1 0

Discrete families

The theory of presheaves developed in the previous section will now be instantiated with a
specific base category of contexts and renamings, giving rise to the familial model for second-
order abstract syntax. We start by summarising the core definitions and fixing notation, then
step through many concepts introduced in previous chapters, concretising them in the setting
of sorted families of sets.

10.1 Families as a model of syntax

Before setting out to prove deeper results connecting families with presheaves, we first need
to set up our universe of discourse and justify our claim that indexed families of sets can serve
as a model of second-order abstract syntax. At the very least, this should involve the support
for variables, substitution, and algebraic structure over a signature. These are conveniently
packaged up in the notion of an algebraic monoid that we build towards in this section.

As we will be dealing with simply-sorted syntax, we fix a set of sorts 𝑆 throughout this
chapter, with elements denoted 𝛼, 𝛽, 𝜏 , etc. Unlike Arkor and Fiore (2020), we do not permit any
algebraic structure on the syntax of sorts itself, keeping them as opaque, unrelated elements
in the model; this is of course not to say that 𝑆 won’t actually be generated from a simple
grammar of types.

10.1.1 Contexts and variables

Following the presheaf model and the principle of intrinsic typing and scoping, terms keep
track of their own sort and context: the set of all possible terms of the syntax is stratified by
sorts and typing contexts, distinguishing different terms by their indices.

Definition 10.1.1 The category of contexts F [𝑆] is the free cocartesian category on the set of
sorts 𝑆 . Explicitly, its objects are finite lists of sorts generated by the initial empty context ∅ and
the cons operator 𝛼 · (−) : F [𝑆] → F [𝑆] for all 𝛼 ∈ 𝑆 , and morphisms are arbitrary functions
between elements of the lists taken as finite sets. The coproduct of the free cocartesian category

182 discRete famil ies

is the concatenation operator (−) + (=) : F [𝑆] × F [𝑆] → F [𝑆], defined recursively as

∅ + Δ ≜ Δ

(𝛼 · Γ) + Δ ≜ 𝛼 · (Γ + Δ)

The singleton list containing 𝛼 ∈ 𝑆 will be denoted [𝛼]. The discrete contexts over 𝑆 is the
discrete category underlying F [𝑆], denoted 𝑆∗. ⌟

As F [𝑆] is freely generated, every object is either the initial object ∅, or of the form𝛼 ·Γ = [𝛼]+Γ
with coproduct structure

[𝛼] new𝛼,Γ [𝛼] + Γ old𝛼,Γ
Γ

Definition 10.1.2 From now on, we will call the category of presheaves the presheaf category
PSh ≜ �F [𝑆], and the category of families the discrete presheaf category Fam ≜ 𝑆∗ consisting
of list-indexed families of sets and indexed functions between them (since naturality is trivial
over discrete categories). Sorted presheaves and sorted families are further indexed by the set
of sorts 𝑆 , and denoted PSh𝑆 = (�F [𝑆])𝑆 and Fam𝑆 = (𝑆∗)𝑆 . In either case, the forgetful functor
induced by precomposing with the canonical injection 𝑆∗ → F [𝑆] is denoted ★ : PSh→ Fam.

⌟

Notation. Sorted objects will be written using calligraphic font: P,Q for sorted presheaves,
X, Y for sorted families. If it is unambiguous, functors and operators on sorted categories will
not be distinguished from unsorted versions: for example, (P × Q)𝛼 = P𝛼 × Q𝛼 . ⌟

Definition 10.1.3 The presheaf of variables V ∈ PSh𝑆 and family of indices I ∈ Fam𝑆 are given
for all 𝛼 ∈ 𝑆 as:

V𝛼 ≜

ょ

F [𝑆] [𝛼] I ≜ ★V ⌟

As contexts have an inductive structure, so do variables: they can only live in nonempty con-
texts 𝛼 · Γ, and correspond to a left injection new at the appropriate sort followed by a finite
number of right injections old. For example, given the context [𝛼, 𝛽,𝛾, 𝛿], the third variable of
sort 𝛾 corresponds to the composite of the following injections:

V𝛾 [𝛼, 𝛽,𝛾, 𝛿] = F [𝑆] ([𝛾], [𝛼, 𝛽,𝛾, 𝛿]) = [𝛾] new𝛾,[𝛿] [𝛾, 𝛿] old𝛽,[𝛾,𝛿] [𝛽,𝛾, 𝛿] old𝛼,[𝛽,𝛾,𝛿] [𝛼, 𝛽,𝛾, 𝛿]

Thus, we can pattern-match on a variable 𝑣 ∈ V𝜏 (𝛼 · Γ) as being either new𝛼,Γ ∈ V𝛼 (𝛼 · Γ)
or old𝜏,Γ (𝑢) ∈ V𝜏 (𝛼 · Γ) for a 𝑢 ∈ V𝜏 (Γ). As we will next see, morphisms in F [𝑆] may be
equivalently characterised by sort-preserving mappings of indices.

10.1.2 Substitution structure

The substitution structure of families can formally be constructed from that of presheaves as
laid out in Chapter 9. We build up the definitions from bottom up, indicating where they
appear in the abstract development.

Substitution rules derive from cartesian extensions of presheaves (Definition 9.2.1), equiv-
alently represented by a tuple of X-terms in Δ with the sorts taken in Γ, or a sort-preserving
mapping of variables in Γ to X-terms in Δ.

famil ies as a model of syntax 183

Definition 10.1.4 The Γ-wise product of a sorted family X is defined as:

X×Γ ≜
∏
𝛼∈Γ

X𝛼

At a context Δ, this is equivalently the function space

X×Γ (Δ) �
∏
𝛼∈𝑆

I𝛼Γ → X𝛼Δ

since membership in Γ is captured by the inhabitance of the variable presheaf V𝛼Γ ≜ F ([𝛼], Γ)
with I as its underlying family, which is nonempty only when 𝛼 appears in Γ. The set X×Γ (Δ)
will be denoted XΓ Δ and generally called a substitution rule from Γ to Δ. ⌟

Associating a term with a substitution rule (either as a tuple, or a dependence relationship)
gives rise to the skew-monoidal closed structure of families. The definitions instantiate the re-
based substitution operations from Section 9.3.3, which are equivalent to the structure induced
by the adjoint warping ■ a ★:

Definition 10.1.5 The substitution action and substitution tensor product are defined as

(−) 	 (=) : Fam × Fam𝑆 → Fam (−) ⊕ (=) : Fam𝑆 × Fam𝑆 → Fam𝑆

(𝑋 	 Y) (Δ) ≜
∑
Γ∈𝑆∗

𝑋 (Γ) × YΓ Δ (X ⊕ Y)𝛼 ≜ X𝛼 	 Y

The right substitution hom and internal substitution hom are defined as

J−, =⦊ : Famop
𝑆 × Fam→ Fam J−,=K : Famop

𝑆 × Fam𝑆 → Fam𝑆JX, 𝑌⦊(Γ) ≜ ∏
Δ∈𝑆∗

XΓ Δ → Y(Δ) JX, YK𝜏 ≜ JX, Y𝛼⦊
⌟

As shown in several examples, the reason the substitution structure on families is merely
skew-monoidal is that triples (Γ, 𝑡, 𝜌) ∈ 𝑋 	Ymay only be compared componentwise, without
any quotienting that would identify unequal triples. The tensor product of presheaves is a
combination of the tensor product on families, and the quotienting condition that expresses
an internal renaming-invariance.

Proposition 10.1.1 The underlying family of the presheaf substitution action/product can be
expressed by quotienting the family substitution action/product:

★(𝑃 � Q) � (★𝑃 	 ★Q) / ≈

where ≈ is the equivalence relation generated by identifying “inter-renamable” terms: for 𝑡 ∈
𝑃 (Γ1), 𝑠 ∈ 𝑃 (Γ2), 𝜎 : Q

Γ1
Δ and 𝜍 : Q

Γ2
Δ,

(Γ1, 𝑡, 𝜎) ∼ (Γ2, 𝑠, 𝜍) ∈
∑
Γ∈𝑆∗

𝑃 (Γ) × QΓ Δ

if there exists a map 𝜌 : Γ1 → Γ2 such that 𝜎 = 𝜍 ◦ 𝜌 and 𝑠 = 𝑃 (𝜌) (𝑡).

In the presheaf model, this quotienting is responsible for bridging the gap that occur when

184 discRete famil ies

proving the monoidal axioms: for example, the inverse laws of the unitors 𝜆
Q
: V⊗Q→ Q and

𝜌
P
: P ⊗ V→ P, the calculation has to equate triples

𝜆−1(𝜆(Γ, 𝑣, 𝜎)) = ([𝛼], id[𝛼], (𝛼 ↦→ 𝜎 (𝑣))) 𝜌−1(𝜌 (Γ, 𝑡, 𝜌)) = (Δ,P(𝜌)(𝑡), idΔ)

which are both instances of the quotienting condition, as is the triangle coherence axiom:

(P ⊗ 𝜆)
(
𝛼 (Δ, (Γ, 𝑡, 𝜌), 𝜎)

)
=
(
Γ, 𝑡, 𝜎 ◦ 𝜌

)
=
(
Δ,P(𝜌)(𝑡), 𝜎

)
= (𝜌 ⊗ R)

(
Δ, (Γ, 𝑡, 𝜚), 𝜎

)
As the family tensor product is merely a dependent sum, the triples to be equated remain
unidentifiable. The situation is similar with the internal hom, where presheaves benefit from
the hom [P,Q] itself being a natural transformation: given ℎ ∈ J𝑃,𝑄K𝛼Γ, 𝜎 ∈ PΓ Δ and
𝜌 : Δ→ Θ, the naturality condition internal to the hom is Q(𝜌)(ℎΔ 𝜎) = ℎΘ(P(𝜌) ◦ 𝜎). Again,
in families, no such condition can be imposed, as the hom is an indexed family of functions
without any naturality condition. For these reasons, the weaker, skew-monoidal closed struc-
ture is required, which only asks for the “safe” directions of the structural transformations,
which satisfy the skew axioms definitionally:

𝜆 : I ⊕ X→ X 𝜌 : X→ X ⊕ I

𝜆Δ
(
Γ, 𝑣 ∈ I𝜏 (Γ), 𝜎 : QΓ Δ

)
≜ 𝜎 (𝑣) 𝜌Δ(𝑡 : X𝜏 (Δ)) ≜ (Δ, 𝑡, idΔ)

𝑗 : I→ JX,XK 𝑖 : JI,XK→ X

𝑗Γ (𝑣 : I𝜏 (Γ)) ≜ (Δ, 𝜎 : XΓ Δ) ↦→ 𝜎 (𝑣) 𝑖Γ (ℎ : JI,XK𝜏 (Γ)) ≜ ℎΓ (idΓ)

𝛼 : (X ⊕ Y) ⊕ Z→ X ⊕ (Y ⊕ Z)
𝛼Θ

(
Δ, (Γ, 𝑡 ∈ X𝜏 (Γ), 𝜎 : YΓ Δ), 𝜍 : ZΔ Θ

)
≜

(
Γ, 𝑡, (𝑣 ∈ Γ ↦→ (Δ, 𝜎 (𝑣), 𝜍)) : (Y ⊕ Z)Γ

Θ

)
𝐿 : JY,ZK→ JJX, YK, JX,ZKK
𝐿Γ (ℎ : JY,ZK𝜏 (Γ)) ≜ Δ, 𝜎 : JX, YKΓ

Δ ↦→ Θ, 𝜍 : XΔ Θ ↦→ ℎΘ
(
𝑣 ∈ Γ ↦→ 𝜎 (𝑣)(𝜍)

)
10.1.3 Renaming structure

Presheaves are equipped with a renaming operation a priori: for 𝑡 ∈ 𝑃 (Γ) and a renaming
𝜌 : Γ → Δ, we have 𝑃 (𝜌) (𝑡) ∈ 𝑃 (Δ). For families, this sort of reindexing is not possible
without equipping them with some extra structure. Fortunately, both morphisms in F [𝑆] as
well as the renaming operation may be fully internalised in the category of families, without
reference to presheaves or even the category of contexts explicitly.

Proposition 10.1.2 We have the following isomorphism for all Γ ∈ F [𝑆]:

V×Γ � ょ(Γ)

PRoof Since every context can be decomposed into a coproduct of its sorts, and the Yoneda

famil ies as a model of syntax 185

embedding turns colimits into limits, we have:

V×Γ =
∏
𝛼∈Γ

V𝛼 =
∏
𝛼∈Γ

ょ[𝛼] � ょ(∐
𝛼∈Γ
[𝛼]

)
� ょ(Γ) □

We have consequently have that the singleton set embedding [−] : 𝑆 → F [𝑆] is

• fully faithful: 𝑆 (𝛼, 𝛽) is a singleton if 𝛼 = 𝛽 , and then F [𝑆] ([𝛼], [𝛽]) contains the identity
renaming only;

• dense: for Γ,Δ ∈ F [𝑆], the set of renamings F [𝑆] (Γ,Δ) and the set of natural transforma-
tions Set𝑆 (F [𝑆] ([−], Γ), F [𝑆] ([−],Δ)) �

(∏
𝛼∈𝑆 V𝛼Γ → V𝛼Δ

)
� V×Γ (Δ) are equivalent.

As the underlying family of the variable presheaf is the family of indices, we get that mor-
phisms in F [𝑆] may be expressed sort-preserving maps of indices in Fam𝑆 :

F [𝑆] (Γ,Δ) �
∏
𝛼∈𝑆

I𝛼Γ → I𝛼Δ

As discussed in Section 9.3.1, the functorial action of a presheaf may be equivalently expressed
as a co/algebra structure for the co/free presheaf co/monad, given by left and right Kan exten-
sions.

Definition 10.1.6 Given a family 𝑋 ∈ Fam, the free presheaf and cofree presheaf are defined,
respectively, as

■𝑋 (Δ) ≜
∑
Γ∈𝑆∗

𝑋 (Γ) × (Γ � Δ)

■𝑋 (Γ) ≜
∏
Δ∈𝑆∗
(Γ � Δ) → 𝑋 (Δ)

■𝑋 (𝜚) ≜ (Γ, 𝑥, 𝜌 : Γ � Δ) ∈ ■𝑋 (Δ) ↦→
(Γ, 𝑥, 𝜚◦𝜌 : Γ � Θ) ∈ ■𝑋 (Θ)

■𝑋 (𝜌) ≜ 𝑝 ∈ ■𝑋 (Γ) ↦→
Θ, 𝜚 : (Δ � Θ) ↦→ 𝑝Θ(𝜚 ◦ 𝜌) ∈ ■𝑋 (Δ)

Postcomposition by the forgetful functor★ : PSh→ Fam gives the co/free presheaf co/monads
^,□ : Fam→ Fam which are adjoint as they arise from the adjoint triple ■ a ★ a ■. ⌟

The adjoint triple thus constructed defines a warping, and consequently a skew-monoidal
structure on families; this, however, is equivalent to the rebased definition we gave above.
By Theorem 9.3.1, with the canonical identity-on-objects discrete subcategory embedding
𝑆∗ ↩→ F [𝑆], we get that the categories of ^-algebras and □-coalgebras in Fam are equivalent
to the category of presheaves. Thus, a presheaf can be equivalently given by its underlying
family 𝑋 , and a ^-algebra structure ^𝑋 → 𝑋 or □-coalgebra structure 𝑋 → □𝑋 that acts as
the functorial renaming operation.

Definition 10.1.7 A ^-algebra is a family 𝑋 with a structure map 𝑥 : ^𝑋 → 𝑋 , satisfying:

𝑥 (Γ, 𝑡, id) = 𝑡 𝑥 (Δ, (Γ, 𝑡, 𝜌), 𝜚) = 𝑥 (Γ, 𝑡, 𝜚 ◦ 𝜌)

A □-coalgebra is a family 𝑌 with a structure map 𝑦 : 𝑌 → □𝑌 satisfying:

𝑦 id 𝑡 = 𝑡 𝑦 (𝑦 𝑡 𝜌) 𝜚 = 𝑦 𝑡 (𝜚 ◦ 𝜌)
⌟

186 discRete famil ies

Definition 10.1.8 A pointed ^-algebra is a ^-algebra or □-coalgebra (X, 𝑥) in Fam𝑆 or with a
point 𝜂 : I→ X compatible with the co/algebra structure:

𝑥 (Γ, 𝜂 𝑣, 𝜌) = 𝜂 (𝜌 𝑣) 𝑥 (𝜂 𝑣) 𝜌 = 𝜂 (𝜌 𝑣) ⌟

As the morphisms in F [𝑆] (and equivalently, sort-preserving functions between indices) corre-
spond to the renaming rules, the structure maps for the co/algebras correspond to the renaming
operation: they modify the context of a term based on a renaming rule.

From Corollary 7.2.1, we have that ^𝑋 � 𝑋 	 I, and □𝑋 � JI, 𝑋⦊. The ^-algebra and □-
coalgebra structure maps are right module actions: ^𝑋 � 𝑋 	 I→ 𝑋 and 𝑋 → JI, 𝑋⦊ � □𝑋 .

Notation. For the sake of simplicity and clarity, we will stop distinguishing between the
monoidal and closed structure when reasoning equationally, as the laws and diagrammatic
reasoning reduces to very similar syntactic notation differing only in whether applications
are written in curried or uncurried form. In particular, we will collectively call^-algebras and
□-coalgebrasmodules and denote their categoryMod, with the specific nature of the operation
clear from context. Applications of the co/algebra structure for (𝑋, 𝑥) ∈ Mod will be written
𝑋 〈𝜌〉𝑡 for either 𝑥 (Γ, 𝑡, 𝜌) or 𝑥 𝑡 𝜌 , further abbreviated to simply 〈𝜌〉𝑡 when 𝑋 is clear from the
context. More generally, a parametrised morphism 𝑓 : 𝑋 	 Y→ 𝑍 or 𝑓 : 𝑋 → JY, 𝑍⦊ unfolds
to the same substitution rule-incorporating transformation, and will be commonly denoted
𝑓 : 𝑋 Y 𝑍 . The application to 𝑡 ∈ 𝑋 (Γ) and 𝜎 : YΓ Δ will be written 𝑓 {𝜎}𝑡 , abbreviating
either 𝑓 (Γ, 𝑡, 𝜎) or 𝑓 𝑡 𝜎 . Note the reverse argument ordering, which will also allow us to par-
tially apply such a map to a substitution rule and obtain a context-altering family function:
𝑓 {𝜎} : 𝑋 (Γ) → 𝑌 (Δ). ⌟

10.1.4 Monoids

The skew-monoidal closed structure of families associates terms with substitution rules, but
does not actually evaluate the result of the substitution. A family which supports evaluation
of substitutions is nothing but a monoid object in the skew-monoidal closed category, which
also carries the expected unit and associativity laws of substitution.

Definition 10.1.9 A substitution monoid is a sorted family M equipped with a variable oper-
ation 𝜂 : I → M and a substitution operation 𝜇 : M M M, satisfying the expected monoid
laws of Definition 5.2.1, corresponding to the unit and associativity axioms:

𝜇{𝜎}(𝜂 𝑥) = 𝜎 𝑥 𝜇{𝜂}𝑡 = 𝑡 𝜇{𝜍}(𝜇{𝜎}𝑡) = 𝜇{𝜇{𝜍} ◦ 𝜎}𝑡
⌟

As given in Definition 5.2.11, an invariant monoid is a substitution monoid with a compatible
module action: renaming is equivalent to substitution of variables for variables. While ev-
ery monoid is automatically invariant, in practice we will need the module structure on the
family of a syntax in order to equip it with the monoid structure. This corresponds to the well-
known – if not initially obvious – fact that the renaming operation on the syntax of terms
must be present before the substitution operation can be defined, as pushing substitutions
under binders involves weakening, a special case of renaming.

sKew paRametRisation 187

Definition 10.1.10 An invariant substitution monoid is a monoid (M, 𝜂, 𝜇) with a module ac-
tion such that the compatibility condition of Definition 5.2.11 holds; for 𝜌 : Γ � Δ, we have

𝜇{𝜂 ◦ 𝜌} = M〈𝜌〉
⌟

Finally, a Σ-monoid for a family endofunctor Σ : Fam𝑆 → Fam𝑆 has a monoid and Σ-algebra
structure, with the compatibility condition expressing that substitution into a term involves
substitution into subexpressions, which may involve pushing substitution under binders.
However, to state the compatibility condition, we need to ask for a pointed strength on Σ –
and, after several chapters of build-up, we have all the tools to tackle this challenge head-on.

10.2 SKew paRametRisation

Morphisms 𝑓 : 𝑋 → 𝑌 ∈ Fam are families of functions indexed by a context, expressing trans-
formations of 𝑋 -terms in Γ to 𝑌 -terms in Γ. Being families of functions indexed by contexts
(and sorts, in Fam𝑆), they represent context- and sort-preserving transformations of terms. If
we wish to alter the underlying context of the term, we need a rule to tell us how variables in
the input term transform in the new context. Skew-parametrised maps therefore allow for an
additional (sorted) family parameter either tensored with the argument, or parametrising the
output. They generalise substitution, renaming, and other generic traversal operations that
involve the alteration of the term context.

For a sorted parameter family Y, a Y-parametrised map from𝑋 to 𝑍 is a map 𝑓 : 𝑋 	Y→ 𝑍

or 𝑔 : 𝑋 → JY, 𝑍⦊ which, when unwrapped, correspond to the family of functions∏
Γ,Δ∈𝑆∗

𝑋 (Γ) → YΓ Δ → 𝑍 (Δ)

Varying the parameter family results in different operations on terms: 𝑋 = 𝑍 ∈ Fam and P = I

becomes nothing more than an I-module action, i.e. a renaming operation; for a sorted family
M, an M-parametrised map M M M is a substitution operation. Indeed, our discussion of
initial-algebra semantics in the next chapter will be as generic over parameters as possible.

10.2.1 Multilinear maps

A key point to note is that parametrised maps allow us to recover the renaming-invariance
discussed in Section 10.1.3 by shifting axioms from the structure of families to properties of
parametrised maps. Given 𝑓 : 𝑋 	 Y→ 𝑍 with 𝑋 a ^-algebra, even if (Γ, 𝑡, 𝜎 ◦ 𝜌) is not equal
to (Δ, 𝑥 (𝑡, 𝜌), 𝜎) componentwise, both tuples may give the same term after application of 𝑓 :

(Γ, 𝑡, 𝜎 ◦ 𝜌) ∼ (Δ, 𝑥 (𝑡, 𝜌), 𝜎) =⇒ 𝑓 (Γ, 𝑡, 𝜎 ◦ 𝜌) = 𝑓 (Δ, 𝑥 (𝑡, 𝜌), 𝜎) ∈ 𝑍 (Δ)

Similarly, even if for ℎ ∈ JY, 𝑍K(Γ) with Y, 𝑍 □-coalgebras we do not have the internal nat-
urality 𝑧 (ℎΔ 𝜎) 𝜌 = ℎΘ(𝑣 ↦→ 𝑦 (𝜎 𝑣) 𝜌), the equality may be satisfied if ℎ is the value of a
parametrised map 𝑔 : 𝑋 → JY, 𝑍K: for all 𝑡 ∈ 𝑋 (Γ), 𝑧 (𝑔 𝑡 𝜎) 𝜌 = 𝑔 𝑡 (𝑣 ↦→ 𝑦 (𝜎 𝑣) 𝜌). This
is precisely what is axiomatised in the notion of a multilinear map, discussed extensively in
Section 5.2.3.

188 discRete famil ies

Definition 10.2.1 For modules 𝑋,𝑍 and sorted modules Y, a parametrised map 𝑓 : 𝑋 Y 𝑍

is multilinear if for all 𝜌 : Γ → Δ, 𝜎 : YΓ Δ, 𝜚 : Δ→ Θ, and 𝜍 : YΔ Θ the following hold:

𝑓 {Y〈𝜚 〉 ◦ 𝜎} = 𝑍 〈𝜚 〉 ◦ 𝑓 {𝜎} 𝑓 {𝜍 ◦ 𝜌} = 𝑓 {𝜍} ◦ 𝑋 〈𝜌〉

For pointed modules X, Y,Z ∈ PMod, the map 𝑔 : X Y Z is pointed multilinear if it is
multilinear, and furthermore preserves the points:

𝑔{𝜂Y} ◦ 𝜂X = 𝜂Z ⌟

From Lemma 5.2.1, we know that several maps of interest are pointed multilinear: the ap-
plication I Y Y (implemented either as the left unitor 𝜆

Y
: I ⊕ Y → Y or the applicator

j
Y
: I→ JY, YK), the module action X I X for a pointed module X, and the multiplication

M M M for an invariant monoid M. These three will be the most important examples of
pointed multilinear maps in the initiality proof. In general, however, we have the following
result, relating parametrised maps in presheaves and multilinear maps in families:

Proposition 10.2.1 For presheaves 𝑃, 𝑅 ∈ PSh and sorted presheaves Q ∈ PSh𝑆 , every morphism
𝑓 : ★ 𝑃 	 ★Q → ★𝑅 ∈ Fam induces a unique natural transformation 𝑓 ♯ : 𝑃 � Q → 𝑄 ∈ PSh if
and only if 𝑓 is a multilinear map. For pointed presheaves P,Q,R ∈ V/PSh𝑆 , 𝑔 : ★P⊕★Q→ ★R

induces a unique natural transformation 𝑔♯ : P ⊗ Q→ R if and only if 𝑔 is pointed multilinear.

★𝑃 	 ★Q ★(𝑃 � Q)

★𝑅

m★
𝑃,Q

𝑓
★𝑓 ♯

★P ⊕ ★Q ★(P ⊗ Q)

★R

m★
P,Q

𝑔 ★𝑔♯

PRoof Take a parametrised map 𝑓 : ★𝑃 	★Q→ ★𝑅 and assume it is pointed multilinear. We
define the natural transformation 𝑓 ♯ : 𝑃 � Q→ 𝑅 to have the same components as 𝑓 :

𝑓 ♯Δ (Γ, 𝑡 ∈ 𝑃 (Γ), 𝜎 : QΓ Δ) ≜ 𝑓 (Γ, 𝑡, 𝜎)

This is uniquely determined by 𝑓 . The naturality condition uses the functorial action of the
presheaf tensor, which is delegated to that ofQ: for 𝜚 : Δ→ Θ, the naturality square commutes
just when 𝑓 ♯Θ(Γ, 𝑡,Q(𝜚)◦𝜎) = 𝑅(𝜚) (𝑓

♯
Δ (Γ, 𝑡, 𝜎)) which, using the canonical module structure on

★𝑃 , precisely coincides with one of themultilinearity axioms for 𝑓 : 𝑓 {(★Q)〈𝜚 〉◦𝜎} = (★𝑅)〈𝜚 〉◦
𝑓 {𝜎}. Furthermore, since 𝑓 ♯ is a natural transformation out of a coend, we need to ensure that
it preserves the equivalence relation: given related tuples (Γ, 𝑡, 𝜍 ◦ 𝜌) ∼ (Δ, 𝑃 (𝜌)(𝑡), 𝜎), the
outputs 𝑓Θ(Γ, 𝑡, 𝜍◦𝜌) and 𝑓Θ(Δ, 𝑃 (𝜌) (𝑡), 𝜎)must be equal. This, however, is the second linearity
property of 𝑓 : 𝑓 {𝜍 ◦ 𝜌} = 𝑓 {𝜍} ◦ (★𝑃)〈𝜌〉. For a pointed multilinear map 𝑔 : ★P ⊕ ★Q→ ★R,
the induced natural transformation of pointed presheaves 𝑔♯ : P ⊗ Q → R also preserves the
points: for 𝑣 ∈ V𝛼Γ, 𝑔♯Δ(Γ, 𝜂P 𝑣, 𝜂Q) = 𝑔Δ(Γ, 𝜂★P 𝑣, 𝜂★Q) = 𝜂★R 𝑣 , with the last equality being the
point-preserving axiom of the pointed multilinear map 𝑔.

Conversely, take a natural transformation 𝜑 : P ⊗ Q → R and take the composite 𝑔 ≜
★𝜑 ◦m★

P,Q : ★P⊕★Q→ ★R, given by 𝑔Δ(Γ, 𝑡, 𝜎) ≜ 𝜑Δ(Γ, 𝑡, 𝜎). As seen above, the pointed mul-
tilinearity axioms correspond exactly to the naturality, dinaturality, and point-preservation of
𝜑 , which are then inherited by 𝑔. □

sKew paRametRisation 189

Corollary 10.2.1 For natural transformations 𝑝 : 𝑃 ′ → 𝑃 , 𝑞 : Q′ → Q, and 𝑟 : 𝑅 → 𝑅′, the
multilinear extension satisfies the naturality condition

(★𝑟 ◦ 𝑔 ◦ (★𝑝 ⊕ ★𝑞))♯ = 𝑟 ◦ 𝑔♯ ◦ (𝑝 ⊗ 𝑞)

for all multilinear maps 𝑔 : ★ 𝑃 ⊕ ★Q→ ★𝑅.

PRoof The extension of the composite decomposes into the following:

★𝑃 ′ 	 ★Q′ ★(𝑃 ′ � Q′)

★𝑃 	 ★Q ★(𝑃 � Q)

★𝑅 ★𝑅′

m★
𝑃 ′,Q′

★𝑝	★𝑞
★(𝑝�𝑞)

★
(
★𝑟◦𝑓 ◦(★𝑝	★𝑞)

)♯m★
𝑃,Q

𝑓
★𝑓 ♯

★𝑟

Thus, the left composite factors through both ★(★𝑟 ◦ 𝑔 ◦ (★𝑝 ⊕ ★𝑞))♯ and ★(𝑟 ◦ 𝑔♯ ◦ (𝑝 ⊗ 𝑞)),
making the unique extension (★𝑟 ◦ 𝑔 ◦ (★𝑝 ⊕ ★𝑞))♯ equal to 𝑟 ◦ 𝑔♯ ◦ (𝑝 ⊗ 𝑞), as required. □

The uniqueness part of the theorem gives us a proof technique for equating morphisms in PSh
by calculating in Fam𝑆 : 𝑔 = ℎ : 𝑃 � Q → 𝑅 in PSh if we have an equality of multilinear maps
𝑒 = 𝑓 : ★𝑃 	 ★Q→ ★𝑅 in Fam𝑆 such that 𝑒 = ★𝑔 ◦m★

𝑃,Q and 𝑓 = ★ℎ ◦m★
𝑃,Q.

We have an analogous relationship between natural transformation 𝑃 → [Q, 𝑅〉 and
multilinear maps ★𝑃 → J★Q, ★𝑅⦊. Writing MLin(𝑋 ;Y;𝑍) for the set of multilinear maps
𝑓 : 𝑋 Y 𝑍 , and PMLin(X;Y;Z) for the set of pointed multilinear maps 𝑔 : X Y Z, a
classification theorem now follows.
Theorem 10.2.1

For all presheaves 𝑃, 𝑅 ∈ PSh,Q ∈ PSh𝑆 , we have the natural isomorphisms:

PSh(𝑃 � Q, 𝑅) � MLin(★𝑃 ; ★Q ; ★𝑅) � PSh(𝑃, [Q, 𝑅〉)

For pointed presheaves P,Q,R ∈ V/PSh𝑆 , we have the isomorphisms:

(V/PSh𝑆)(P ⊗ Q,R) � PMLin(★P ; ★Q ; ★R) � (V/PSh𝑆)(P, [Q,R])

10.2.2 Synthetic monoidal structure

As we have alluded to several times, the primary challenge of adapting the presheaf model to
the family setting is that the substitutionmonoidal structure of presheaves cannot be faithfully
represented in families, or the category ofmodules. In particular, while Fam𝑆 is skew-monoidal
closed, the structure does not lift to modules: given modules 𝑋, Y, the object 𝑋 	 Y cannot be
given a module structure in such a way that the action lifts to 	̂ : Mod × Mod𝑆 → Mod.
Following the functorial action of 𝑃 � Q in PSh, one guess is to delegate the renaming to Y:

(𝑋 	 Y)〈𝜌〉
(
Γ, 𝑡 ∈ 𝑋 (Γ), 𝜎 : YΓ Δ

)
≜ (Γ, 𝑡, (Y〈𝜌〉 ◦ 𝜎) : YΓ Θ)

190 discRete famil ies

This gives a functor Fam × Mod𝑆 → Mod which in turn induces a functor Mod × Mod𝑆 →
Mod which simply forgets the module structure of the first argument and proceeds as above.
This, however, does not make Mod a Mod𝑆-modular category, and Mod𝑆 a skew-monoidal
category, for attempting to define the relevant structural transformations will be unsuccessful.
For example, take the unitor 𝜌𝑋 : 𝑋 → 𝑋 	 I over a module 𝑋 , with the usual definition
mapping 𝑡 ∈ 𝑋 (Γ) to (Γ, 𝑡, id) ∈ 𝑋 	 I; to be a unitor in Mod, it must itself be a module
morphism, satisfying, for all 𝜌 : Γ → Δ,

𝑋 (Γ) (𝑋 	 I)(Γ)

𝑋 (Δ) (𝑋 	 I)(Δ)

(𝜌𝑋)Γ

𝑋 〈𝜌〉 (𝑋	I)〈𝜌〉

(𝜌𝑋)Δ

This, however, reduces to the equality of

(Δ, 𝑋 〈𝜌〉𝑡, idΔ) and (Γ, 𝑡, 𝜌)

which, without quotienting at our disposal, cannot be established. Similarly, given pointed
modules X, Y ∈ I/Mod, the point for the tensor X ⊕ Y that maps 𝑣 ∈ I𝛼Γ to (Γ, 𝜂X 𝑣, 𝜂Y) is not
a module homomorphism, as the condition is (Δ, 𝜂X(𝜌 𝑣), 𝜂Y) = (Γ, 𝜂X 𝑣, Y〈𝜌〉 ◦ 𝜂Y).

These discrepancies get in theway of translating between presheaves andmodules as seam-
lessly as we would like: while every presheaf is equivalent to a module, Proposition 10.1.1
states that the underlying family of the presheaf tensor is not merely the family tensor of
underlying families, so the presheaf tensor product cannot be decomposed to a family tensor
product with a module structure. The family tensor – being an unquotiented dependent sum –
will always be weaker than the presheaf tensor product, and therefore does not carry a functo-
rial module structure. As a result, any part of the presheaf model that depends on presheaves’
(strong) monoidal structure will not have a direct analogue in the familial model – pointed
strength being the most important example.

This is precisely the motivating situation for our development of synthetic monoidal cate-
gories in Chapter 6, andwe happily reap the rewards now. While I/Mod𝑆 is not skew-monoidal,
it is synthetic monoidal over Fam𝑆 , with forgetful functor embedding X = (X, 𝑥, 𝜂) ≜ X, unit
presheaf I ≜ (I, 𝜆

I
: I I I, id : I → I) for which I = I, and the profunctor of multi-

plicative maps ℳ[X,Y;Z] consisting of pointed multilinear maps X Y Z. The category
of unsorted modules Mod (with embedding Mod → Fam) is then an synthetic I/Mod𝑆 |Fam𝑆

-
modular category, with set of synthetic actions 𝒮[𝑋,Y;𝑍] consisting of parametrised maps
𝑋 Y 𝑍 . We may also take V/PSh𝑆 to be a representative monoidal category over PSh𝑆 and
PSh a V/PSh𝑆-modular category, with the expected forgetful functor embeddings.

Relating these categories is easy, thanks to Theorem 10.2.1. The forgetful functor
★ : PSh𝑆 → Fam𝑆 is monoidal, so the pointed comparison functor 𝑲 : V/PSh𝑆 → I/Mod𝑆
from the monoidal category of pointed presheaves to the synthetic monoidal category of
pointed modules is synthetic monoidal (Proposition 6.1.1): it maps natural transformations
V → R to point-preserving module homomorphisms ★V = I → ★R, and natural transforma-
tions 𝜑 : P ⊗ Q → R to pointed multilinear maps ★𝜑 ◦ m★

P,Q : ★P ⊕ ★Q → ★R. Conversely,
the inverse functor 𝐿 : Mod𝑆 → PSh𝑆 from modules to presheaves maps pointed multilinear

sKew paRametRisation 191

maps 𝑓 : X ⊕ Y → Z to natural transformations 𝑓 ♯ : 𝑳X ⊗ 𝑳Y → 𝑳Z. Thus, the equivalence
V/PSh𝑆 ' I/Mod𝑆 is a synthetic monoidal equivalence, as is PSh𝑆 � Mod𝑆 and PSh � Mod.

10.2.3 Strength and algebraic monoids

Let us now return to the definition of algebraic monoids, which was deferred until we have
a clear characterisation of pointed strength for endofunctors. A functor 𝐹 : Fam → Fam
may well be strong over Fam or Fam𝑆 , but in practice, we will encounter functors that ma-
nipulate the variable context and can only be equipped with a strength over pointed mod-
ules. While I/Mod𝑆 is not skew-monoidal, Fam is a synthetic I/Mod𝑆 |Fam𝑆

-modular category,
with the action of I/Mod𝑆 onto Fam simply given by the combination of the forgetful functor
I/Mod𝑆 → Fam𝑆 and the action 	 : Fam×Fam𝑆 → Fam. An endofunctor over such a modular
category consists of a functor 𝐹 : Fam→ Fam and a strength transformation

s𝐹 [−] : Fam(𝑋 	 Y, 𝑍) → Fam(𝐹𝑋 	 Y; 𝐹𝑍)

satisfying unit and associativity axioms, the latter parametrised by a pointed multilinear map
(see Diagram (𝑠𝛼�𝐿)). As the artificial module structure is representable, we equivalently
assume a strength

s𝐹𝑊 ,X : 𝐹𝑊 	 X→ 𝐹 (𝑊 	 X) : Fam × I/Mod𝑆 → Fam

satisfying parametric unit and associativity laws: for every pointed multilinear map
𝑔 : X Y Z, we have

𝐹𝑊

𝐹𝑊 	 I 𝐹 (𝑊 	 I)

𝜌𝐹𝑊 𝐹𝜌𝑊

s𝑊,I

𝐹 (𝜌 [𝜂]) (𝑡) = 𝑠 (𝑡, 𝜂)

𝐹 (𝑊 	 X) 	 Y

(𝐹𝑊 	 X) 	 Y 𝐹 ((𝑊 	 X) 	 Y)

𝐹𝑊 	 Z 𝐹 (𝑊 	 Z)

s𝑊,X	id s𝑊 	X,Y

𝛼 [g]𝐹𝑊 𝐹𝛼 [g]𝑊

s𝑊,Z

𝐹 (𝛼 [𝑔]) (𝑠 (𝑠 (𝑡, 𝜎), 𝜍)) = 𝑠 (𝑡, 𝑔[𝜍] ◦ 𝜎)

where 𝛼 [𝑔] is the composite (𝑊 	 X) 	 Y
𝛼𝑊,X,Y

𝑊 	 (X ⊕ Y) 𝑊 	𝑔
𝑊 	 Z. In the closed

setting, the strength is the transformation satisfying the laws below:

s𝐹
Y,𝑍 : 𝐹JY, 𝑍⦊→ JY, 𝐹𝑍⦊ : (I/Mod𝑆)op × Fam→ Fam

𝐹JY, 𝑍⦊ JY, 𝐹𝑍⦊
𝐹𝑍

s𝑊,X

𝐹 i[𝜂]𝑍 𝐹 i[𝜂]𝑍

𝐹 (𝑖 [𝜂]) (𝑡) = 𝑠 𝑡 𝜂

𝐹JY, 𝑍⦊ JY, 𝐹𝑍⦊
𝐹JW, JX, 𝑍⦊⦊ JW, JX, 𝐹𝑍⦊⦊

JW, 𝐹JX, 𝑍⦊⦊

sY,𝑍

𝐹𝐿[𝑔]𝑍 𝐿[𝑔]𝐹𝑍

sW,JX, 𝑍⦊ JW, sX,𝑍⦊
𝐹 (𝐿[𝑔]) (𝑠 (𝑠 𝑡 𝜎) 𝜍) = 𝑠 𝑡 (𝑔[𝜍] ◦ 𝜎)

192 discRete famil ies

As will be made explicit in Section 12.1.3, this is indeed the appropriate axiomatisation of
pointed strength in that it generalises the right interaction axioms for substitution rule lifting
(see e.g. Section 2.1.3) without relying on quotienting or other hard-to-formalise concepts.
The approach via synthetic monoidal categories put this generalisation on formal foundations,
demonstrating that the presence of a pointed multilinear map in the associativity axiom is
motivated by the lack of the required monoidal structure on pointed modules.

With the appropriately general notion of strength at hand, we can define algebraicmonoids
– the models of second-order abstract syntax.

Definition 10.2.2 Given an endofunctor Σ : Fam𝑆 → Fam𝑆 of I/Mod𝑆-modular categories, an
Σ-monoid is a substitution monoid (M, 𝜂, 𝜇) with an algebra structure 𝑎 : ΣM→ M such that
either of the following equivalent diagrams commute:

ΣM ⊕M Σ(M ⊕M) ΣM

M ⊕M M

sM,M Σ𝜇

𝑎⊕M 𝑎

𝜇

𝜇 (𝑎 𝑡, 𝜎) = 𝑎 (Σ 𝜇 (𝑠 (𝑡, 𝜎)))

ΣM ΣJM,MK JM, ΣMK
M JM,MK

Σ𝜇 sM,M

𝑎 JM,𝑎K
𝜇

𝜇 (𝑎 𝑡) 𝜎 = 𝑎 (𝑠 (Σ𝜇 𝑡) 𝜎) ⌟

Back in Theorem 7.2.1 we proved an equivalence theorem between algebraic monoids in
monoidal and warped categories. Most of the preconditions of the theorem – namely, the
warping and the synthetic monoidal relationships – are already satisfied, so a straightforward
instantiation establishes the fundamental correctness theorem of the familial model.
Theorem 10.2.2

Given a synthetic I/Mod𝑆-strong endofunctor Σ : Fam𝑆 → Fam𝑆 and a V/PSh𝑆-strong endo-
functor Ω : PSh𝑆 → PSh𝑆 such that both functors are unital, ★Ω � Σ★ and for all P ∈ PSh𝑆 ,
Q ∈ V/PSh𝑆 :

Σ(★P) ⊕ (★Q) Σ(★P ⊕ ★Q) Σ★(P ⊗ Q)

★(ΩP) ⊕ (★Q) ★(ΩP ⊗ Q) ★Ω(P ⊗ Q)

sΣ★P,★Q Σm★
P,Q

m★
ΩP,Q ★sΩP,Q

the categories of Σ-monoids in families and Ω-monoids in presheaves are equivalent.

PRoof The assumptions on the endofunctors exhibit Ω as the strong lifting of Σ along
★ in the category of synthetic modular categories. More precisely, the diagram can be
reinterpreted by considering the objects to be actions of pointed modules on sorted fam-
ilies, where the comparison functor 𝑲 : V/PSh𝑆 → I/Mod𝑆 is synthetic monoidal and
★ : PSh𝑆 → Fam𝑆 is 𝑲 -relative strong, with operator s★,𝑲P,Q : ★P ⊕ 𝑲Q → ★(P ⊗ Q). Thus,
(𝑲 ,★) : (V/PSh𝑆, PSh𝑆) → (I/Mod𝑆, Fam𝑆) is an elevator from (Id, Σ) : (I/Mod𝑆, Fam𝑆) →
(I/Mod𝑆, Fam𝑆) to (Id,Ω) : (V/PSh𝑆, PSh𝑆) → (V/PSh𝑆, PSh𝑆), instantiating the last precondi-
tion of Theorem 7.2.1. □

Remark. We can characterise Σ-monoids currying-agnostically, like we did with modules and
parametrised maps. The strength operator 𝑠 [−] for a synthetic strong Σ factors through the

convolutional stRuctuRe 193

strength transformation: for a multilinear map 𝑓 : 𝑋 	 Y→ 𝑍 , the composite

𝑠 [𝑓] : Σ𝑋 	 Y
s𝑋,Y

Σ(𝑋 	 Y) Σ𝑓
Σ𝑍

is itself a multilinear map by Proposition 6.2.3, and similarly with closed strengths. Thus, the
strength operator can in fact be seen as a parametrised functorial action from 𝑓 : 𝑋 Y 𝑍 to
𝑠 [𝑓] : Σ𝑋 Y Σ𝑍 . This is a valuable perspective, as the strength is generally needed when
wewould like to evaluate amultilinearmap, but some sort of algebraic structure is “in theway”.
Case in point is the compatibility of algebraic and substitution structure: given a constructor
(i.e. output of an Σ-algebra structure map) and a substitution rule, the pointed strength will
allow us to perform syntactic substitution by lifting the rule over and inside the constructors.
With the parametrised map notation, algebraic linearity for a multilinear map looks strikingly
simple: a multilinear map 𝑓 : 𝑋 Y 𝑍 is Σ-linear and a monoid M is an Σ-monoid if:

Σ𝑋 Σ𝑍

𝑋 𝑍

Y

𝑠 [𝑔]

𝑥 𝑧

Y
𝑔

𝑔{𝜎} ◦ 𝑥 = 𝑧 ◦ 𝑠 [𝑔]{𝜎}

ΣM ΣM

M M

M

𝑠 [𝜇]

𝑎 𝑎

M
𝜇

𝜇{𝜎} ◦ 𝑎 = 𝑎 ◦ 𝑠 [𝜇]{𝜎}
⌟

10.3 Convolutional stRuctuRe

Unlike presheaves, the category of families has admits a Day convolutional structure that is
different from its cartesian structure. The resulting operations play a crucial role both in the
encoding of variable binding as well as second-order features.

10.3.1 Context extension

As families are formally presheaves over the discrete monoidal category of contexts, they pos-
sess the expected bicartesian structure of presheaf categories, with products and coproducts
taken pointwise. Since the base category is discrete, the presheaf exponential also simplifies
to the pointwise set exponential.

(𝑋 × 𝑌)(Γ) ≜ 𝑋 (Γ) × 𝑌 (Γ) (𝑋 + 𝑌)(Γ) ≜ 𝑋 (Γ) + 𝑌 (Γ) (𝑋 ⇒ 𝑌)(Γ) ≜ 𝑋 (Γ) ⇒ 𝑌 (Γ)

The last definition showcases another limitation of the category of families: while it is simple,
it is also not as “interesting” as presheaves, exponentials of which are far richer than simple
pointwise transformations. In fact, one of the most important identities of the presheaf model
relates exponentiation to context extension, a fundamental building block in the specification
of second-order signatures.

Definition 10.3.1 The context extension endofunctor 𝛿Θ : PSh→ PSh is defined as

𝛿Θ(𝑃) (Γ) ≜ 𝑃 (Θ + Γ) 𝛿Θ(𝜌) ≜ 𝑃 (Θ + 𝜌)

194 discRete famil ies

Variants on sorted presheaves and un/sorted families are defined analogously. ⌟

Proposition 10.3.1 For a presheaf 𝑃 ∈ PSh, we have the following isomorphism:

ょ(Θ) ⊃ 𝑃 � 𝛿Θ𝑃

PRoof We calculate at a context Γ as follows, using the definition of presheaf exponentials
(Definition 8.2.1), and the Yoneda lemma (Eq. (ょ�)):

(ょ(Θ) ⊃ 𝑃) (Γ) ≜ PSh
(ょ(Γ) × ょ(Θ), 𝑃

)
� PSh

(ょ(Θ + Γ), 𝑃) � 𝑃 (Θ + Γ) ≜ 𝛿Θ𝑃 (Γ) □

The implication is that the bicartesian closed structure of presheaves is sufficient for modelling
second-order abstract syntax, but this is not the case for families: neither co/products nor ex-
ponentials modify the variable context so are not suitable for the interpretation of variable-
binding operators. The task, then, is to derive the context extension endofunctor from a dif-
ferent categorical structure on families.

The key is to notice that the discrete category of contexts is monoidal under context con-
catenation, so Fam is equipped with a different monoidal closed structure given by Day con-
volution and the Day internal hom as defined in Section 8.2.2. The abstract definitions simplify
to the following in the discrete presheaf category:

Definition 10.3.2 The Day tensors in Fam are given by

(𝑋 5 𝑌)(Θ) ≜ ∑
Γ+Δ=Θ

𝑋 (Γ) × 𝑌 (Δ) (𝑋 4 𝑌)(Θ) ≜ ∑
Γ+Δ=Θ

𝑋 (Δ) × 𝑌 (Γ)

The Day internal homs in Fam are

(𝑋 ⊸ 𝑌) (Γ) ≜
∏
Δ∈𝑆∗

𝑋 (Δ) → 𝑌 (Γ + Δ) (𝑋 ⊸𝑌)(Γ) ≜
∏
Δ∈𝑆∗

𝑋 (Δ) → 𝑌 (Δ + Γ)
⌟

As per Theorem 8.2.2, both structures make Fam monoidal closed, with unit 𝐸 =

ょ

𝑆∗ [] that
checks if its argument is the empty list. The structures of course also apply to sorted families,
where an analogue of the variable/index presheaf is the following:

Definition 10.3.3 The sorted family of names N ∈ Fam𝑆 is defined as N𝛼 ≜

ょ

𝑆∗ [𝛼]. N𝛼Γ

checks if Γ is equal to the singleton list [𝛼]. ⌟

Note that families are presheaves over the discrete monoidal category of contexts, so the as-
sociators and unitors in 𝑆∗ are strict equalities: (Γ + Δ) + Θ = Γ + (Δ + Θ) and [] + Δ = Δ and
Γ + [] = Γ. Consequently, the functorial action of a family 𝑌 is simply an equality rewriting
operation: for 𝑡 ∈ 𝑋 ((Γ + Δ) + Θ), 𝑋 (𝛼Γ,Δ,Θ)𝑡 = 𝑡 ∈ 𝑋 (Γ + (Δ + Θ)). Though the action itself is
equality on terms, it will often be useful to be explicit about the equality rewriting: thus, for
example, the internal currying map c5,𝑋,𝑌

𝑍 : (𝑋 5 𝑌) ⊸ 𝑍 → (𝑋 ⊸ (𝑌 ⊸ 𝑍)) is defined as

c5,𝑋,𝑌
𝑍 (𝑙 ∈ ((𝑋 5 𝑌) ⊸ 𝑍)(Γ)) (𝑥 ∈ 𝑋 (Δ)) (𝑦 ∈ 𝑌 (Θ)) ≜ 𝑍 (𝛼 −1Γ,Δ,Θ)(𝑙 (𝑥,𝑦))

since 𝑙 (𝑥,𝑦) ∈ 𝑍 (Γ + (Δ + Θ)), but (𝑋 ⊸ (𝑌 ⊸ 𝑍))Δ,Θ = 𝑋 (Δ) → (𝑌 (Θ) → 𝑍 ((Γ + Δ) +
Θ)). In fact, the opposing convolution tensors and homs come with the following currying

convolutional stRuctuRe 195

isomorphisms, the bottom two exhibiting Fam as a powered category (see Section 4.1):

(𝑋 5 𝑌) ⊸ 𝑍 � 𝑋 ⊸ (𝑌 ⊸ 𝑍) (𝑋 4 𝑌) ⊸𝑍 � 𝑋 4 (𝑌 ⊸𝑍)
(𝑋 4 𝑌) ⊸ 𝑍 � 𝑌 ⊸ (𝑋 ⊸ 𝑍) (𝑋 5 𝑌) ⊸𝑍 � 𝑌 4 (𝑋 ⊸𝑍)

If 𝑋 ∈ Fam also has a module structure, equality proofs in 𝑆∗ give rise to renaming rules in
F [𝑆] by the functorial action of I𝛼 , and they are equal to renaming rules constructed via the
cocartesian structure of F [𝑆]. For example, I𝛼 (𝛼𝑆∗Γ,Δ,Θ) : I𝛼 ((Γ + Δ) + Θ) → I𝛼 (Γ + (Δ + Θ)) is
equal to the associator 𝛼 F [𝑆]

Γ,Δ,Θ : (Γ + Δ) + Θ → Γ + (Δ + Θ) in F [𝑆]. An interesting side-effect
of this is that the quotienting condition (Δ, 𝑋 〈𝜌〉 𝑡, 𝜎) (Γ, 𝑡, 𝜎 ◦ 𝜌) does hold in the case that
Γ = Δ ∈ 𝑆∗, which makes both 𝜌 : Γ → Δ and 𝑋 〈𝜌〉 : 𝑋 (Γ) → 𝑋 (Δ) the identity morphisms.
For example, even without application of a multilinear map, we have(

Γ + (Δ + Θ), 𝑋 〈𝛼Γ,Δ,Θ〉𝑡, 𝜎
)
=
(
(Γ + Δ) + Θ, 𝑡, 𝜎 ◦ 𝛼Γ,Δ,Θ

)
for all 𝑡 ∈ 𝑋 ((Γ + Δ) + Θ) and 𝜎 ∈ Y

Γ+(Δ+Θ)
Ξ.

With the definition of the Day homs already incorporating explicit context extension, the
following analogue of Proposition 10.3.1 is not surprising:

Proposition 10.3.2 For a family 𝑋 ∈ Fam, we have the following isomorphism:

ょ(Θ) ⊸𝑋 � 𝛿Θ𝑋

PRoof The Yoneda embedding in the category of families is the equality relation, so ょ(Θ) (Δ)
is inhabited only if Θ = Δ.

(ょΘ ⊸𝑋) (Γ) ≜
∏
Δ∈𝑆∗

ょ(Θ) (Δ) → 𝑋 (Δ + Γ)

�
∏
Δ∈𝑆∗
(Θ = Δ) → 𝑋 (Δ + Γ) � 𝑋 (Θ + Γ) ≜ 𝛿Θ𝑋 (Γ)

□

In fact, we can relate the Day monoidal closed structure of families and cartesian closed struc-
ture of presheaves precisely, serving as a reassurance that the natural translation of the latter
into the familial model requires structure beyond pointwise products and exponentials.

Proposition 10.3.3 The presheaf of variables, the family of names and family of indices are
related by the following:

■N � V ^N � I

PRoof We calculate as follows:

■N𝛼 (Δ) =
∑
Γ∈𝑆∗

F [𝑆] (Γ,Δ) × N𝛼 (Γ) =
∑
Γ∈𝑆∗

F [𝑆] (Γ,Δ) × ([𝛼] = Γ) � F [𝑆] ([𝛼],Δ) � V𝛼 (Δ)

Applying ★ to both sides gives the second isomorphism, as I ≜ ★V. □

196 discRete famil ies

Proposition 10.3.4 We have the following isomorphisms and transformations relating cartesian
closed presheaves with Day monoidal closed families:

★𝑃 5 ★𝑄 → ★(𝑃 ×𝑄) ■(𝑋 5 𝑌) � ■𝑋 × ■𝑌

■(𝑋 ⊸ 𝑌) → (■𝑋) ⊃(■𝑌) ★(■𝑋 ⊃𝑄) � 𝑋 ⊸ (★𝑄)
★(𝑃 ⊃𝑄) → ★𝑃 ⇒ ★𝑄 ■(★𝑃 ⇒ 𝑌) � 𝑃 ⊃(■𝑌)

PRoof The isomorphism ■(𝑋 5 𝑌) � ■𝑋 × ■𝑌 is an instance of the universal property of
Day convolution fromTheorem 8.2.3: taking the monoidal category to be cartesian presheaves,
we have that the free presheaf functor ■ : Fam→ PSh preserves tensors. Instantiating Propo-
sition 3.2.1 with 𝐽2 = ■ and the “lifting” of × to 5 along ■, we also get a coelevator

★𝑃 5 ★𝑄 → ★(𝑃 ×𝑄)

The isomorphism ■𝑋 × ■𝑌 → ■(𝑋 5 𝑌) above is used for ■(𝑋 ⊸ 𝑌) → (■𝑋) ⊃(■𝑌):

■(𝑋 ⊸ 𝑌) × ■𝑋 → ■((𝑋 ⊸ 𝑌) × 𝑋) → ■𝑌

and the isomorphism itself Yoneda transposes to ★(■𝑋 ⊃𝑄) � 𝑋 ⊸ (★𝑄). Similarly, the
isomorphism ★(𝑃 ×𝑄) � ★𝑃 ×★𝑄 gives us the lax strength ★(𝑃 ⊃𝑄) → ★𝑃 ⇒ ★𝑄 , and the
Yoneda transpose ■(★𝑃 ⇒ 𝑌) � 𝑃 ⊃(■𝑌). □

Remark. Since the cartesian product is commutative, the above isomorphisms also apply to
the reversed Day tensor and internal hom. ⌟

Proposition 10.3.5 ^ and □ are module functors with respect to the Day convolution and hom:

^𝑋 5 𝑌 → ^(𝑋 5 𝑌) ^(𝑋 ⊸ 𝑌) → (𝑋 ⊸ ^𝑌) (𝑋 ⊸ □𝑌) → □(𝑋 ⊸ 𝑌)

PRoof The strength ^𝑋 5 𝑌 → ^(𝑋 5 𝑌), expanded ★ ■𝑋 5 𝑌 → ★ ■(𝑋 5 𝑌), is the
transpose of the following, using the strong monoidality of ■:

■(★ ■𝑋 5 𝑌) � ■★ ■𝑋 × ■𝑌
𝜀𝑋×id

■𝑋 × ■𝑌 � ■(𝑋 5 𝑌)
The transpose of the strength unit law is:

■^𝑋 ■𝑋

■^𝑋 × > ■𝑋 × >

■(★ ■𝑋 5 𝐸) ■^𝑋 × ■𝐸 ■𝑋 × ■𝐸 ■(𝑋 5 𝐸)

𝜀 ■𝑋

𝜌×■^𝑋

■𝜌 5̂
𝑋

𝜌×■𝑋

■𝜌5
𝑋

𝜀 ■𝑋
×id

m
★ ■𝑋,𝐸

id×𝑢

𝜀 ■𝑋
×id

id×𝑢

m𝑋,𝐸

𝑚𝑢 𝑚𝑢

𝜌

convolutional stRuctuRe 197

The transpose of the associativity law is as follows:

■((^𝑋 5 𝑌) 5 𝑍) ■(^(𝑋 5 𝑌) 5 𝑍)

■(^𝑋 5 𝑌) × ■𝑍 ■^(𝑋 5 𝑌) × ■𝑍

■(^𝑋 5 (𝑌 5 𝑍)) (■^𝑋 × ■𝑌) × ■𝑍 (■𝑋 × ■𝑌) × ■𝑍 ■(𝑋 5 𝑌) × ■𝑍

■^𝑋 × (■𝑌 × ■𝑍) ■𝑋 × (■𝑌 × ■𝑍) ■((𝑋 5 𝑌) 5 𝑍)

■^𝑋 × ■(𝑌 5 𝑍) ■𝑋 × ■(𝑌 5 𝑍) ■(𝑋 5 (𝑌 5 𝑍))

■(s^𝑋,𝑌5𝑍)

m^𝑋5𝑌,𝑍
■𝛼 5̂

𝑋,𝑌,𝑍

m^(𝑋5𝑌),𝑍
■s^𝑋,𝑌×id

m^𝑋,𝑌×id 𝜀 ■(𝑋5𝑌)×id
(𝜀 ■𝑋
×id)×id

𝛼×■^𝑋, ■𝑌, ■𝑍 𝛼×■𝑋, ■𝑌, ■𝑍

m𝑋,𝑌×id
m𝑋5𝑌,𝑍

m^𝑋,𝑌5𝑍
𝜀 ■𝑋
×id

■𝛼5
𝑋,𝑌,𝑍

id×m𝑌,𝑍

𝜀 ■𝑋
×id

id×m𝑌,𝑍

m𝑋,𝑌5𝑍

𝑚𝑚

𝑚𝑚

𝑠^≜

𝛼 1

𝑚 1

The monoidal strength ^𝑋 5 𝑌 → ^(𝑋 5 𝑌) induces ^(𝑋 ⊸ 𝑌) → (𝑋 ⊸ ^𝑌) by the usual
calculation given in Theorem 5.1.1. Finally, (𝑋 ⊸ □𝑌) → □(𝑋 ⊸ 𝑌) is the Yoneda transpose
of ^𝑋 5 𝑌 → ^(𝑋 5 𝑌). □

Explicitly, the strength transformations behave as follows:

s^𝑋,𝑌
(
Δ + Θ, (𝑠 ∈ 𝑋 (Γ), 𝜌 : Γ → Δ), 𝑡 ∈ 𝑌 (Θ)

)
≜

(
Δ + Θ, (𝑠, 𝑡), 𝜌 + Θ : (Γ + Θ) → (Δ + Θ)

)
s^𝑋,𝑌

(
𝑙 ∈ (𝑋 ⊸ 𝑌) (Γ), 𝜌 : Γ → Δ

)
≜ Θ, 𝑥 ∈ 𝑋 (Θ) ↦→ (𝑙 𝑥 ∈ 𝑌 (Γ + Θ), 𝜌 + Θ : (Γ + Θ) → (Δ + Θ))

s□𝑋,𝑌 (𝑙 : (𝑋 ⊸ □𝑌) (Γ)) ≜ 𝜌 : Γ → Δ,Θ, 𝑥 ∈ 𝑋 (Θ) ↦→ 𝑙 𝑥 (𝜌 + Θ : (Γ + Θ) → (Δ + Θ))

Combining the isomorphisms with families of names, indices, and presheaf of variables, we
have ways of expressing context extension of presheaves and families in a multitude of ways.

Corollary 10.3.1 We have the following derived isomorphisms:

★(V𝜏 ⊃ 𝑃) � N𝜏 ⊸ ★𝑃 V𝜏 ⊃ ■𝑋 � ■(I𝜏 ⇒ 𝑋) □(I𝜏 ⇒ 𝑋) � N𝜏 ⊸ □𝑋

PRoof The first two follow from isomorphisms in the previous two propositions:

★(V𝜏 ⊃ 𝑃) � ★(■N𝜏 ⊃ 𝑃) � N𝜏 ⊸ ★𝑃

V𝜏 ⊃ ■𝑋 � ■(★V𝜏 ⇒ 𝑋) � ■(I𝜏 ⇒ 𝑋)

The third is a combination of the two:

□(I𝜏 ⇒ 𝑋) = ★■(I𝜏 ⇒ 𝑋) � ★(V𝜏 ⊃ ■𝑋) � N𝜏 ⊸ ★■𝑋 = N𝜏 ⊸ □𝑋 □

As presheaves and modules are equivalent, presheaf exponentials out of free presheaves
■𝑋 ⊃ 𝑃 are equivalently described by a ^-algebra structure

^(𝑋 ⊸ ★𝑃)
s^𝑋,★𝑃 (𝑋 ⊸ ^★𝑃) 𝑋⊸★𝜀𝑃 𝑋 ⊸ ★𝑃

Thus, 𝛿𝜏 (𝑃) � ■N𝜏 ⊃ 𝑃 is equivalently described by a ^-algebra structure on 𝛿𝜏 (★𝑃), induced

198 discRete famil ies

by the distributive law ^(𝑋 ⊸ (−)) → 𝑋 ⊸ ^(−).

10.3.2 Pointed strength

By partial sorting the Day convolution operation, we obtain a right action Fam×Fam𝑆 → Fam
which is both left and right closed with the following operations:

Definition 10.3.4 The left and right Day homs are given by

(−) −• (=) : Famop × Fam𝑆 → Fam𝑆 〈−,=〉 : Famop
𝑆 × Fam𝑆 → Fam

(𝑋 −• Y)𝜏 ≜ 𝑋 ⊸ Y𝜏 〈X, Y〉 ≜
∏
𝜏∈𝑆

X𝜏 ⊸ Y𝜏

⌟

The rest of Section 8.2.2 applies with these definitions, as well as the clone constructions of
Chapter 4 which we will use later.

Notation. Day homswill often bewritten using superscript notation, with sorting kept implicit:

𝑊 ⊸ 𝑋 ∼ 𝑋𝑊 𝑊 −• X ∼ X𝑊

Wemaintain 〈X, Y〉 for the right Day hom, and let YX ∈ Fam𝑆 refer to the fully sorted hom. ⌟

Definition 10.3.5 The diagonal transformation is a family of maps 𝜅𝑊𝑋 : 𝑋 → 𝑋𝑊 for𝑊 ∈ Fam
and 𝑋 ∈ Mod defined as:

𝜅𝑊𝑋 𝑡 𝑤 ≜ 𝑋 〈𝜄Γ,Δ2 〉𝑡 ⌟

Proposition 10.3.6 For all𝑊 ∈ Fam, the Day hom (−)𝑊 : Fam→ Fam lifts to modules, and 𝜅
is a natural transformation Id =⇒ (−)𝑊 : Mod→ Mod.

PRoof The lifting of (−)𝑋 to ^-algebras is induced by the strength ^(−)𝑋 → (^−)𝑋 of
Proposition 10.3.5. The diagonal transformation 𝜅𝑊𝑋 : 𝑋 → 𝑋𝑊 is a module homomorphism:

^𝑋 𝑋

^(𝑋𝑊) (^𝑋)𝑊 𝑋𝑊

𝑥

^𝜅𝑊𝑌 𝜅𝑊𝑋

s^𝑊,𝑋 𝑥𝑊

commutes by the following calculation, for 𝑡 ∈ 𝑋 (Γ), 𝜌 : Γ → Δ,𝑤 ∈𝑊 (Θ):

𝜅𝑊𝑋 (〈𝜌〉 𝑡)𝑤 = 〈𝜄Δ,Θ2 〉 (〈𝜌〉 𝑡) (𝜅≜)

= 〈𝜄Δ,Θ2 ◦ 𝜌〉 𝑡 (functoriality)

= 〈(𝜌 + Θ) ◦ 𝜄Γ,Θ2 〉 𝑡 (inl naturality)

= 〈𝜌 + Θ〉(〈𝜄Γ,Θ2 〉 𝑡) (functoriality)

= 𝑦 (𝜅𝑊𝑋 𝑡 𝑤, 𝜌 + Θ) (𝜅≜)

= 𝑦 (s^𝑊,𝑋 (𝜅𝑊𝑋 𝑡, 𝜌)𝑤) (s^≜)

= 𝑦𝑊 (s^𝑊,𝑋 (^𝜅𝑊𝑋 (𝑡, 𝜌)))𝑤 □

convolutional stRuctuRe 199

Remark. Note that the seemingly canonical strength-diagonal compatibility condition

^Y

^(Y𝑋) (^Y)𝑋

^𝜅𝑋,Y 𝜅𝑋,^Y

s^𝑋,Y

that, combined with naturality of 𝜅, would establish the homomorphism law above, does not
commute: the proof gets stuck at equating (Γ +Θ, 𝑋 〈𝜄Γ,Θ2 〉 𝑡, 𝜌 +Θ) and (Γ, 𝑡, 𝜄

Δ,Θ

2 ◦ 𝜌). These, of
course, only equal after application of a multilinear map, such as the ^-algebra structure. ⌟

Corollary 10.3.2 For all𝑊 ∈ Fam, the Day hom (−)𝑊 : Fam𝑆 → Fam𝑆 lifts to pointed modules,
and 𝜅 is a natural transformation Id =⇒ (−)𝑊 : I/Mod𝑆 → I/Mod𝑆 .

PRoof The lifting to ^-algebras is as before. Given a pointed module (X, 𝑥, 𝜂), the point for
X𝑊 is the composite:

I
𝜂

X
𝜅𝑊
X

X𝑊

This preserves points by definition, and is a module homomorphism by the following:

^I I

^X X

^X𝑊 (^X)𝑊 X𝑊

𝜆I

^𝜂 𝜂

𝑥

^𝜅𝑊
X

𝜅𝑊
X

s^𝑋,Y 𝑥𝑊

⊗𝑝

𝜅 b ®̂ e

□

Notation. For 𝑔 : 𝑋 → 𝑌𝑊 and 𝑤 ∈ 𝑊 (Θ), we will write the mapping 𝑡 ∈ 𝑋 (Γ) ↦→ 𝑔 𝑡 𝑤 ∈
𝑌 (Γ + Θ) as 𝑔b𝑤c : 𝑋 (Γ) → 𝑌 (Γ + Θ), similarly to how we write the partial application𝑡 ∈
𝑋 (Γ) ↦→ 𝑓 (Γ, 𝑡, 𝜎) (for 𝑓 : 𝑋 	 Y→ 𝑍 and 𝜎 ∈ YΓ Δ) as 𝑓 {𝜎} : 𝑋Γ → 𝑍Δ .
This extends to X𝑊 -valued substitution rules 𝜔 ∈ (X𝑊)Γ

Δ as well: we denote 𝑣 ∈ I𝛼Γ ↦→
𝜔 𝑣 𝑤 ∈ XΓ Δ+Θ as 𝜔 b𝑤c ∈ XΓ Δ+Θ. ⌟

Definition 10.3.6 For a pointed family (X, 𝜂), the left and right widening of a substitution rule
𝜎 ∈ XΔ Ξ by a renaming rule 𝜌 : Γ → Ξ and 𝜚 : Θ→ Ξ are the respective substitution rules

𝜌 ⋉ 𝜎 : XΓ+Δ
Ξ 𝜎 ⋊ 𝜚 : XΔ+Θ

Ξ

𝜌 ⋉ 𝜎 ≜ [𝜂 ◦ 𝜌, 𝜎]Γ,ΔΞ 𝜎 ⋊ 𝜚 ≜ [𝜎, 𝜂 ◦ 𝜚]Δ,ΘΞ

⌟

As widening is defined in terms of copairing, we directly have the following reduction prop-
erties by cocartesian universality:

(𝜌 ⋉ 𝜎) ◦ inl = 𝜂 ◦ 𝜌 (𝜌 ⋉ 𝜎) ◦ inr = 𝜎 inl ⋉ (𝜂 ◦ inr) = 𝜂
(𝜎 ⋊ 𝜚) ◦ inl = 𝜎 (𝜎 ⋊ 𝜚) ◦ inr = 𝜂 ◦ 𝜚 (𝜂 ◦ inl) ⋊ inr = 𝜂

200 discRete famil ies

Nested widenings can be reassociated:

((𝜌 ⋉ 𝜎) ⋊ 𝜚) ◦ 𝛼Γ,Δ,Θ = 𝜌 ⋉ (𝜎 ⋊ 𝜚)

Naturality for a point-preserving map 𝑓 : X→ Y amounts to:

𝑓 ◦ (𝜌 ⋉ 𝜎) = 𝜌 ⋉ (𝑓 ◦ 𝜎) 𝑓 ◦ (𝜎 ⋊ 𝜚) = (𝑓 ◦ 𝜎) ⋊ 𝜚

If X is a pointed module, postcomposition with the module action can be pushed into the
widening, using the fact that 𝜂 is a module homomorphism:

〈𝜑〉 ◦ (𝜌 ⋉ 𝜎) = (𝜑 ◦ 𝜌) ⋉ (〈𝜑〉 ◦ 𝜎) 〈𝜑〉 ◦ (𝜎 ⋊ 𝜚) = (〈𝜑〉 ◦ 𝜎) ⋊ (𝜑 ◦ 𝜚)

The following identity will be used several times in situations that the substitution rule to be
widened is (X𝑊)-valued.

Lemma 10.3.1 For 𝜎 ∈ (X𝑊)Δ
Ξ and renaming rules 𝜌 : Γ → Ξ and 𝜚 : Θ→ Ξ, the application

of a widening 𝜌 ⋉ 𝜎 ∈ (X𝑊)Γ+Δ
Ξ or 𝜎 ⋊ 𝜚 ∈ (X𝑊)Δ+Θ

Ξ to a convolutional parameter 𝑤 ∈ Ω

reduces:

(𝜌 ⋉ 𝜎) b𝑤c = (𝜄Ξ,Ω2 ◦ 𝜌) ⋉ 𝜎 b𝑤c ∈ (X)Γ+Δ
Ξ+Ω

(𝜎 ⋊ 𝜚) b𝑤c = 𝜎 b𝑤c ⋊ (𝜄Ξ,Ω2 ◦ 𝜚) ∈ (X)Δ+Θ
Ξ+Ω

PRoof The identities are established by precomposing them with injections. The first iden-
tity, in the 𝜄Γ,Δ1 case, reduces simply to 𝜎 b𝑤c; while in the 𝜄Γ,Δ2 𝑣 case we have

(𝜌 ⋉ 𝜎) b𝑤c (𝜄Γ,Δ2 𝑣)
= (𝜂X𝑊 (𝜌 𝑣))𝑤 (⋉≜)

= 𝜅X (𝜂X (𝜌 𝑣))𝑤 (𝜂X𝑊 ≜)

= 〈𝜄Ξ,Ω2 〉(𝜂X (𝜌 𝑣)) (𝜅≜)

= 𝜂X (𝜄Ξ,Ω2 (𝜌 𝑣)) (𝜂 naturality)

The second identity follows similarly, and the analogous reasoning works for the reversed Day
hom −• (see later). □

A form of naturality can be stated for parametrised maps as well; though it looks somewhat
innocuous, this is in fact one of the most important identities of our theory.

Lemma 10.3.2 For all pointedmultilinearmaps 𝑓 : X Y Z and all substitution rules𝜎 ∈ XΔ Ξ

and 𝜍 ∈ YΞ Ω:

• if 𝜌 : Γ → Ξ and 𝜚 : Γ → Ω are such that 𝜍 ◦ 𝜌 = 𝜂Y ◦ 𝜚 ∈ YΓ Ω, then

𝑓 {𝜍} ◦ (𝜌 ⋉ 𝜎) = 𝜚 ⋉ (𝑓 {𝜍} ◦ 𝜎) ∈ ZΓ+Δ
Ω

• if 𝜑 : Θ→ Ξ and 𝜙 : Θ→ Ω are such that 𝜍 ◦ 𝜑 = 𝜂Y ◦ 𝜙 ∈ YΘ Ω then

𝑓 {𝜍} ◦ (𝜎 ⋊ 𝜑) = (𝑓 {𝜍} ◦ 𝜎) ⋊ 𝜙 ∈ ZΔ+Θ
Ω

convolutional stRuctuRe 201

PRoof Let 𝑓 , 𝜎, 𝜍 be as above. For 𝜌 : Γ → Ξ, 𝜚 : Γ → Ω, assume 1⃝ 𝜍◦𝜌 = 𝜂Y◦𝜚 . To show the
equality of the two substitution rules ZΓ+Δ

Ω from a concatenated context, by universality of
coproducts it is sufficient to show that they are equal when precomposed with the injections.

𝑓 {𝜍} ◦ (𝜌 ⋉ 𝜎) ◦ 𝜄Γ,Δ2
= 𝑓 {𝜍} ◦ 𝜂X ◦ 𝜌 (widening property)

= 𝑓 {𝜍} ◦ X〈𝜌〉 ◦ 𝜂X (𝜂X naturality)

= 𝑓 {𝜍 ◦ 𝜌} ◦ 𝜂X (𝑓 multilinear)

= 𝑓 {𝜂Y ◦ 𝜚 } ◦ 𝜂X (1⃝)

= 𝑓 {𝜂Y} ◦ X〈𝜚 〉 ◦ 𝜂X (𝑓 multilinear)

= 𝑓 {𝜂Y} ◦ 𝜂X ◦ 𝜚 (𝜂X naturality)

= 𝜂Z ◦ 𝜚 (𝑓 pointed)

= (𝜚 ⋉ (𝑓 {𝜍} ◦ 𝜎)) ◦ 𝜄Γ,Δ2 (widening property)

The other case 𝑓 {𝜍} ◦ (𝜌 ⋉ 𝜎) ◦ 𝜄Γ,Δ1 = (𝜚 ⋉ (𝑓 {𝜍} ◦ 𝜎)) ◦ 𝜄Γ,Δ1 is direct by the widening reduction
properties. The calculation for right widening is analogous. □

As discussed in Section 10.2.2, I/Mod𝑆 is synthetic monoidal over Fam𝑆 . We relate this struc-
ture to the Day hom in the following theorem.
Theorem 10.3.1

For all𝑊 ∈ Fam, the lifted functor (−)𝑊 : I/Mod𝑆 → I/Mod𝑆 is a synthetic monoidal
endofunctor on I/Mod𝑆 .

PRoof See the Appendix on page 336. □

Now, let us consider 	 : Fam × Fam𝑆 → Fam as an action 	 : Fam × I/Mod𝑆 → Fam, which
makes Fam a synthetic I/Mod𝑆-modular category.

Proposition 10.3.7 The diagonal 𝜅𝑊 : Id =⇒ (−)𝑊 is a synthetic monoidal transformation.

PRoof The diagonal preserves the unit operators by definition. We need to show that for all
pointed multilinear maps 𝑔 : X ⊕ Y→ Z, the following square commutes:

X ⊕ Y Z

X𝑊 ⊕ Y𝑊 Z𝑊

𝑓

𝜅𝑊
X
⊕𝜅𝑊

Y
𝜅𝑊
Z

𝑚[𝑓]

For 𝑡 ∈ X𝛼Γ, 𝜎 ∈ YΓ Δ and𝑤 ∈𝑊 (Θ), we calculate as follows:

𝑚[𝑓]{𝜅Y ◦ 𝜎}b𝑤c ◦ 𝜅X

= 𝑓 {(𝜅Y ◦ 𝜎) b𝑤c ⋊ inr} ◦ 𝜅Xb𝑤c (𝑚[𝑓]≜)

= 𝑓 {(Y〈inl〉 ◦ 𝜎) ⋊ inr} ◦ X〈inl〉 (𝜅≜)

= 𝑓 {((Y〈inl〉 ◦ 𝜎) ⋊ inr) ◦ inl} (𝑓 multilinear)

= 𝑓 {Y〈inl〉 ◦ 𝜎} (widening property)

202 discRete famil ies

= Z〈inl〉 ◦ 𝑓 {𝜎} (𝑓 multilinear)

= 𝜅Zb𝑤c ◦ 𝑓 {𝜎} (𝜅≜)

□

Proposition 10.3.8 The Day hom on families (−)𝑊 : Fam → Fam is a (−)𝑊 -relative synthetic
module functor.

PRoof We will continue writing (−)𝑊 for both Fam → Fam and I/Mod𝑆 → I/Mod𝑆 endo-
functors, with the context (namely, whether the “base” is 𝑋 ∈ Fam or X ∈ I/Mod𝑆) making it
clear which endofunctor is taken.

Define the strength operator d𝑊𝑋,Y : 𝑋𝑊 	 Y𝑊 → (𝑋 	 Y)𝑊 similarly to 𝑚[−] above, but
without the use of a parametrised map (as 𝑑 [𝑓 : 𝑋 	 Y → 𝑍] : 𝑋𝑊 	 Y𝑊 → 𝑍𝑊 can be
derived):

d𝑊𝑋,Y(Γ, 𝑙, 𝜔)𝑤 ≜ (Γ + Θ, 𝑙 𝑤, 𝜔 b𝑤c ⋉ 𝜄Δ,Θ1)

We show that this satisfies the laws of a synthetic modular functor.

• The unit law simplifies to the following:

𝑋𝑊 (𝑋 	 I)𝑊 (𝑋 	 Y)𝑊

𝑋𝑊 	 I 𝑋𝑊 	 Y 𝑋𝑊 	 Y𝑊

(𝜌𝑋)𝑊

𝜌
𝑋𝑊

(𝑋	𝜂Y)𝑊

id	𝜂Y id	𝜅𝑊
Y

d𝑋,Y

Taking 𝑙 ∈ (𝑋𝑊)Γ and𝑤 ∈𝑊 (Θ), we calculate as follows:

𝑑{𝜅 ◦ 𝜂}b𝑤c 𝑙 = (𝑙 𝑤, (𝜅 ◦ 𝜂) b𝑤c ⋉ inr) = (𝑙 𝑤, 𝜂)

where the last step appeared in the right unit law of Theorem 10.3.1.

• For a pointed multilinear map 𝑓 : Y ⊕ Z→ U, the associativity law simplifies to

(𝑋𝑊 	 Y𝑊) 	 Z𝑊 (𝑋 	 Y)𝑊 	 Z𝑊 ((𝑋 	 Y) 	 Z)𝑊

𝑋𝑊 	 (Y𝑊 ⊕ Z𝑊) (𝑋 	 (Y ⊕ Z))𝑊

𝑋𝑊 	 U𝑊 (𝑋 	 U)𝑊

d𝑋,Y	id

𝛼
𝑋𝑊 ,Y𝑊 ,Z𝑊

d𝑋	Y,Z

(𝛼𝑋,Y,Z)𝑊

id	𝑚[𝑓] (𝑋	𝑓)𝑊

d𝑋,U

Taking 𝑙 ∈ 𝑋𝑊 (Γ), 𝜔 ∈ (V𝑊)Γ
Δ , 𝜛 ∈ (W𝑊)Δ

Θ , the calculation proceeds as follows:

(𝛼 [𝑓]𝑊)(𝑑{𝜛} ◦ 𝑑{𝜔})b𝑤c 𝑙
= 𝛼 [𝑓] (𝑑{𝜛}b𝑤c (𝑑{𝜔} 𝑙))
= 𝛼 [𝑓] (𝑑{𝜔}b𝑤c 𝑙, 𝜔 b𝑤c ⋉ inr) (𝑑≜)

= 𝛼 [𝑓] ((𝑙 𝑤,𝜔 b𝑤c ⋉ inr), 𝜔 b𝑤c ⋉ inr) (𝑑≜)

convolutional stRuctuRe 203

= (𝑙 𝑤, 𝑓 {𝜛b𝑤c ⋊ inr} ◦ (𝜔 b𝑤c ⋊ inr)) (𝛼 [𝑓]≜)

= (𝑙 𝑤, (𝑚[𝑓]{𝜛} ◦ 𝜔) b𝑤c ⋊ inr)
= 𝑑{𝑚[𝑓]{𝜛} ◦ 𝜔}b𝑤c 𝑙 (𝑑≜)

where the unlabelled step is taken from the associativity of𝑚[−] in Theorem 10.3.1.
Thus, we have shown that the unsorted functor (−)𝑊 is near-genuine strong relative to
(−)𝑊 : I/Mod𝑆 → I/Mod𝑆 . This of course extends to the sorted (−)𝑊 : Fam𝑆 → Fam𝑆 . □

The theory so far was given for the left-to-right direction of the Day hom ⊸ and −•, but can
be symmetrically developed for the opposite directions ⊸and −• by reversing the copairing
and injections. Thus, abbreviating (𝑊 ⊸(−)) as (𝑊 ⊸), we also have:

Corollary 10.3.3 The reverse Day exponentiation (𝑊 ⊸) : Fam → Fam is synthetic I/Mod𝑆-
strong over the synthetic monoidal (𝑊 −•) : I/Mod𝑆 → I/Mod𝑆 .

Since context extension is defined in terms of ⊸, the following result – though very long in
the making – is satisfyingly immediate.
Theorem 10.3.2

The context extension endofunctor 𝛿Θ : Fam→ Fam is synthetic strong.

PRoof The strength transformation

s𝛿𝑋,Y : 𝛿Θ𝑋 	 Y→ 𝛿Θ(𝑋 	 Y)

is the pullback of the (ょΘ −•)-relative strength transformation for (ょΘ ⊸) along the synthetic
monoidal natural transformation 𝜅 : Id =⇒ (ょΘ −•) (Proposition 10.3.7):

𝛿Θ𝑋 	 Y = (ょΘ ⊸𝑋) 	 Y
id	𝜅

ょ

Θ

Y (ょΘ ⊸𝑋) 	 (ょΘ −• Y)
d

ょ

Θ

𝑋,Y ょ

Θ ⊸(𝑋 	 Y) = 𝛿Θ(𝑋 	 Y)

The unit and associativity axioms are inherited from the (ょΘ −•)-relative strength transfor-
mation by the pullback. □

The results can be transposed to the closed substitution structure, equipping context extension
with a closed strength

𝛿ΘJX, 𝑌⦊→ JX, 𝛿Θ𝑌⦊ : (I/Mod𝑆)op × Fam→ Fam

satisfying the desired laws of Section 10.2.3. For simplicity, we will refer to functors with such
pointed synthetic strength transformations from now on simply as strong, distinguishing them
from powered functors introduced next.

10.3.3 Convolutional powering

In the preceding section we established that the context extension endofunctor derived from
the Day convolutional structure is synthetic strong over the skew-monoidal substitution struc-
ture. This is essential for the reconciliation of second-order algebraic and substitution struc-
ture, as the strength for the signature endofunctor (which may involve context extension to
represent variable binding) is needed to express the algebraic monoid compatibility condition.

204 discRete famil ies

When we focus on the second-order features of syntax – namely, metavariables and meta-
substitution – we also need to consider the interaction of the syntax endofunctor with the
convolutional structure itself, in the form of convolutional powering, and compatibility with
synthetic strengths. In the presheaf model of Fiore (2008) the cartesian closed structure of
presheaves is rich enough to capture metasubstitution, but in the familial model we are com-
pelled to resort to Day convolution and homs again to faithfully represent the intricate context-
manipulation of second-order operations. As an upshot, sorted families are more suitable for
representing metavariable families, leading to a simplified theory of metasubstitution.

In this section we focus on the interaction of powering over the Day convolution struc-
ture, and pointed strength over the skew substitution structure. We recall the definition of a
powered functor below.

Definition 10.3.7 A functor 𝐹 : Fam→ Fam is powered if it comes with a natural operation

p𝐹𝑊 ,𝑌 : 𝐹 (𝑊 ⊸ 𝑌) → (𝑊 ⊸ 𝐹𝑌)

satisfying the laws of a skew-closed (in fact, strong closed) module functor in Definition 5.1.11,
or equivalently, the laws of a monoidal closed category:

𝐹 (𝐸 ⊸ 𝑌) 𝐸 ⊸ 𝐹𝑌

𝐹𝑌

p𝐸,𝑌

𝐹 i⊸𝑌

i⊸𝐹𝑌 (𝑝𝑖)

𝐹 ((𝑈 4𝑊) ⊸ 𝑌) (𝑈 4𝑊) ⊸ 𝐹𝑌

𝐹 (𝑊 ⊸ (𝑈 ⊸ 𝑌)) 𝑊 ⊸ (𝑈 ⊸ 𝐹𝑌)

𝑊 ⊸ 𝐹 (𝑈 ⊸ 𝑌)

p𝑈4𝑊,𝑌

𝐹 c𝑈 ,𝑊𝑌 c𝑈 ,𝑊𝐹𝑌

p𝑊,𝑈⊸𝑌 𝑊⊸p𝑈 ,𝑌

(𝑝𝑐)

⌟

If a functor possesses both a strength and a powering, we want them to respect each other:
in practice, this will correspond to a compatibility of the algebraic, substitution, and meta-
substitution structure. The equivalent notion is stated in the cartesian setting by Fiore (2008,
Definition 12).

Definition 10.3.8 If 𝐹 : Fam → Fam is equipped both with a powering p𝑊,𝑋 : 𝐹 (𝑋𝑊) →
(𝐹𝑋)𝑊 and a strength s𝑋,Y : 𝐹𝑋 	 Y→ 𝐹 (𝑋 	 Y), the powering and strength are compatible if
the following diagram commutes:

𝐹 (𝑋𝑊) 	 Y𝑊 𝐹
(
𝑋𝑊 	 Y𝑊

)
𝐹
(
(𝑋 	 Y)𝑊

)
(𝐹𝑋)𝑊 	 Y𝑊 (𝐹𝑋 	 Y)𝑊 (𝐹 (𝑋 	 Y))𝑊

s𝑋𝑊 ,Y𝑊

p𝑊,𝑋	id

𝐹d𝑊𝑋,Y

p𝑊,𝑋	Y

d𝑊𝐹𝑋,Y (s𝑋,Y)𝑊

(𝑠𝑑𝑝)

⌟

For a fixed 𝑊 , the powering p𝑊,𝑋 : 𝐹 (𝑋𝑊) → (𝐹𝑋)𝑊 for 𝐹 acts as an elevator from
the functor 𝐹 to the functor (−)𝑊 , and the compatibility diagram above actually exhibits
p𝑊 : 𝐹 ((−)𝑊) =⇒ (𝐹−)𝑊 as an elevator in the total category of synthetic strong functors
from (Id, (𝐹, 𝑠)) : (I/Mod𝑆, Fam) → (I/Mod𝑆, Fam) to the synthetic I/Mod𝑆-module functor
((𝑊 −•), ((𝑊,⊸), 𝑑)) : (I/Mod𝑆, Fam) → (I/Mod𝑆, Fam), a construction spelled out in con-
crete detail in Section 6.3. We next focus on the context extension endofunctor 𝛿 .

convolutional stRuctuRe 205

Proposition 10.3.9 The reversed Day hom (𝑈 ⊸) : Fam→ Fam is powered.

PRoof For 𝑌,𝑊 ∈ Fam, the strength transformation

e𝑈 ,𝑊𝑌 : 𝑈 ⊸(𝑊 ⊸ 𝑌) →𝑊 ⊸ (𝑈 ⊸𝑌)

is an isomorphism derived from properties of Day homs in Proposition 8.2.1. Calculating via
the Yoneda embedding and the internal currying (𝑋 4 𝑈) ⊸𝑌 � (𝑋 ⊸(𝑈 ⊸𝑌)), we have:

Fam(𝑋,𝑈 ⊸(𝑊 ⊸ 𝑌)) � Fam(𝑋 4 𝑈 ,𝑊 ⊸ 𝑌)
� Fam(𝑊, (𝑋 4 𝑈) ⊸𝑌)
� Fam(𝑊,𝑋 ⊸(𝑈 ⊸𝑌))
� Fam(𝑋,𝑊 ⊸ (𝑈 ⊸𝑌))

From first principles, this simply corresponds to an argument swapping with a context reas-
sociation: for 𝑙 : (𝑈 ⊸(𝑊 ⊸ 𝑌)) (Γ),𝑤 :𝑊 (Δ) and 𝑢 : 𝑈 (Θ),

e𝑈 ,𝑊𝑌 𝑙 𝑤 𝑢 ≜ 𝑌 (𝛼Θ,Γ,Δ) (𝑙 𝑢 𝑤) ∈ 𝑌 (Θ + (Γ + Δ))

where, of course, 𝛼Θ,Γ,Δ is just the identity, as (Θ+Γ) +Δ andΘ+ (Γ+Δ) are strictly equal in the
discrete category of lists. Consequently, the strength axioms also hold on the nose: the unit
law becomes 𝑒 𝑙 ∗𝑢 = 𝑙 𝑢 ∗ (where ∗ is the only element of the set 𝐸 []), and the associativity
law computes as:

(𝑈 ⊸ 𝑒)(𝑒 (𝑐 𝑙)) 𝑣 𝑤 𝑢 = 𝑒 (𝑒 (𝑐 𝑙) 𝑣 𝑤) 𝑢 = 𝑒 (𝑙 (𝑤, 𝑣)) 𝑢 = 𝑙 𝑢 (𝑣,𝑤) = 𝑐 (𝑒 𝑙) 𝑣 𝑤 𝑢

If 𝑌 happens to be a module, the reassociation of the term context can be performed by a
module action on the renaming rule ((Θ+Γ)+Δ) → (Θ+(Γ+Δ)), so𝑌 (𝛼𝑆∗Θ,Γ,Δ) : 𝑌 ((Θ+Γ)+Δ) →
𝑌 (Θ + (Γ + Δ)) can be equivalently written as 𝑌 〈𝛼 F [𝑆]

Θ,Γ,Δ〉. □

Corollary 10.3.4 The context extension endofunctor 𝛿Θ : Fam→ Fam is powered.

PRoof Follows from the previous proposition, with𝑈 ≜

ょ

Θ. □

The following proposition uses the synthetic lifting framework of Section 6.3 to generalise the
compatibility law in Diagram (𝑠𝑑𝑝) for 𝐹 the Day hom.

Proposition 10.3.10 For 𝑈 ,𝑊 ∈ Fam, there is an elevator in SynMod from the (𝑈 −•)-relative
I/Mod𝑆-module endofunctor (𝑈 ⊸) : Fam → Fam to the (𝑊 −•)-relative I/Mod𝑆-module end-
ofunctor (𝑊 ⊸) : Fam→ Fam.

PRoof See the Appendix on page 338. □

Lemma 10.3.3 For a module 𝑋 , we have the compatibility condition between 𝑒 and 𝜅:

X𝑊 (𝑈 −• (𝑊 −• X))

𝑊 −• (𝑈 −• X)

𝜘𝑈
X𝑊

𝑊−•(𝜘𝑈X)
e𝑈 ,𝑊
X

206 discRete famil ies

PRoof Take 𝑙 ∈ X𝑊 (Γ),𝑤 ∈𝑊 (Δ) and 𝑢 ∈ 𝑈 (Θ), and calculate as follows:

e𝑈 ,𝑊X (𝜘𝑈X𝑊 𝑙)𝑤 𝑢
= X〈𝛼Θ,Γ,Δ〉(𝜘𝑈X𝑊 𝑙 𝑢 𝑤) (𝑒≜)

= X〈𝛼Θ,Γ,Δ〉(X𝑊 〈𝜄Θ,Γ1 〉 𝑙 𝑤) (𝜘≜)

= X〈𝛼Θ,Γ,Δ〉(X〈𝜄Θ,Γ1 + Δ〉 (𝑙 𝑤)) (module action for X𝑊)

= X〈𝛼Θ,Γ,Δ ◦ (𝜄Θ,Γ1 + Δ)〉(𝑙 𝑤) (module associativity)

= X〈𝜄Θ,Γ+Δ1 〉(𝑙 𝑤) (cocartesian coherence)

= 𝜘𝑈
X
(𝑙 𝑤) 𝑢 (𝜘≜)

= (𝑊 −• 𝜘𝑈
X
) 𝑙 𝑤 𝑢 □

Remark. Of course, by the symmetry of the operations, a similar property holds for the inter-
action of 𝜅 and 𝑒 as well. In fact, both (𝑊 ⊸) and (𝑈 ⊸) form monads on modules, with 𝜅
and 𝜘 the respective units; e𝑈 ,𝑊𝑌 : 𝑈 ⊸(𝑊 ⊸ 𝑌) →𝑊 ⊸ (𝑈 ⊸𝑌) is then a monad-monad
distributive law, with the lemma above being one of the unit preservation conditions. The
monad structure of the exponentials will not be needed for our purposes. ⌟

Theorem 10.3.3
The strength and powering for the context extension endofunctor are compatible.

PRoof We have the strength transformations

d𝑋,Y : 𝛿Θ(𝑋) 	 𝛿Θ(Y) → 𝛿Θ(𝑋 	 Y) : Fam × I/Mod𝑆 → Fam

s𝑋,Y : 𝛿Θ(𝑋) 	 Y→ 𝛿Θ(𝑋 	 Y) : Fam × I/Mod𝑆 → Fam

p𝑊,𝑋 : 𝛿Θ(𝑊 ⊸ 𝑋) → (𝑊 ⊸ 𝛿Θ𝑋) : Famop × Fam→ Fam

As shown in Theorem 10.3.2, the (Id-relative) strength 𝑠 for 𝛿Θ is derived from its 𝛿Θ-
relative strength 𝑑 by pulling back along the synthetic monoidal natural transformation
𝜅

ょ

Θ : Id =⇒ 𝛿Θ. Proposition 10.3.10 with 𝑈 ≜

ょ

Θ showed that 𝑝 extends to an elevator
from (𝛿Θ, 𝛿Θ) : (I/Mod𝑆, Fam) → (I/Mod𝑆, Fam) to ((𝑊 −•), (𝑊 ⊸)) : (I/Mod𝑆, Fam) →
(I/Mod𝑆, Fam). Instantiating Lemma 6.3.1 with 𝐹 = 𝐺 = 𝛿Θ, 𝑀 = (𝑊 −•), 𝐾 = 𝐿 = 𝛿Θ,
𝐾′ = 𝐿′ = Id, 𝜑 ≜ p𝛿𝑊 : 𝛿Θ(𝑊 −• (−)) =⇒𝑊 −• 𝛿Θ(−), 𝜑′ = id, 𝛼 = 𝛽 = 𝜘

ょ

Θ : Id =⇒ 𝛿Θ, and the
compatibility condition between 𝑝 and 𝜘 proved in Lemma 10.3.3, we have that the elevator
𝑑 : d𝛿𝑋,Y : 𝛿Θ(𝑋) 	 𝛿Θ(Y) → 𝛿Θ(𝑋 	 Y) induces an elevator relative to the pulled back modules
p𝑊,𝑋 : 𝛿Θ(𝑊 ⊸ 𝑋) → (𝑊 ⊸ 𝛿Θ𝑋). The strength-preservation condition of the elevator is

𝛿Θ
(
𝑋𝑊

)
	 Y𝑊 𝛿Θ

(
𝑋𝑊 	 Y𝑊

)
𝛿Θ
(
(𝑋 	 Y)𝑊

)
(𝛿Θ𝑋)𝑊 	 Y𝑊 (𝛿Θ𝑋 	 Y)𝑊 (𝛿Θ(𝑋 	 Y))𝑊

s𝑋𝑊 ,Y𝑊

p𝑋,𝑊 	id

𝐹d𝑋,Y

p𝑊,𝑋	Y

d𝛿Θ𝑋,Y (s𝑋,Y)𝑊

which is exactly the compatibility axiom Diagram (𝑠𝑑𝑝) for the skew and powerings for 𝛿Θ. □

The preceding theorem will take care of the difficult part of equipping signature endofunc-
tors with compatible skew and powerings. Constructing these strengths for the product and

convolutional stRuctuRe 207

coproduct functors is much easier, as they do not manipulate the context. We demonstrate
the binary case below, with the 𝑛-ary case an obvious generalisation. Note that we are not
strictly dealing with endofunctors any more as × and + are bifunctors Fam × Fam → Fam;
the definitions of actions and strengths are easy enough to formally generalise to multi-arity
functors (see e.g. the structural strength of Borthelle et al. (2020, Definition 2.11)), but since
the compatible strengths for products and coproducts are straightforward to construct, this
generality is not a worthwhile complication.

Proposition 10.3.11 The product and coproduct functors ×, + : Fam × Fam → Fam can be
equipped with compatible skew and powerings.

PRoof Define the relative pointed strength and convolution strength for × as follows:

s× : (𝑊 × 𝑋) 	 Y → (𝑊 	 Y) × (𝑋 	 Y)
s×
(
Γ, (𝑡1, 𝑡2), 𝜎

)
≜

(
(Γ, 𝑡1, 𝜎), (Γ, 𝑡2, 𝜎)

)
p× : (𝑊 ⊸ 𝑋) × (𝑊 ⊸ 𝑌) → 𝑊 ⊸ (𝑋 × 𝑌)
p× (𝑙1, 𝑙2)𝑤 ≜ (𝑙1𝑤, 𝑙2𝑤)

s+ : (𝑋 + 𝑌) 	 Z → (𝑋 	 Z) + (𝑌 	 Z)
s+
(
Γ, inl|inr 𝑡, 𝜎

)
≜ inl|inr (Γ, 𝑡, 𝜎)

p+ : (𝑊 ⊸ 𝑋) + (𝑊 ⊸ 𝑌) → 𝑊 ⊸ (𝑋 + 𝑌)
p+(inl|inr 𝑙)𝑤 ≜ inl|inr (𝑙 𝑤)

The simple structural definitionsmake the strength laws and skew-convolutional compatibility
axioms hold by definition. □

The results of this section culminate in the following theorem, restating Theorem 14 of Fiore
(2008) in the familial model.
Theorem 10.3.4

Every Fam-endofunctor built by composition from Id, +, × and 𝛿Θ comes equipped with
compatible skew and powerings.

We will call endofunctors constructed according to this theorem signature endofunctors. As
endofunctors for second-order signatures will give rise to signature endofunctors, this theo-
rem equips them with the structure to axiomatise signature-compatible substitution and meta-
substitution structure. In the final section of this chapter, we conclude our translation from
the presheaf to the familial model by focusing on initial algebras for endofunctors.

10.3.4 Algebraic monoids

We round up our discussion of convolutional parametrisation by examining the relationship
of the Day monoidal closed structure and second-order models for a syntax. The properties
proved here will be crucial for the development of the metasubstitution structure, where the
convolutional and skew substitution structure interact in intricate ways.

The semi-sorted linear hom −• : Famop × Fam𝑆 → Fam𝑆 exhibits Fam𝑆 as powered over
Fam, with structural i

X
: (𝐸 −• X) → X and c𝑈 ,𝑊X : (𝑈 4 𝑊) −• X → (𝑊 −• (𝑈 −• X)). Not

only does (𝑊 −•) : Fam𝑆 → Fam𝑆 lift to a synthetic monoidal functor on pointed modules for
all𝑊 , the structural transformations also respect this functorial structure.

Proposition 10.3.12 For all 𝑈 ,𝑊 ∈ Fam, the transformations i
X
: (𝐸 −• X) → X : I/Mod𝑆 →

I/Mod𝑆 and c𝑈 ,𝑊X : X𝑈4𝑊 → (X𝑈)𝑊 : Famop×Famop×I/Mod𝑆 → I/Mod𝑆 are synthetic monoidal
transformations:

208 discRete famil ies

I I𝐸

I

𝜅𝐸I

iI
(𝜅𝑖)

I I𝑈
4𝑊

I𝑊 (I𝑈)𝑊

𝜅𝑈4𝑊
I

𝜅𝑊
I c𝑈 ,𝑊

I

(𝜅𝑈I)𝑊

(𝜅𝑐)

𝑋 𝐸 	 Y𝐸 (𝑋 	 Y)𝐸

𝑋 	 Y

d𝐸𝑋,Y

i𝑋	iY
i𝑋	Y

(𝑑𝑖)

𝑋𝑈4𝑊 	 Y𝑈
4𝑊 (𝑋 	 Y)𝑈4𝑊

(𝑋𝑈)𝑊 	 (Y𝑈)𝑊 ((𝑋 	 Y)𝑈)𝑊

(𝑋𝑈 	 Y𝑈)𝑊

d𝑈4𝑊
𝑋,Y

c𝑈 ,𝑊𝑋 	c𝑈 ,𝑊Y c𝑈 ,𝑊𝑋	Y

d𝑊
𝑋𝑈 ,Y𝑈

(d𝑈𝑋,Y)𝑊

(𝑑𝑐)

PRoof The proofs are nearly immediate if we keep applications of context equalities implicit,
but we spell these out for the sake of rigour. For the axioms concerning 𝜅𝐸 , take a 𝑣 ∈ I𝛼Γ,
𝑤 ∈𝑊 (Δ) and 𝑢 ∈ 𝑈 (Θ), and calculate:

𝑖 (𝜅 𝑣)
= I(𝜌Γ)𝜅 𝑣 ∗ (𝑖≜)

= I(𝜌Γ)I(𝜄Γ,[]2) 𝑣 (𝜅≜)

= I(𝜌Γ ◦ 𝜄Γ,[]2) 𝑣 (functoriality)

= 𝑣 (cocartesian coherence)

𝑐 (𝜅𝑈4𝑊 𝑣)𝑤 𝑢
= I(𝛼 −1Γ,Δ,Θ)𝜅𝑈4𝑊 b(𝑢,𝑤)c 𝑣 (𝑐≜)

= I(𝛼 −1Γ,Δ,Θ)(I(𝜄Γ,Δ+Θ2) 𝑣) (𝜅≜)

= I(𝛼 −1Γ,Δ,Θ ◦ 𝜄Γ,Δ+Θ2) 𝑣 (functoriality)

= I(𝜄Γ+Δ,Θ2 ◦ 𝜄Γ,Δ2) 𝑣 (cocartesian coherence)

= I(𝜄Γ+Δ,Θ2) ((I(𝜄Γ,Δ2) 𝑣)) (functoriality)

= 𝜅𝑈 b𝑢c (𝜅𝑊 b𝑢c 𝑣)
= (𝜅𝑈)𝑊 (𝜅𝑊 𝑣)𝑤 𝑢

where we use the fact that 𝜆 and 𝛼 are defined in terms of copairing in cocartesian categories,
and therefore satisfy the diagrams by universality of coproducts:

Γ Γ + []

Γ

𝜄Γ,[]2

𝜌Γ

Γ Γ + Δ

Γ + (Δ + Θ) (Γ + Δ) + Θ

𝜄Γ,Δ2

𝜄Γ,Δ+Θ2 𝜄Γ+Δ,Θ2

𝛼−1Γ,Δ,Θ

For the axiom concerning 𝑑 and 𝑖 , take 𝑙 ∈ (𝑋 𝐸) (Γ) and 𝜔 ∈ (Y𝐸)Γ
Δ , and calculate:

𝑖 (𝑑{𝜔} 𝑙)
= (𝑋 	 Y)(𝜌Δ) (𝑑{𝜔}b∗c 𝑙) (𝑖≜)

= (𝑋 	 Y)(𝜌Δ) (Γ + [], 𝑙 ∗, 𝜔 b∗c ⋉ 𝜄Δ,[]1) (𝑑≜)

= (Γ + [], 𝑙 ∗, Y(𝜌Δ) ◦ (𝜔 b∗c ⋉ 𝜄Δ,[]1)) (module action for)

= (Γ + [], 𝑙 ∗, (Y(𝜌Δ) ◦ 𝜔 b∗c) ⋉ (𝜌Δ ◦ 𝜄Δ,[]1)) (widening property)

= (Γ + [], 𝑙 ∗, Y(𝜌Δ) ◦ 𝜔 b∗c ◦ 𝜌Γ)
= (Γ, 𝑋 (𝜌Γ) (𝑙 ∗), Y(𝜌Δ) ◦ 𝜔 b∗c) (discrete multilinearity)

= (Γ, 𝑖 𝑙, 𝑖 ◦ 𝜔) (𝑖≜)

convolutional stRuctuRe 209

where the unlabelled equality is proved by case analysis, using the initial map ¡Γ : [] → Γ:

((Y(𝜌Δ) ◦ 𝜔 b∗c) ⋉ (𝜌Δ ◦ 𝜄Δ,[]1)) ◦ 𝜄
Γ,[]
2

= Y(𝜌Δ) ◦ 𝜔 b∗c
= Y(𝜌Δ) ◦ 𝜔 b∗c ◦

[
id, ¡Γ

] Γ,[]
Γ
◦ 𝜄Γ,[]2

= Y(𝜌Δ) ◦ 𝜔 b∗c ◦ 𝜌Γ ◦ 𝜄Γ,[]2

((Y(𝜌Δ) ◦ 𝜔 b∗c) ⋉ (𝜌Δ ◦ 𝜄Δ,[]1)) ◦ 𝜄
Γ,[]
1

= 𝜌Δ ◦ 𝜄Δ,[]1

= ¡Δ
= Y(𝜌Δ) ◦ 𝜔 b∗c ◦ 𝜌Γ ◦ 𝜄Γ,[]1

Finally, for the axiom concerning 𝑑 and 𝑐 , take 𝑙 ∈ (𝑋𝑈4𝑊)(Γ), 𝜔 ∈ (Y𝑈4𝑊)Γ
Δ ,𝑤 ∈𝑊 (Θ) and

𝑢 ∈ 𝑈 (Ξ).

𝑑 (𝑑{𝑐 ◦ 𝜔}b𝑤c (𝑐 𝑙)) 𝑢
= 𝑑{(𝑐 ◦ 𝜔) b𝑤c ⋉ 𝜄Δ,Θ1 }b𝑢c (𝑐 𝑙 𝑤) (𝑑≜)

=
(
𝑐 𝑙 𝑤 𝑢, ((𝑐 ◦ 𝜔) b𝑤c ⋉ 𝜄Δ,Θ1) b𝑢c ⋉ 𝜄

Δ+Θ,Ξ
1

)
(𝑑≜)

=
(
𝑐 𝑙 𝑤 𝑢, ((𝑐 ◦ 𝜔) b𝑤c b𝑢c ⋉ (𝜄Δ+Θ,Ξ2 ◦ 𝜄Δ,Θ1)) ⋉ 𝜄

Δ+Θ,Ξ
1

)
(Lem. 10.3.1)

=
(
𝑋 (𝛼 −1Γ,Θ,Ξ)(𝑙 (𝑢,𝑤)), ((Y(𝛼 −1Δ,Θ,Ξ) ◦ 𝜔 b(𝑢,𝑤)c) ⋉ (𝜄Δ+Θ,Ξ2 ◦ 𝜄Δ,Θ1)) ⋉ 𝜄

Δ+Θ,Ξ
1

)
(𝑐≜)

=
(
𝑙 (𝑢,𝑤), (((Y(𝛼 −1Δ,Θ,Ξ) ◦ 𝜔 b(𝑢,𝑤)c) ⋉ (𝜄Δ+Θ,Ξ2 ◦ 𝜄Δ,Θ1)) ⋉ 𝜄

Δ+Θ,Ξ
1) ◦ 𝛼 −1Γ,Θ,Ξ

)
(discrete multilinearity)

=
(
𝑙 (𝑢,𝑤), (Y(𝛼 −1Δ,Θ,Ξ) ◦ 𝜔 b(𝑢,𝑤)c) ⋉ (𝜄Δ,Θ1 + Ξ)

)
=
(
𝑙 (𝑢,𝑤), (Y(𝛼 −1Δ,Θ,Ξ) ◦ 𝜔 b(𝑢,𝑤)c) ⋉ (𝛼 −1Δ,Θ,Ξ ◦ 𝜄Δ,Θ+Ξ1)

)
(cocartesian coherence)

=
(
𝑙 (𝑢,𝑤), Y(𝛼 −1Δ,Θ,Ξ) ◦ (𝜔 b(𝑢,𝑤)c ⋉ 𝜄Δ,Θ+Ξ1)

)
(widening property)

= (𝑋 	 Y)(𝛼 −1Δ,Θ,Ξ)
(
𝑙 (𝑢,𝑤), 𝜔 b(𝑢,𝑤)c ⋉ 𝜄Δ,Θ+Ξ1

)
(module action)

= (𝑋 	 Y)(𝛼 −1Δ,Θ,Ξ)(𝑑{𝜔} 𝑙 (𝑢,𝑤)) (𝑑≜)

= 𝑐 (𝑑{𝜔} 𝑙)𝑤 𝑢 (𝑐≜)

The unlabelled equality is also established by three-way case analysis on 𝑣 ∈ I𝛼 (Γ + (Θ + Ξ)),
with all three cases reducing by widening reductions and cocartesian coherence. □

The following result is the main motivator for the definition of compatible strengths and pow-
erings, and it will be very useful in equipping the term monad with powering.
Theorem 10.3.5

If Σ has a compatible strength and powering, the category of Σ-monoids is powered over Fam.

PRoof The powering we are looking for is the lifted Day hom:

(−) −• (=) : Famop × Σ-Mon→ Σ-Mon

Given𝑊 ∈ Fam, we have shown in Theorem 10.3.1 that (−)𝑊 is a synthetic monoidal functor
on pointed modules, and therefore maps invariant (synthetic) monoids in I/Mod𝑆 to invariant
monoids by Proposition 6.1.2. Since Σ is pointed, (−)𝑊 also lifts to Σ-algebras via the elevator
Σ((−)𝑊) → (Σ−)𝑊 . These two structures on an object𝑊 −• M are themselves compatible
thanks to the compatibility of the strength and powering of Σ:

210 discRete famil ies

Σ(M𝑊) ⊕M𝑊 Σ(M𝑊 ⊕M𝑊) Σ((M ⊕M)𝑊) Σ(M𝑊)

(ΣM)𝑊 ⊕M𝑊 (ΣM ⊕M)𝑊 (Σ(M ⊕M))𝑊 (ΣM)𝑊

M𝑊 ⊕M𝑊 (M ⊕M)𝑊 M𝑊

sM𝑊 ,M𝑊

p𝑊,M⊕id

Σd𝑊
M,M Σ(𝜇𝑊)

p𝑊,M⊕M p𝑊,M

d𝑊ΣM,M

𝑓𝑊 ⊕id

(sM,M)𝑊

(𝑓 ⊕M)𝑊
(Σ𝜇)𝑊

𝑓𝑊

d𝑊
M,M 𝜇𝑊

𝑠𝑑𝑝

𝑑 1

𝑝 2

𝑓 F

Thus, for all Σ-monoids M, 𝑊 −• M is also a Σ-monoid. To show that −• is an action for
Σ-Mon, we need to lift the structural transformations to be Σ-monoid homomorphisms:

i
M
: (𝐸 −•M) →M ∈ Σ-Mon c𝑈 ,𝑊M : (𝑈 4𝑊) −•M→ (𝑊 −• (𝑈 −•M)) ∈ Σ-Mon

The modular category axioms for these are the same as for the hom in families, so require no
further proof. First, the Σ-monoid homomorphism condition for i

M
: (𝐸 −• M) → M consists

of the unit-, multiplication-, and algebra-preservation conditions:

I I

M I𝐸

M𝐸 M

𝜂
𝜅𝐸I

𝜂

𝜅𝐸M

iI

𝜂𝐸

iM

𝜅

𝜅𝑖

𝑖

M𝐸 ⊕M𝐸 M ⊕M

(M ⊕M)𝐸

M𝐸 M

iM⊕iM

d𝐸M,M

𝜇

iM⊕M

𝜇𝐸

iM

𝑑𝑖

𝑖

Σ(M𝐸) ΣM

(ΣM)𝐸

M𝐸 M

ΣiM

p𝐸,M

𝑓

iΣM

𝑓 𝐸

iM

𝑝𝑖

𝑖

The Σ-monoid homomorphism conditions for c𝑈 ,𝑊M are as follows:

M I M

I𝑊 M𝑊

I𝑈
4𝑊 (I𝑈)𝑊

M𝑈4𝑊 (M𝑈)𝑊

𝜅𝑈4𝑊
M

𝜂 𝜂

𝜅𝑊
I

𝜅𝑈4𝑊
I

𝜅𝑊
M

𝜂𝑊

(𝜅𝑈I)𝑊

(𝜅𝑈M)𝑊
c𝑈 ,𝑊
I𝜂𝑈4𝑊

(𝜂𝑈)𝑊

c𝑈 ,𝑊
M

𝜅

𝜅𝑐

𝜅

𝜅

𝑐 3

convolutional stRuctuRe 211

M𝑈4𝑊 ⊕M𝑈4𝑊 (M𝑈)𝑊 ⊕ (M𝑈)𝑊

(M𝑈 ⊕M𝑈)𝑊

(M ⊕M)𝑈4𝑊 ((M ⊕M)𝑈)𝑊

M𝑈4𝑊 (M𝑈)𝑊

c𝑈 ,𝑊
M
⊕c𝑈 ,𝑊

M

d𝑈4𝑊
M,M

d𝑊
M𝑈 ,M𝑈

(d𝑈M,M)𝑊

c𝑈 ,𝑊
M⊕M

𝜇𝑈4𝑊 (𝜇𝑈)𝑊

c𝑈 ,𝑊
M

𝑑𝑐

𝑐 3

Σ(M𝑈4𝑊) Σ((M𝑈)𝑊)

(Σ(M𝑈))𝑊

(ΣM)𝑈4𝑊 ((ΣM)𝑈)𝑊

M𝑈4𝑊 (M𝑈)𝑊

Σc𝑈 ,𝑊
M

p𝑈4𝑊,M

p𝑊,M𝑈

(P𝑈 ,M)𝑊

c𝑈 ,𝑊ΣM

𝑓 𝑈4𝑊 (𝑓 𝑈)𝑊

c𝑈 ,𝑊
M

𝑝𝑐

𝑐 3

□

In this section we introduced the familial model as the universe of discourse for a formalisable
foundation for second-order abstract syntax. Concepts from previous chapters were instanti-
ated to equip the category of families with a renaming, substitution and convolution structure,
and used synthetic monoidal categories to formalise the right notion of pointed strength for
syntax endofunctors, and show that algebraic monoids form a powered category over fami-
lies. We integrate these concepts next in the process of establishing the initiality and freeness
theorems for second-order abstract syntax.

212 discRete famil ies

c h a p t e R 1 1

Abstract syntax

This chapter applies the abstractmathematical development so far to establish the central claim
of this thesis: a second-order signature freely generates a syntactic family of terms supporting
substitution, interpretation inmodels, andmetasubstitution. In Section 11.1, we present a high-
level overview of the freeness and initiality results, relating the presheaf and familial models.
Section 11.2 introduces the freeness theorem, identifying the initial syntactic algebra as the free
semantic model over a family of metavariables. Building on this, Section 11.3 enriches the term
monad with metasubstitution structure via the linear-clone framework from Chapter 4, and
demonstrates how this supports an equational logic derived from an equational presentation
of the syntax.

11.1 Second-oRdeR abstRact syntax and its models

The construction of syntax starts from a second-order signature, which lists the constants
and operators that the syntax must support, together with their type signatures and binding
specifications. The signature induces an endofunctor on Fam𝑆 , algebras for which are sorted
families that support the operators of the signature.

11.1.1 Signatures

The notion of an algebraic signature is a concise and presentation-independent way to specify
first-order algebraic structures, and binding signatures are their second-order generalisations,
allowing for terms that bind variables in their subterms. To capture simply-typed signatures,
we use the notion of a sorted second-order signature given by Fiore and Hur (2010), generalis-
ing the untyped binding signatures of Aczel (1978).

Definition 11.1.1 A second-order signature Σ = (𝑆,𝑂, | − |) is specified by a set of sorts 𝑆 , a set
of operators 𝑂 , and an arity function | − | :

(
𝑆∗ × 𝑆

)∗ × 𝑆 . ⌟

Notation. For an operator o, the tuple |o| =
([
(−−→𝛼1 , 𝛽1), (−−→𝛼2 , 𝛽2), . . . , (−−→𝛼𝑛 , 𝛽𝑛)

]
, 𝜏

)
will be de-

noted o : [−−→𝛼1]𝛽1, . . . , [−−→𝛼𝑛]𝛽𝑛 → 𝜏 , with the bound variable list omitted if empty. ⌟

214 abstRact syntax

Example 11.1.1. A first-order algebraic signature is a special case of a second-order signature,
without any binding. For example, a group has the set of sorts 𝑆 = {∗} and operators

unit : ∗ mult : ∗, ∗ → ∗ inv : ∗ → ∗

The multi-sorted signature of left group actions has the two sorts 𝑆 = {𝐺,𝐴 } and operators

unit : 𝐺 mult : 𝐺,𝐺 → 𝐺 inv : 𝐺 → 𝐺 act : 𝐺,𝐴→ 𝐴 ⌟

Example 11.1.2. The second-order signature of the simply-typed lambda calculus Σ𝜆 with let-
bindings has the set of sorts 𝑆 inductively defined from a set of base types 𝐵 with the rules

𝜏 ∈ 𝐵
𝛽 ∈ 𝑆

𝛼 ∈ 𝑆 𝛽 ∈ 𝑆
𝛼 � 𝛽 ∈ 𝑆

and has the following families of operators with arities for all 𝛼, 𝛽 ∈ 𝑆 :

app𝛼,𝛽 : (𝛼 � 𝛽), 𝛼 → 𝛽 lam𝛼,𝛽 : [𝛼]𝛽 → (𝛼 � 𝛽) let𝛼,𝛽 : 𝛼, [𝛼]𝛽 → 𝛽
⌟

Just like how every algebraic signature determines an endofunctor on Set (or Set𝑆) that maps
a set 𝑋 to a sum-of-products form of the operators, a second-order signature also determines
an endofunctor on Fam𝑆 that further incorporates context extension for binding terms.

Definition 11.1.2 The second-order signature endofunctor Σ : Fam𝑆 → Fam𝑆 associated with a
second-order signature Σ = (𝑆,𝑂, | − |) is defined as follows:

Σ(X)𝜏 =
∐

o : [−→𝛼1]𝛽1,...,[−−→𝛼𝑛]𝛽𝑛→𝜏

∏
1≤𝑖≤𝑛

𝛿 [−→𝛼𝑖] (X)𝛽𝑖
⌟

We will usually conflate signatures and endofunctors for signatures, calling both Σ as above.

Definition 11.1.3 A (first-order) Σ-algebra for a signature Σ is an algebra for the Fam𝑆 endo-
functor (I + Σ). That is, it is a family A ∈ Fam𝑆 with a variable embedding 𝑣 : I → A and
algebra structure 𝑎 : ΣA → A comprising, for each operator o : [−−→𝛼1]𝛽1, . . . , [−−→𝛼𝑛]𝛽𝑛 → 𝜏 , a
copairing of families of functions

𝑜 : 𝛿 [−→𝛼1] (X)𝛽1 × · · · × 𝛿 [−−→𝛼𝑛] (X)𝛽𝑛 → X𝜏
⌟

Definition 11.1.4 A (second-order) (Σ,A)-algebra for a signature Σ and a sorted family A ∈
Fam𝑆 is an algebra for the Fam𝑆 endofunctor (I + Σ +A⊕). That is, it is a first-order Σ-algebra
(A, 𝑣, 𝑎) with a metavariable embedding𝑚 : A ⊕ A → A that associates elements m ∈ A𝜏Π of
the metavariable family A with a metavariable environment 𝜀 ∈ AΠ Γ to produce an element
𝑚(Π,m, 𝜀) ∈ A𝜏Γ that we will usually denote m{𝜀}. ⌟

The main freeness theorem we will prove in the next section can now be stated as follows:
Theorem 11.1.1

Given a second-order signature Σ and metavariable family A, the initial (Σ,A)-algebra car-
ries the structure of a free Σ-monoid on A.

second -oRdeR abstRact syntax and its models 215

11.1.2 Presheaf and familial models

Theorem 11.1.1 gives a constructive method for calculating free models of signatures: the
initial (Σ,A)-algebra can be represented as an inductive data type with constructors for vari-
ables, operations, and metavariables. The resulting free Σ-monoid TA is a type- and context-
indexed family of terms equipped with a substitution operation that respects the syntactic
structure. A corresponding result appears as Theorem 2 in Fiore (2008), formulated in the
presheaf setting: given a PSh𝑆-endofunctor Ω and a metavariable presheaf P, the monoid TP
is the free Ω-monoid on P. Although Theorem 10.2.2 establishes an equivalence between Σ-
monoids in Fam𝑆 and Ω-monoids in PSh𝑆 (under compatible strong signatures), it does not
directly relate TA and TP. In fact, the initial (Ω,P)-algebra TP includes a metavariable con-
structor m : P ⊗ TP→ TP that is both natural and dinatural, and this induces identifications
between terms that remain distinct in TA, due to quotienting by the dinaturality condition in
the presheaf setting.

A closer examination of metavariables reveals a key simplification in the presheaf setting
that helps bridge the gap between TA and TP. As observed by Hamana (2004) and extended by
Fiore (2008), metavariables, in their intended use, are rigid symbols of fixed sort and context
– not entities that should vary under term-level renaming. This means they do not naturally
form a presheaf. Instead, the presheaf of metavariables is generated from a family in Fam𝑆

via the free presheaf construction: given a family A, the presheaf of terms with metavariables
in A is T(■A). As we show in this section, this presheaf has a simpler structure than TP for
arbitrary P, since the quotienting induced by the metavariable operator m is absorbed by the
free presheaf structure on ■A. In fact, the underlying family of T(■A) is precisely TA, and
we can lift the latter to the former.

To fix notation for the rest of the section, let Ω : PSh𝑆 → PSh𝑆 be the signature endofunctor
on presheaves and T : PSh𝑆 → PSh𝑆 be the free Ω-monoid functor, satisfying the isomorphism

[v, a,m] : TP � V + Ω(TP) + P ⊗ TP

Similarly, let Σ : Fam𝑆 → Fam𝑆 be the signature endofunctor on families, and TA the initial
(Σ,A)-algebra satisfying the isomorphism

[v, a,m] : TA � I + Σ(TA) + A ⊕ TA

First, we relate presheaf and family algebras, assuming the signatures lift.

Proposition 11.1.1 If ★Ω � Σ★ then ★T ■ � T .

PRoof Setting P ≜ ■A for a family A, the underlying family of the presheaf T(■A) satisfies
the following using the definition I = ★V, the lifting isomorphism★Ω � Σ★, and Lemma 9.3.1:

★T(■A) � ★V + ★Ω
(
T(■A)

)
+ ★((■A) ⊗ T(■A))

� I + Σ(★T(■A)) + A ⊕ ★T(■A)

Thus, ★T(■A) satisfies the same isomorphism as TX, so the two families are isomorphic. □

216 abstRact syntax

A more valuable result is that the construction goes the other way around too: the initial
presheaf algebra on free presheaves can be induced purely from the initial family.

Proposition 11.1.2 If ★Ω � Σ★ then T : Fam𝑆 → Fam𝑆 extends to a functor T̂ : Fam𝑆 → PSh𝑆
with ★T̂ = T and T̂A the initial (Ω, ■A)-algebra.

PRoof This is an instance of the initial algebra-lifting theorem (Theorem 3.3.1), instantiated
with the lifting constructed in the previous section:

PSh𝑆 PSh𝑆

Fam𝑆 Fam𝑆

V + Ω(−) + ■A⊗(−)

★ ★

I + Σ(−) + A⊕(−)

that lifts the initial algebra TA to an initial (Ω, ■A)-algebra.
It is worth expanding on the abstract proof, as it uncovers the elegant interaction between

initiality and lifting. The presheaf T̂A is equivalently given by the underlying family ★T̂ = T

and a module structure on TA. The □-coalgebra structure TA → □TA can be induced by
initiality, by equipping □TA with the structure of a (Σ,A)-algebra:

I
jI □I □v □TA

Σ□TA
sΣ
I,TA □ΣTA □a □TA

A ⊕ □TA
s□
A,TA □(A ⊕ TA) □m □TA

where Σ□ =⇒ □Σ is the elevator induced by the pointed strength ΣJI,−K → JI, Σ(−)K, and
A ⊕ □X→ □(A ⊕ X) is the transpose of the composite

^(A ⊕ □X) → A ⊕ ^□X A⊕𝜀X
A ⊕ X

TA satisfies the equation of an initial (Ω, ■A)-algebra by the previous result. □

This lifting theorem concerns the full syntactic algebras that incorporates variables, terms, and
metavariables. Given two endofunctors Σ : Fam𝑆 → Fam𝑆 and Ω : PSh𝑆 → PSh𝑆 generated
from the same second-order signature, we also know that the lifting isomorphism★Ω � Σ★ is
satisfied: ★ is cartesian and cocartesian, and ★(V𝜏 ⊃ P) � N𝜏 −• ★P by Corollary 10.3.1.

In summary, starting from a second-order signature, a signature endofunctor on families
and its lifting to presheaves is induced; Theorem 10.2.2 establishes the equivalence of models
ΣMon(Fam𝑆) ' ΩMon(PSh𝑆), and Proposition 11.1.2 relates the initial (Σ,A)-algebra with the
initial (Ω, ■A)-algebra. Fiore (2008, Theorem 2) connects the presheaf side by showing that
the initial (Ω,P)-algebra is the free Ω-monoid on P, and we fill in the missing side by showing
that the initial (Σ,A)-algebra is the free Σ-monoid on A.

metatheoRy by init ial ity 217

11.2 MetatheoRy by initiality

The presheaf model offers an abstract, algebraic framework for syntactic metatheory. Rather
than defining capture-avoiding substitution manually, Fiore et al. (1999) showed it can be de-
rived automatically from the syntax via initial algebra semantics, a standard tool in program-
ming language theory. While classical approaches like Goguen et al. (1976) model data types
as initial algebras for Set-endofunctors, shifting to the category of presheaves – variable sets –
allows us to define the datatype of context- and type-indexed terms T as an initial algebra for a
PSh𝑆-endofunctor. This supports initial interpretations into first-order Σ-algebras T→ A that
preserve context and type. With an appropriate choice of A, such interpretations can imple-
ment syntactic operations like substitution or, for second-order signatures, metasubstitution.
The uniqueness of initial algebra semantics yields a robust proof principle for reasoning about
these operations.

In this section, we adapt this approach to the category of sorted families to prove The-
orem 11.1.1, connecting the initial (Σ,A)-algebra to the free Σ-monoid on A. Our method
diverges from that of Fiore (2008), whose proof – spelled out by Arkor (2018) and Borthelle
et al. (2020) – relies on a monoidal structure that does not extend to our skew-monoidal setting.
Their technique, a variant of initial algebra semantics known as parametrised initiality, was
formalised by Fiore and Saville (2017, Section 4) and abstractly by Matthes and Uustalu (2004).
If 𝐾 : C→ C is a left adjoint and (𝐾,𝜑 : 𝐾𝐹 =⇒ 𝐺𝐾) forms a coelevator between 𝐹,𝐺 : C→ C,
given an initial 𝐹 -algebra 𝑓 : 𝐹𝐴 → 𝐴 and any 𝐺-algebra 𝑔 : 𝐺𝐵 → 𝐵 there exists a unique
morphism ℎ : 𝐾𝐴→ 𝐵 satisfying

𝐾𝐹𝐴 𝐺𝐾𝐴 𝐺𝐵

𝐾𝐴 𝐵

𝜑𝐴 𝐺ℎ

𝐾 𝑓 𝑔

ℎ

Instantiating this appropriately, we obtain the standard parametrised initiality result used
in the presheaf model of abstract syntax: for all signature endofunctors Ω : PSh → PSh,
pointed presheaves Q ∈ V/PSh𝑆 and (Q+Ω +P⊗)-algebras (A, [𝑣, 𝑎,𝑚]), there exists a unique
parametrised initial algebra interpretation ℎQ

A
: TP ⊗ Q→ A satisfying:

V ⊗ Q Q

TP ⊗ Q A

𝜆Q

v⊗Q 𝑣

ℎQ
A

Ω(TP) ⊗ Q Ω(TP ⊗ Q) ΩA

TP ⊗ Q A

sΩTP,Q ΩℎQ
A

a⊗Q 𝑎

ℎQ
A

(P ⊗ TP) ⊗ Q P ⊗ (TP ⊗ Q) P ⊗ A

TP ⊗ Q A

𝛼
P,TP,Q

m⊗Q

P⊗ℎQ
A

𝑚

ℎQ
A

With different choices of Q andA, different parametrised syntactic operations may be instanti-
ated, and given correctness laws of the form 𝑓 = 𝑔 : TP⊗Q→ A, the equality can be indirectly

218 abstRact syntax

established by showing that 𝑓 and 𝑔 are parametrised algebra homomorphisms in the above
sense. The technique can also be adapted to cartesian parametrised maps T × Q → Z, as is
done in the derivation of metasubstitution structure by Fiore (2008).

While the notion of parametrised initiality can be translated to families, the skew-monoidal
setting introduces a key limitation: in a parametrised map ℎ : TA ⊕ X → A, variation is re-
stricted to X, requiring TA to appear as the left operand of the tensor. This imposes a right-
biased structure on the domain, constraining the form of expressible laws. For example, prov-
ing associativity for the substitution monoid on T (with A implicit) would require a domain
of the form T ⊕ (T ⊕ T), but this cannot be rearranged to (T ⊕ T) ⊕ T , since the associ-
ator in a skew-monoidal category is not invertible. In contrast, the presheaf model allows
such rearrangements, enabling the associativity law to be expressed as an equality between
(T ⊗ T)-parametrised maps:

(T ⊗ T) ⊗ T T ⊗ T

T ⊗ (T ⊗ T) T

T ⊗ T

𝜇⊗T

𝜇𝛼−1T,T,T

ℎT⊗T
T

T⊗𝜇 𝜇

One resolution is to use the generalised parametrised initiality and allow for a sequence of
left-biased parameters: for example, a double-parametrised map (T ⊕ X) ⊕ Y → A would be
an instance of ℎ with 𝐾 ≜ (− ⊕ X) ⊕ Y, which is left adjoint to JX, JY,−KK. More generally,
using the notation of Section 5.2.3, an 𝑛-parametrised initial map ℎ : (T ⊕ Y𝑖)𝑛 → A satisfies
the homomorphism conditions

(I ⊕ Y𝑖)𝑛 (Y𝑖)𝑛

(T ⊕ Y𝑖)𝑛 A

(𝜆Y1⊕Y2≤𝑖)
𝑛

(v⊕Y𝑖)𝑛 𝑣

ℎ
Y𝑖
A

(ΣT ⊕ Y𝑖)𝑛 (Σ(T ⊕ Y1) ⊕ Y2≤𝑖)𝑛 (Σ(T ⊕ Y 𝑗≤𝑘)𝑘 ⊕ Y𝑘<𝑖)𝑛 Σ(T ⊕ Y𝑖)𝑛

ΣA

(T ⊕ Y𝑖)𝑛 A

(sΣT ,Y1⊕Y2≤𝑖)
𝑛

(a⊕Y𝑖)𝑛

··· ···

Σℎ
Y𝑖
A

𝑎

ℎ
Y𝑖
A

((A ⊕ T) ⊕ Y𝑖)𝑛 ((A ⊕ (T ⊕ Y1)) ⊕ Y2≤𝑖)𝑛 ((A ⊕ (T ⊕ Y 𝑗≤𝑘)𝑘) ⊕ Y𝑘<𝑖)𝑛 A ⊕ (T ⊕ Y𝑖)𝑛

A ⊕ A

(T ⊕ Y𝑖)𝑛 A

(𝛼
A,T ,Y𝑖
⊕Y2≤𝑖)𝑛

(m⊕Y𝑖)𝑛

··· ···

A⊕ℎY𝑖
A

𝑚

ℎ
Y𝑖
A

metatheoRy by init ial ity 219

where the · · · abbreviate repeated nested applications of the strength and associator. By in-
stantiating 𝐾 with convolutional parameters, we can derive initiality results for maps of the
form T 5𝑊 → X; the multi-ary generalisation is not needed, as 5 is strongly associative.

This approach, however, remains cumbersome: we end up with a family of initiality theo-
rems indexed by the number of parameters in the semantic morphisms, which is awkward to
formalise since each case must be spelled out separately. Instead, we abandon parametrised
initiality and the skew-monoidal structure in favour of the skew-closed structure, recasting
each parametrised map T ⊕ X → A as a “standard” initial morphism T → JX,AK. This shift
sidesteps the one-way associator issue without weakening the theory – every construct in the
monoidal presheaf model (pointed strengths, algebraic monoids, etc.) has an equivalent closed
formulation. It also simplifies formalisation in a proof assistant, since closed maps translate
directly to dependent functions without requiring explicit products or dependent sums. Con-
ceptually, the closed freeness theorem yields a modular, efficient proof that replaces lengthy,
repetitive diagram chases (cf. Appendix B of Borthelle et al. (2020)) with concise, composi-
tional reasoning. The remainder of this section presents that proof.

11.2.1 Syntactic algebras

We introduce some auxiliary definitions and lemmas for efficiently equipping objects with
second-order (Σ,A)-algebra structure. Thus, fix a signature endofunctor Σ : Fam𝑆 → Fam𝑆

(which, as we know from Theorem 10.3.4, comes with compatible skew pointed strength and
powering over the Day hom) and a metavariable family A.

Notation. The functor (X + Σ + A⊕) will be denoted ΣX

A
, and ΣI

A
will be written as ΣA. We will

also write ®ΣX

A
for the category of (X + Σ + A⊕)-algebras and homomorphisms. The structure

maps of a ΣX

A
-algebra A will be denoted and called 𝑣 : X → A for the variable embedding,

𝑎 : ΣA→ A for the algebra map, and𝑚 : A A A for the metavariable embedding. ⌟

Lemma 11.2.1 ®Σ(=)(−) : Fam
op
𝑆 × Famop

𝑆 → Cat is functorial.

PRoof By definition, ®Σ(=)(−) maps families A and X to categories of algebras (ΣX

A
, ΣX

A
-Alg = ®ΣX

A
).

Given 𝑓 : Y → X and 𝑔 : B → A, the action of the Cat-morphism (i.e. functor) ®Σ𝑓
𝑔 : ®ΣX

A
→ ®ΣY

X

on objects (A, [𝑣, 𝑎,𝑚]) is given by

®Σ𝑓
𝑔 (A, [𝑣, 𝑎,𝑚]) ≜ (A, [Y

𝑓
X

𝑣
A, 𝑎,B

𝑔
A A

𝑚

A])

The action of ®Σ𝑓
𝑔 on morphisms ℎ : (A, [𝑣A, 𝑎A, 𝑛A]) → (B, [𝑣B, 𝑎B, 𝑛B]) gives a ®ΣY

B
-algebra

homomorphism
(A, [𝑣A ◦ 𝑓 , 𝑎A,𝑚A ◦ 𝑔]) → (B, [𝑣B ◦ 𝑓 , 𝑎B,𝑚B ◦ 𝑔])

with ℎ : A→ B as the underlying family map, and the structure map preservation conditions
reducing simply to the homomorphism conditions of ℎ:

220 abstRact syntax

Y B ⊕ A B ⊕ B

X X A ⊕ A A ⊕ B

A B A B

𝑓
𝑓

B⊕ℎ

𝑔⊕A 𝑔⊕B

𝑣A 𝑣B

A⊕ℎ

𝑚A 𝑚B

ℎ ℎ □

To allow for simple, compositional proofs of objects having ΣX

A
-algebra structure for different

choices of X, we use the Grothendieck construction to associate variable families X with their
respective second-order algebra categories.

Definition 11.2.1 The category ∫ ®ΣA is the Grothendieck construction for the functor
®Σ−
A
: (I/Mod𝑆)op → Cat; explicitly defined as having:

• Objects: pairs (X,A) with X a pointed module and A a ΣX

A
-algebra;

• Morphisms: pairs (𝑓 , ℎ) : (X,A) → (Y,B) with 𝑓 : Y → X a pointed module homomor-
phism, and ℎ : ®Σ𝑓

A
A→ B a ΣQ

A
-algebra homomorphism.

Explicitly, given a ΣX

A
-algebra A and a ΣY

A
-algebra B, Σ𝑓

A
A is also a ΣY

A
-algebra with variable

embedding Y
𝑓

X
𝑣

A, and a morphism ℎ : ®Σ𝑓

A
A→ B is a (Σ+A⊕)-algebra homomorphism

that preserves the Y-variable embedding:

X Y

A B

𝑣

𝑓

𝑢

ℎ

(†)

⌟

The following proposition allows us to parametrise second-order algebras with a pointed mod-
ule parameter, and will be the main tool we use to build second-order algebras.

Proposition 11.2.1 For all X ∈ I/Mod𝑆 , every ΣX

A
-algebra A induces a ΣJX,XK

A
-algebra JX,AK.

PRoof Let (A, [𝑣, 𝑎,𝑚]) be a ΣX

A
-algebra. We define the components of the ΣJX,XK

A
-algebra

structure on JX,AK as follows:

JX,XK JX,𝑣K JX,AK
ΣJX,AK sΣ

X,A JX, ΣAK JX,𝑎K JX,AK
A ⊕ JX,AK eA

X,A JX,A ⊕ AK JX,𝑚K JX,AK
where eA

X,A : A ⊕ JX,AK → JX,A ⊕ AK is in bijection with the associator (A ⊕ X) ⊕ A →
A ⊕ (X ⊕ A) that makes A⊕ : Fam𝑆 → Fam𝑆 a right module strength (see Theorem 5.1.1). □

Proposition 11.2.2 The internal hom J−,=K is the object mapping of a functor ∫ ®ΣA → ®ΣA.

metatheoRy by init ial ity 221

PRoof Given an object (X,A ∈ ®ΣX

A
) ∈ ∫ ®ΣA for a pointed module X, the internal hom JX,AK

is a ®ΣJX,XK
A

-algebra, and precomposing the variable embedding JX,XK JX,𝑣K JX,AK with the
applicator map j

X
: I → JX,XK makes JX,AK a ΣA-algebra. Such reasoning can be efficiently

presented by the following sequence of mappings:

A ∈ ®ΣX

A

Prop. 11.2.1
↦−−−−−−−−→ JX,AK ∈ ®ΣJX,XK

A

Lem. 11.2.1↦−−−−−−−−→ ®Σj
X

A
JX,AK ∈ ®ΣA

Now, given a morphism (𝑓 , ℎ) : (X,A) → (Y,B) in ∫ ®ΣA, we show that J𝑓 , 𝑔K : JX,AK→ JY,BK
is a ΣA-algebra homomorphism. Let (A, [𝑣, 𝑎,𝑚]) ∈ ®ΣX

A
and (B, [𝑢,𝑏, 𝑛]) ∈ ®ΣY

A
be algebras, with

ℎ : A→ B a (Σ +A⊕)-algebra homomorphism that commutes with 𝑢 and 𝑣 as in Diagram (†).
We show that J𝑓 , 𝑔K preserves variables, algebras, and metavariables.

I

JX,XK JX, YK JY, YK

JX,AK JX,BK JY,BK

jX

JX,𝑣K

jY

JY,𝑢K
JX,𝑔K

JX,𝑢K
J𝑓 ,YK

J𝑓 ,BK

JX,𝑓 K
𝑗

†

ΣJX,AK JY,BK
JX, ΣAK JY, ΣBK
JX,AK JY,BK

sΣ
X,A

JX,𝑎K
J𝑓 ,𝑔K

ΣJ𝑓 ,𝑔K

JY,𝑏K

sΣ
Y,B

J𝑓 ,Σ𝑔K
𝑠 2

𝑔b ®Σe

A ⊕ JX,AK A ⊕ JY,BK
JX,A ⊕ AK JY,A ⊕ AK

JX,AK JY,BK

A⊕J𝑓 ,𝑔K
eA
X,A eA

Y,B

J𝑓 ,A⊕𝑔KJX,𝑚K JY,𝑛K
J𝑓 ,𝑔K

𝑠 2

𝑔b ®A⊕e

□

Corollary 11.2.1 For all pointed □-coalgebras X, □ lifts to an endofunctor on ΣX

A
-algebras.

PRoof We have the following mappings to show that if A is a ΣX

A
-algebra, so is □A:

A ∈ ®ΣX

A

Prop. 11.2.1
↦−−−−−−−−→ □A ∈ ®Σ□X

A

Lem. 11.2.1↦−−−−−−−−→ ®Σ𝑟
A
□A ∈ ®ΣX

A

Given a ΣX

A
-algebra homomorphism ℎ : A→ B, (id, ℎ) : (X,A) → (X,B) is a morphism in ∫ ®ΣA

with (†) ℎ ◦ 𝑣 ◦ id = 𝑤 satisfied by the variable-preservation of ℎ, so Jid, ℎK = □ℎ : □A → □B
is also a homomorphism of ΣX

A
-algebras by Proposition 11.2.2. □

Remark. The corollary above demonstrates the benefit of working in the closed setting: such
a lifting property does not work for ^-algebras, as the metavariable constructor would have
to be of the form that requires the inverse of the skew associator:

A ⊕ ^A � A ⊕ (A ⊕ I) ? (A ⊕ A) ⊕ I
𝑚⊕I

A ⊕ I ⌟

222 abstRact syntax

The structure maps of the closed category are syntactic homomorphisms.

Lemma 11.2.2 For any ΣA-algebra A, i
A
: □A→ A is a ΣA-algebra homomorphism.

PRoof By Corollary 11.2.1, □A is a ΣA-algebra. The homomorphism conditions are:

□I I

□A A
iA

□𝑝

jI

𝑝iI
𝑖

Σ□A ΣA

□ΣA

□A A

𝑎

sΣ
I,A

□𝑎

ΣiA

iA

iΣA

𝑠𝑖 [〉

𝑖

A ⊕ □A A ⊕ A

□(A ⊕ A)

□A A

A⊕iA

eA
I,A

𝑚

i
A⊕A

□𝑚

iA

𝑖

𝑠𝑖 [〉

□

Lemma 11.2.3 For any ΣZ

A
-algebraA, pointed□-coalgebrasX, Y,Z and pointed multilinear maps

𝑓 : X Y Z, the following composite – implementing the synthetic compositor in the synthetic
closed I/Mod𝑆-modular category Fam𝑆 – is a ΣA-algebra homomorphism:

𝐿[𝑓]A : JZ,AK LY
Z,A JJY,ZK, JY,AKK J𝑓 ,idK JX, JY,AKK

PRoof First, we show that the endpoints are ΣA-algebras:

A ∈ ®ΣZ

A

Prop. 11.2.2
↦−−−−−−−−→ JZ,AK ∈ ®ΣA

A ∈ ®ΣZ

A

Prop. 11.2.1
↦−−−−−−−−→ JY,AK ∈ ®ΣJY,ZK

A

Lem. 11.2.1↦−−−−−−−−→ ®Σ𝑓

A
JY,AK ∈ ®ΣX

A

Prop. 11.2.2
↦−−−−−−−−→ JX, ®Σ𝑓

A
JY,AKK ∈ ®ΣA

Next, we establish the homomorphism conditions:

I JX,XK
JZ,ZK JJY,ZK, JY,ZKK JX, JY,ZKK
JZ,AK JJY,ZK, JY,AKK JX, JY,AKK

jX

jZ

JZ,𝑝K
LY
Z,A J𝑓 ,idK

JX,𝑓 K
JX,JY,𝑝KK

LY
Z,Z

Jid,JY,𝑝KK
J𝑓 ,idK

jJY,ZK
𝑗

𝐿 3

ΣJZ,AK ΣJJY,ZK, JY,AKK ΣJX, JY,AKK
JX, ΣJY,AKK

JZ, ΣAK JJY,ZK, JY, ΣAKK JX, JY, ΣAKK
JZ,AK JJY,ZK, JY,AKK JX, JY,AKKJX,JY,𝑎KK

JX,sΣ
Y,AK

sΣ
X,JY,AK

sΣ
Z,A

ΣLY
Z,A ΣJ𝑓 ,idK

LY
Z,A J𝑓 ,idK

JZ,𝑎K
LY
Z,ΣA J𝑓 ,idK

Jid,JY,𝑎KK

𝑠𝛼�𝐿

𝐿 2

metatheoRy by init ial ity 223

A ⊕ JZ,AK A ⊕ JJY,ZK, JY,AKK A ⊕ JW, JY,AKK
JJY,ZK,A ⊕ JY,AKK JW,A ⊕ JY,AKK

JZ,A ⊕ AK JJY,ZK, JY,A ⊕ AKK JW, JY,A ⊕ AKK
JZ,AK JJY,ZK, JY,AKK JW, JY,AKK

A⊕LY
Z,A

eA
Z,A

A⊕J𝑓 ,idK
eAJY,ZK,JY,AK eA

W,JY,AK

J𝑓 ,idK
Jid,eA

Y,AK JW,eA
Y,AK

LY
Z,A⊕AJZ,𝑚K

J𝑓 ,idK
Jid,JY,𝑚KK JW,JY,𝑚KK

LY
Z,A J𝑓 ,idK

𝑠𝐿[〉

𝑠 1

𝐿 3

□

With the main lemmas about second-order algebra homomorphism conditions established, we
can move on to the proof of the freeness theorem.

11.2.2 Free substitution structure

In this section we work through the proof of the freeness theorem: the initial (Σ,A)-algebra
is the free Σ-monoid on A. We will use initial algebra semantics, using the lemmas from the
previous section. To fix notation, we will write (TA, [v, a,m]) for the initial (Σ,A)-algebra,
keeping A implicit in the first part of the proof. For a ΣA-algebra (A, [𝑣, 𝑎,𝑚]), the unique
ΣA-algebra homomorphism into A will be called the interpretation map iA : T → A. Given
a pointed module X and assuming A is a ΣX

A
-algebra, Proposition 11.2.2 shows that JX,AK

is a ΣA-algebra; the homomorphism into it will be called the traversal map tX
A
: T → JX,AK.

The corresponding ΣA-algebra homomorphism conditions simplify to the following diagrams,
where 𝑠 [t] : ΣT → JX, ΣAK and 𝑒 [t] : A ⊕ T → JX,A ⊕ AK are compositions of the skew-
closed strengths for Σ and A⊕ with the traversal map in the style of synthetic module functors:

I

T A

v
𝑣

i

(iv)

i ◦ v = 𝑣

ΣT ΣA

T A

Σi

𝑎a

i

(ia)

i ◦ a = 𝑎 ◦ Σi

A ⊕ T A ⊕ A

T A

A⊕i

𝑎m

i

(im)

i ◦m{𝜀} =𝑚{i ◦ 𝜀}

I X

T A

jX

X

v 𝑣

X

t

(tv)

t{𝜎} ◦ v = 𝑣 ◦ 𝜎

ΣT ΣA

T A

𝑠 [t]
X

a 𝑎

X

t

(ta)

t{𝜎} ◦ a = 𝑎 ◦ 𝑠 [t]{𝜎}

A ⊕ T A ⊕ A

T A

𝑒 [t]
X

m 𝑚

X

t

(tm)

t{𝜎} ◦m{𝜀} =𝑚{t{𝜎} ◦ 𝜀}

Not only do we use initiality to induce interpretation and traversal maps, we also use the
uniqueness of the induced maps to establish equality laws. To show that two maps out of
T are equal, it is sufficient to establish that they are both ®ΣΣX-algebra homomorphisms; that
is, a⃝ the codomain of the maps is a ®ΣΣX-algebra, and h⃝ the maps preserve variables, the

224 abstRact syntax

algebra structure, and metavariables. In particular, every homomorphism T → T must be the
identity. The lemmas of the previous section will aid us in proving both of these requirements:
a⃝ by constructing the endpoint by composition of functors between ΣX

A
-algebras (ending with

X = I), and h⃝ by composing known ΣA-algebra homomorphisms. As an example, consider
the following lemma relating interpretation and traversal maps.

Lemma 11.2.4 Let (A, [𝑣, 𝑎,𝑚]) be a ΣA-algebra with a pointed map 𝑝 : X→ A, for a pointed □-
coalgebra (X, 𝑟 , 𝜂 : I→ X). Then, the composite below equals the interpretation map i : T → A:

T
t JX,AK J𝜂,AK JI,AK iA

A

PRoof The lemma is proved by initiality.
a⃝ The codomain A is a ΣA-algebra by assumption.
h⃝ The composite is a ΣA-algebra homomorphism as so are the components:

T

initialityJX,AK
Prop. 11.2.2 with (†) 𝑝 ◦ 𝑣 = 𝜂
by point-preservation of 𝑝JI,AK
Lemma 11.2.2

A

t

J𝜂,AK

iA

Thus, it is equal to the unique homomorphism i : T → A induced by initiality. □

In the presheaf model, the initial (Ω,P)-algebra is a presheaf by definition, with the renaming
operation part of the structure. In the familial model, the renaming operation has to be defined
separately, and it is a prerequisite to the substitution structure in which the pointed module
parameter X is instantiated with T . Fortunately, the renaming operation T → □T can be
expressed as an I-parametrised traversal.

Proposition 11.2.3 T is a pointed □-coalgebra.

PRoof We induce the □-coalgebra structure map r : T → □T as the unique traversal tIT .

Counit law The counit law T
r □T

iT
T = T

id
T follows from Lemma 11.2.4,

with (Y, 𝑦, 𝜂) ≜ (I, j
I
, id), A ≜ T and 𝑝 = v .

Comultiplication law The comultiplication law

T
r □T

𝛿T □□T = T
r □T □r □□T

metatheoRy by init ial ity 225

is established by showing that both composites are ΣA-algebra homomorphisms, as a⃝ is sat-
isfied by two applications of Corollary 11.2.1. Note that 𝛿X : □X → □□X is implemented as

𝐿[j
I
]X : JI,XK LI

I,X JJI, IK, JI,XKK JjI,idK JI, JI,XKK.
T

initiality
□T

Lem. 11.2.3 with pointed
multilinear j

I
(Lem. 5.2.1)

□□T

r

𝐿[jI]

T

initiality
□T

Cor. 11.2.1 with initial
homomorphism r

□□T

r

□r

Point Finally, T is pointed with v : I→ T , and the point-renaming compatibility condition

I
v

T
r □T = I

jI □I □r □T

is the v-preservation law tv of r . □

Proposition 11.2.4 For a ΣA-algebra (A, [𝑣, 𝑎,𝑚]), ifA possesses a pointed□-coalgebra structure
𝑟 : A→ □A such that 𝑟 is a ΣA-algebra homomorphism, the initial interpretation map i : T → A

is a pointed □-coalgebra homomorphism.

PRoof □A is a ΣA-algebra by Corollary 11.2.1. We show that both composites of the □-
coalgebra homomorphism condition are ΣA-algebra homomorphisms and are therefore equal:

T
r □T □i □A = T

i
A

𝑟 □A

T

initiality of r
□T

Cor. 11.2.1 with initial
homomorphism i

□A

r

□i

T

initiality of i
A

assumption
□A

i

𝑟

□

Proposition 11.2.5 For a pointed □-coalgebra (X, 𝜂, 𝑥) and ΣX

A
-algebra homomorphism

(A, [𝑣, 𝑎,𝑚]), the induced traversal map t : T → JX,AK is a pointed multilinear map if:

• (A, I 𝑣
A

𝑟 □A) is a pointed □-coalgebra;
• 𝑓 : X→ A is a pointed □-coalgebra homomorphism;

• 𝑟 : A→ □A is a ΣX

A
-algebra homomorphism.

PRoof The first multilinear axiom expresses the □-coalgebra homomorphism condition of
t, which follows from Proposition 11.2.4 above with (A, 𝑟) ≜ (JX,AK, 𝐿[j

X
]A : JX,AK →

□JX,AK). As j
X
is multilinear, 𝐿[j

X
]A is a ΣA-algebra homomorphism by Lemma 11.2.3.

226 abstRact syntax

The second multilinear axiom expresses the equality of the composites

T
t JX,AK JX,𝑟K JX,□AK = T

t JX,AK 𝐿[𝑥]A JX,□AK
which we establish by showing a⃝ for JX,□AK and h⃝ for the morphisms:

A ∈ ®ΣX

A

Cor. 11.2.1↦−−−−−−−→ □A ∈ ®ΣX

A

Prop. 11.2.2
↦−−−−−−−−→ JX,□AK ∈ ®ΣA

T

initialityJX,AK
Prop. 11.2.2 with
(†) 𝑟 ◦ 𝑞 = □𝑞 ◦ 𝑝 as
𝑞 ∈ □-Coalg(X,A)JX,□AK

t

JX,𝑟K

T

initialityJX,AK
Lem. 11.2.3 with pointed
multilinear 𝑝
(Lem. 5.2.1)JX,□AK

t

𝐿[𝑥] 𝑓𝐴

The map t : T → JX,AK is pointed if t{𝜂} ◦ v = 𝑣 . By Diagram (tv), t{𝜂} ◦ v = 𝑓 ◦ 𝜂, and
𝑓 ◦ 𝜂 = 𝑣 since 𝑓 is point-preserving. □

With these preliminaries, equipping T with an algebraic monoid structure – axiomatising the
structural simultaneous substitution operation – follows a very similar pattern.

Proposition 11.2.6 T is an invariant Σ-monoid.

PRoof The unit is the variable constructor v : I→ T , while the substitution s : T → JT , T K
is induced as the unique traversal map tTT , using T both as a pointed □-coalgebra (Proposi-
tion 11.2.3) and a ΣT

A
-algebra (T , [idT , a,m]).

Left unit The left unit law is expressed by Diagram (tv) of s:

I JT , T K
T JT , T K

jT

JT ,idKv

s

Right unit The right unit law requires showing that the following composite is the identity:

T
s JT , T K Jv,T K JI, T K iT

T

This is a consequence of Lemma 11.2.4 which shows that the composite must be equal to the
unique point-preserving interpretation iT : T → T , which, by uniqueness, is the identity on T .

Pointed multilinearity We show that s is a pointed multilinear map using Proposition 11.2.5:

• A = X ≜ T is a pointed □-coalgebra by Proposition 11.2.3;

• 𝑓 ≜ id : T → T is a pointed □-coalgebra homomorphism;

metatheoRy by init ial ity 227

• 𝑟 ≜ r : T → □T is a ΣT
A
-algebra homomorphism because it is a ΣA-algebra homomorphism,

□T is a ΣT
A
-algebra with 𝑣 ≜ r : T → □T , and r preserves idT and r .

Associativity The associativity law is the equality of the following composites, which we
establish by showing that both are ΣA-algebra homomorphisms:

T
s JT , T K JT ,sK JT , JT , T KK = T

s JT , T K 𝐿[s]T JT , JT , T KK
T

initialityJT , T K
Prop. 11.2.2 with s

in ®ΣT
A
as s ◦ id = sJT , JT , T KK

s

JT ,sK

T

initialityJT , T K
Lem. 11.2.3 with
pointed multilinear
s from aboveJT , JT , T KK

s

𝐿[s]T

Compatibility with renaming structure The invariant monoid compatibility law is:

T
s JT , T K Jv,T K JI, T K = T

r JI, T K
The first one is the composite of the initial homomorphism s, and the action Jv, T K, which is
homomorphic by Proposition 11.2.2 with 𝑓 ≜ v : I→ T and (†) id ◦ id ◦ v = v . The second one
is the initial homomorphism into □T , so by uniqueness, the two composites must be equal,
and T is an invariant substitution monoid.

Compatibility with algebra structure The Σ-algebra structure map for T is a : ΣT → T . The
Σ-monoid compatibility condition

ΣT ΣT

T T

𝑠 [t]
T̂

a 𝑎

T̂

t

with T̂ ∈ I/□-Coalg the pointed □-coalgebra with carrier T and structure map given by

T
s JT , T K Jv,idK

□T derived from the monoid structure. This is not precisely the a-
preservation law (ta) of s, in which the parameter T is a □-coalgebra with r . However, since
we’ve established previously that T is an invariant monoid, both algebra structures are equiva-
lent, so T̂ � (T , v, r) and the components of the corresponding pointed strengths coincide. □

The proposition above achieves our main practical goal: it derives and verifies the structural
simultaneous substitution operation directly from the inductive structure of the syntax. The
“wall” of renaming–lifting–substitution compatibility lemmas from Section 2.1.3 is now in
place – not by bypassing the work, but by proving each property where it necessarily arises,

228 abstRact syntax

whether as a naturality condition, a multilinearity axiom, or a monoid law. The underlying
structure of families, modules, and monoids guided the development; no law had to be intro-
duced ad hoc. To conclude, we turn to the proof of the freeness theorem.

Remark. From now on, the metavariable parameter of T will be made explicit; that is, we will
write TA for the initial ΣA-algebra. ⌟

Definition 11.2.2 Every metavariable parameter A has an associated term in TA, given by the
unit u : A→ TA of T , a natural transformation with components:

u : A
𝜌
A

A ⊕ I
A⊕v

A ⊕ TA
m

TA ⌟

Lemma 11.2.5 The metavariable constructor decomposes into the unit and substitution:

A ⊕ TM TA ⊕ TM

TM

u⊕id

m
s (sum)

PRoof By expanding u, we have the following diagram:

A ⊕ TA (A ⊕ I) ⊕ TA

A ⊕ (I ⊕ TA)

A ⊕ TA A ⊕ (TA ⊕ TA) (A ⊕ TA) ⊕ TA

TA TA ⊕ TA

𝜌
A
⊕id

𝛼
A,I,TA

(A⊕v)⊕id
A⊕𝜆TA

A⊕(v⊕id)

m

A⊕s
𝛼
A,TA,TA

m⊕id

s

𝜆𝛼𝜌

𝛼 2

tm

𝜂𝜇

Alternatively, we can express the unit in terms of the curried metavariable operator:

u : A m JTA, TAK Jv,idK JI, TAK iTA
TA

and use a similar diagram to prove that A m JTA, TAK equals m u
T

s JTA, TAK. □

Theorem 11.2.1
TA is the free Σ-monoid on A.

PRoof Proposition 11.2.6 showed that TA is a Σ-monoid on any sorted familyA. To establish
freeness, we need to show that given any Σ-monoid (M, 𝜂, 𝜇, 𝑎), any assignment 𝜔 : A → M

can be extended to a unique Σ-monoid homomorphism e𝜔 : TA→M along u : A→ TA:

A |TA|

|M|

u

𝜔 |e𝜔 | (eu)

e𝜔 ◦m{v} = 𝜔

metatheoRy by init ial ity 229

As usual, this is done by equippingMwith a ΣA-algebra structure and inducing e𝜔 by initiality.
The variable embedding and Σ-algebra structures ofM are given by 𝜂 and 𝑎 respectively, while
the metavariable embedding𝑚 : A M M is defined as the composite

A
𝜔

M M

𝜇

M

Theextension e𝜔 : TA→M is then the initial ΣA-algebra homomorphism into (M, [𝜂, 𝑎, 𝜇◦𝜔]).
Left to show is that e𝜔 is a Σ-monoid homomorphism that factors 𝜔 and the unique such map,
using the following lemmas.

Lemma 11.2.6 JM,MK is a ΣA-algebra.

PRoof M is a ΣA-algebra with (idM, 𝑎, 𝜇 ◦ 𝜔), so it is a ΣA

A
-algebra by Proposition 11.2.2. □

Lemma 11.2.7 The monoid multiplication 𝜇 : M→ JM,MK is a ΣA-algebra homomorphism.

PRoof JM,MK is a ΣA-algebra by above. The homomorphism conditions for 𝜇 are given
directly by the left unit law, the Σ-monoid compatibility condition, and the associativity law
of 𝜇 transposed in terms of 𝑒:

A ⊕M A ⊕ JM,MK JM,A ⊕MK
M ⊕M M ⊕ JM,MK JM,M ⊕MK

M JM,MK

A⊕𝜇

𝜔⊕M

eA
M,M

𝜔⊕id JM,𝜔⊕MK
M⊕𝜇

𝜇

eMM,M

JM,𝜇K
𝜇

𝑒 1

𝜇𝜇

□

Lemma 11.2.8 The extension e𝜔 : TA→M is a pointed □-coalgebra homomorphism.

PRoof M is a □-coalgebra with the structure 𝑟 : M 𝜇 JM,MK J𝜂,MK
□M, which is further-

more a ΣA-algebra homomorphism as so is 𝜇 from above, and J𝜂,MK by Proposition 11.2.2 with
𝑓 ≜ 𝜂 and (†) id ◦ id ◦ 𝜂 = 𝜂 satisfied directly. Then, by Proposition 11.2.4, e𝜔 : TA → M is a
pointed □-coalgebra homomorphism. □

Σ-monoid homomorphism We need to show that e𝜔 preserves variables, the Σ-algebra struc-
ture, and substitution. Thefirst two follow from the fact that e𝜔 is a ΣA-algebra homomorphism.
For preservation of substitution, we equate the following two composites:

TA
s JTA, TAK Jid,e𝜔K JTA,MK = TA

e𝜔
M

𝜇 JM,MK Je𝜔 ,MK JTA,MK

230 abstRact syntax

TA

initiality of sJTA, TAK
Prop. 11.2.2 with e𝜔 in ®ΣT

A
and (†) e𝜔 ◦ id = e𝜔JTA,MK

s

JTA,e𝜔K

T

initiality of e𝜔
M

Lemma 11.2.7JM,MK
Prop. 11.2.2 with e𝜔 ∈ □-Coalg(TA,M) by
Lem. 11.2.8 and (†) id ◦ id ◦ e𝜔 = e𝜔JTA,MK

e𝜔

𝜇

Je𝜔 ,MK

The composites are equal by uniqueness, so e𝜔 : TA→M is a ΣA-algebra homomorphism.

Factoring We next show that 𝜔 factors through e𝜔 with the following diagram in Fam𝑆 :

A A ⊕ I A ⊕ TA

M ⊕ I M ⊕M A ⊕M

M M TA

𝜌
A

𝜔

A⊕v

𝜔⊕I A⊕𝜂 A⊕e𝜔

m
M⊕𝜂

𝜇

𝜔⊕M

𝜌M

e𝜔

𝜌
iv

𝜇𝜂
im

Uniqueness Finally we show that e𝜔 equals any Σ-monoid homomorphism 𝑓 : TA→M that
factorises 𝜔 : 1⃝ 𝑓 ◦ u = 𝜔 . This is done by proving that 𝑓 must be a ΣA-homomorphism and
is therefore equal to the initial unique map e𝜔 . As before, the preservation of variables and
the Σ-algebra structure follow from the analogous axioms of Σ-monoid homomorphisms. The
preservation of metavariables is as follows:

A ⊕ TA A ⊕M

TA ⊕ TA TA ⊕M M ⊕M

TA M

A⊕𝑓

u⊕id

m

u⊕M
𝜔⊕M

id⊕𝑓
s

𝑓 ⊕M
𝜇

𝑓

𝑓 b𝜇 e

sum

1⃝

□

metatheoRy by init ial ity 231

In practice, the free monoid theorem implies the following: given a term 𝑡 ∈ TA𝛼 (Γ) and a
Σ-monoid M – that is, a model of the syntax equipped with substitution – any interpretation
of metavariables 𝜔 : A → M induces a homomorphic semantic interpretation e𝜔 : TA → M.
This homomorphism is structurally recursive, preserving variables and the Σ-algebra struc-
ture, and it satisfies the semantic substitution lemma: syntactic substitution corresponds to
monoid multiplication in the model. Traditionally, these properties require a long list of intri-
cate lemmas involving renaming, weakening, lifting, andmore. In the algebraic familial model,
however, once we verify that M is a valid model, the denotational interpretation follows auto-
matically – no additional machinery is needed.
Theorem 11.2.2

The free Σ-monoid assignment A ↦→ TA is the object mapping of the free Σ-monoid functor
T : Fam𝑆 → ΣMon.

PRoof The functorial action maps a function 𝑓 : A → B to a Σ-monoid homomorphism
T 𝑓 : TA→ TB. This is induced by freeness: since TB is a Σ-monoid and we have the assign-
ment 𝜔 ≜ A

𝑓
B

u
TB, there is a unique homomorphic extension eu◦𝑓 : TA → TB which

we define to be T 𝑓 . □

We will also write T : ΣMon → ΣMon for the induced Σ-monoid endofunctor, mapping
(M, 𝑎, 𝜂, 𝜇) to the Σ-monoid (TM, a, v, s) on the underlying family.

Corollary 11.2.2 By freeness, we have a natural transformation o : T =⇒ IdΣMon : ΣMon →
ΣMon, with components oM : TM→M given by the extension

M TM

M

uM

id
oM≜eid

In particular, we obtain the free Σ-monoid monad T : Fam𝑆 → Fam𝑆 = A ↦→ |TA| on families,
with unit uA : A → TA and multiplication jA ≜ oTA : T (TA) → TA. Consequently, every
Σ-monoid M is an algebra for the monad T , with structure map o ≜ oM : TM→M satisfying
the unit law by the factoring property, and the multiplication law by the naturality of o:

T (TM) TM

TM M

jM=oTM

oTo

oM

Thus, as expected, the freeness theorem yields a free Σ-monoid functor and induces a functor
ΣMon → T -Alg. Though we won’t rely on this, one can show that the categories are equiv-
alent by proving the forgetful functor ΣMon→ Fam𝑆 is monadic, using techniques based on
equational systems from Fiore and Hur (2009). Instead, we turn to the second-order aspects
of the syntax: metasubstitution and sound second-order equational reasoning.

232 abstRact syntax

11.3 Second-oRdeR syntax

The original presheaf model of Fiore et al. (1999) addressed syntax with variables and binders,
supporting both single-variable and simultaneous substitution. Hamana (2004) extended this
to include parametrised metavariables and characterised free Σ-monoids, marking a move to-
ward a general theory of second-order syntax. However, key practical limitations remained un-
resolved until Fiore (2008), who introduced two crucial refinements: an emphasis onmetasub-
stitution – mapping metavariables to terms with other metavariables – and its internalisation,
which generalises Hamana’s monadic approach to allow metavariables that reference vari-
ables beyond their declared parameters. Building on results from earlier sections, we translate
internal metasubstitution into the family setting and show its central role in enabling sound
second-order equational reasoning.

11.3.1 Metasubstitution

The free Σ-monoid theorem directly gives rise to a form of metasubstitution implemented as
the Kleisli extension; this was first proposed (in the monadic form) by Hamana (2004).

Definition 11.3.1 The external metasubstitution operation is the Kleisli extension

Fam𝑆 (A, TB) → Fam𝑆 (TA, TB) ∈ Set
⌟

Given ametavariablem ∈ A𝜏Π, a metasubstitution rule 𝜁 : A→ TB has to be type-and context-
preserving, so may only map m to terms in the same context Π. In particular, a metavariable
without parameters must be mapped to a closed term. For example, given m ∈ A𝛼 [𝛽,𝛾] and
n ∈ A𝛽 [] and the term 𝑥 : 𝛼,𝑦 : 𝛽, 𝑧 : 𝛾 ` m{n{}, 𝑧} : TA𝛼 [], we cannot instantiate n with 𝑦 as 𝑦
is not well-typed in the empty parameter context of n, and neither can we instantiate m with
anything that refers to 𝑥,𝑦 or 𝑧.

The solution is to decouple the type and context of a metasubstitution rule from the ambi-
ent context, allowing the instantiating terms to refer both to metavariable parameters as well
as any variables in the context. In the presheaf model this is made possible by internalising
the metasubstitution operation not as a mapping of hom-sets, but a natural transformation
of presheaf exponentials. Writing 〈P,Q〉 ∈ PSh for

∏
𝜏∈𝑆 P𝜏 ⊃ Q𝜏 , internal metasubstitution

operation in presheaves is

msP,Q : 〈P,TQ〉 → 〈TP,TQ〉 ∈ PSh

with two variations (uncurried and curried) being

TP ∗ 〈P,TQ〉 → TQ TP→ 〈P,TQ〉 ⊃ TQ

Fiore (2008) builds the former by equipping the term monad T with a cartesian strength
csP,𝑄 : TP ∗ 𝑄 → T(P ∗ 𝑄), using which an internal meta-renaming and meta-substitution
operation is derived:

mrP,Q : TP ∗ 〈P,Q〉
csP,〈P,Q〉

T(P ∗ 〈P,Q〉) T𝜀PQ TQ

second -oRdeR syntax 233

msP,Q : TP ∗ 〈P,TQ〉
mrP,Q

TTQ
jQ

TQ

The cartesian strength for T is dependent on a defined cartesian strength on Ω, and when
this cartesian strength is compatible with the pointed strength, the term monad T is cartesian
strong (Fiore, 2008, Theorem 13).

To translate the above to the family setting, we analyse how the constructions simplify for
free metavariable presheaves P ≜ ■A. Once again, we use the isomorphism ★(■𝑋 ⊃𝑄) �
𝑋 ⊸★𝑄 and ★T ■ � T to simplify 〈 ■A,T ■B〉 and 〈T ■A,T ■B〉 to∏

𝜏∈𝑆
A𝜏 ⊸TB𝜏 and

∏
𝜏∈𝑆

TA𝜏 ⊸TB𝜏

respectively. Writing 〈〈X, Y〉〉 ≜ ∏
𝜏∈𝑆 X𝜏 ⊸Y𝜏 for the left closed action (enrichment) of Fam𝑆

over ⊸, we have the following definition.

Definition 11.3.2 The internal metasubstitution operation is the Fam-morphism

msA,B : 〈〈A, TB〉〉 → 〈〈TA, TB〉〉 ∈ Fam

also equivalently written using the right action (powering) −• : Famop × Fam𝑆 → Fam𝑆 as

msA,B : TA→ 〈〈A, TB〉〉 −• TB ⌟

Of the two approaches, we prefer the second, as it is formulated entirely in terms of the Day-
closed structure andmakes the term TA explicit in the domain. Several construction strategies
are available. Since TA is the initial ΣA-algebra, we can define metasubstitution by giving
〈〈A, TA〉〉 −• TB a ΣA-algebra structure and appealing to initiality. Alternatively, treating TA

as the free Σ-monoid, we can show that 〈〈A, TA〉〉 −• TB is itself a Σ-monoid and define an
embedding 𝜔 : A→ 〈〈A, TA〉〉 −• TB.

We adopt a more abstract route using the framework from Chapter 4, based on clones and
powered monad morphisms. This approach automatically ensures the correctness properties
of metasubstitution, avoiding the need to reprove them via initiality or freeness. To summarise
the relevant results of the chapter: if T is a powered monad, then any T -algebra TM → M

corresponds bijectively to a powered monad morphism T =⇒ LAM, where the abstract cloneLAM is given by LAM(X) ≜ LA,AM(X) = 〈〈X,A〉〉 −• A. The induced operation, known as meta-
extension, internalises the free extension: it interprets a term in TA in a model M, given an
internal assignment of A-metavariables into M:

meA,M : TA→ LMMA = TA→ 〈〈A, TM〉〉 −• TM

Metasubstitution is then the meta-extension with M = TN.
To make use of the framework, we first prove that T is a powered monad: 1⃝ we equip

it with a transformation p𝑊,X : T (𝑊 −• X) → 𝑊 −• TX, 2⃝ prove its compatibility with the
closed structure i

X
: 𝐸 −• X → X and c𝑈 ,𝑊X : (𝑈 5 𝑊) −• X → (𝑈 −• (𝑊 −• X)), and 3⃝ with

the monad structure u : Id =⇒ T and j : TT =⇒ T . Conveniently enough, all the work for 1⃝
and 3⃝ has already been laid out in Section 3.4, as demonstrated next.

234 abstRact syntax

Proposition 11.3.1 For all𝑊 : Fam, 𝜑𝑊 : T (𝑊 −• (−)) =⇒ (𝑊 −• T (−)) is a family of monad-
functor distributive laws, and the family is natural in𝑊 .

PRoof We know from Theorem 10.3.5 that𝑊 −• (−) : Fam𝑆 → Fam𝑆 lifts to Σ-monoids
along the forgetful functor ΣMon→ Fam𝑆 . This, by Theorem 3.4.1, induces a monad-functor
distributive law T (𝑊 −• (−)) =⇒ 𝑊 −• T (−) : Fam𝑆 → Fam𝑆 , satisfying the compatibility
conditions

𝑊 −• X

T (𝑊 −• X) 𝑊 −• TX

u𝑊 −•X 𝑊−•uX

(𝜑𝑊)X

(pu)

T (𝑊 −• TX)

TT (𝑊 −• X) 𝑊 −• TTX

T (𝑊 −• X) 𝑊 −• TX

T ((𝜑𝑊)X) (𝜑𝑊)TX

j𝑊 −•X 𝑊−•jX

(𝜑𝑊)W

(pj)

For 𝑓 : 𝑊 → 𝑈 ∈ Fam, the natural transformation 𝑓 −• (−) : (𝑈 −•) =⇒ (𝑊 −•) lifts to a
Σ-monoid homomorphism also by Theorem 10.3.5, so by Proposition 3.4.1 the free monad T

distributes over 𝑓 −• (−), giving the naturality of 𝜑𝑊 : T (𝑊 −• (−)) =⇒𝑊 −• T (−) in the𝑊
component:

T (𝑈 −• X) 𝑈 −• TX

T (𝑊 −• X) 𝑊 −• TX

(𝜑𝑈)X

𝑓 −•TXT (𝑓 −•X)

(𝜑𝑊)X □

Theorem 11.3.1
T is a powered monad.

PRoof The powering components are given by the natural family of distributive laws above:

p𝑊,X ≜ (𝜑𝑊)X : T (𝑊 −• X) → (𝑊 −• TX) : Famop × Fam𝑆 → Fam𝑆

Its compatibility with the monad structure of T is also proved above. Left is the establishment
of the powering laws (compatibility with 𝑖 and 𝑐), which we do via freeness.

T (𝐸 −• Y) p𝐸,Y
𝐸 −• TY iTY

TY = T (𝐸 −• Y) T iY
TY

The first composite is a Σ-monoid homomorphism: p is a homomorphic extension and iTY by
Theorem 10.3.5. The second arrow is a functorial map of T : Fam𝑆 → ΣMon (Theorem 11.2.2)
and is therefore homomorphic. Both maps factor through 𝜔 ≜ uY ◦ iY : 𝐸 −• Y→ TY:

T (𝐸 −• Y) 𝐸 −• Y T (𝐸 −• Y)

𝐸 −• TY

TY Y TYuY uY

iY

p𝐸,Y

iTY

T iY

u𝐸−•Yu𝐸−•Y

𝐸−•uY

pu

𝑖

u

second -oRdeR syntax 235

Both composites of the law between p and c𝑈 ,𝑊X : (𝑈 4 𝑊 −• X) → 𝑊 −• (𝑈 −• X) are
Σ-monoid homomorphisms:

T (𝑈 4𝑊 −• X)
freeness

𝑈 4𝑊 −• TX
Thm. 10.3.5

𝑊 −• (𝑈 −• TX)

p𝑈4𝑊,X

c𝑈 ,𝑊TX

T (𝑈 4𝑊 −• X)
Thms. 10.3.5 and 11.2.2

T (𝑈 −• (𝑊 −• X))
freeness

𝑊 −• T (𝑈 −• X)
Thm. 10.3.5 and freeness

𝑊 −• (𝑈 −• TX)

T c𝑈 ,𝑊
X

p𝑊,𝑈 −•X

𝑊−•p𝑈 ,X

Both maps factor through (𝑈 4𝑊 −• X) id−•uX (𝑈 4𝑊 −• TX) c𝑈 ,𝑊TX (𝑊 −• (𝑈 −• TX)):

T (𝑈 4𝑊 −• X) 𝑈 4𝑊 −• X T (𝑈 4𝑊 −• X)

𝑈 4𝑊 −• TX 𝑊 −• (𝑈 −• X) T (𝑊 −• (𝑈 −• X))

𝑈 4𝑊 −• TX 𝑊 −• (𝑈 −• TX) 𝑊 −• T (𝑈 −• X)

p𝑈4𝑊,X

u𝑈4𝑊 −•X u𝑈4𝑊 −•X

id−•uX

c𝑈 ,𝑊
X

T c𝑈 ,𝑊
X

c𝑈 ,𝑊TX

u𝑊 −•(𝑈 −•X)

𝑊−•(𝑈−•uX)
p𝑊,𝑈 −•X

c𝑈 ,𝑊TX
𝑊−•p𝑈 ,X

𝑊−•u𝑈 −•X

pu

𝑐 3

u

pu

pu

Thus, p is a powering over −•, compatible with the monad structure of T . □

Instantiating Theorem 4.3.1 with the strong monad T , we get the following.

Definition 11.3.3 For all Σ-monoids M, the components of the powered monad map T =⇒LMM thus induced give the internal meta-extension operation

meA,M : TA→ (〈〈A,M〉〉 −•M) ∼ 〈〈A,M〉〉 → 〈〈TA,M〉〉

With M ≜ TB, the meta-extension specialises to the internal metasubstitution operation

msA,B : TA→ (〈〈A, TB〉〉 −• TB) ∼ 〈〈A, TB〉〉 → 〈〈TA, TB〉〉
⌟

It’s worth unpacking the metasubstitution operation, since deriving it through multiple ab-
stract layers can obscure its practical meaning. The powering of T is defined via the map

𝑊 −• JX, YK→ J𝑊 −• X,𝑊 −• YK
which is the closed analogue of the map𝑚[−] : (𝑊 −• X) ⊕ (𝑊 −• Y) →𝑊 −• (X ⊕ Y) from
Theorem 10.3.1. Precomposing this with the monoid multiplication M→ JM,MK, and lifting
the signature endofunctor Σ through the same powering, allows us to promote𝑊 −• (−) to an
endofunctor on Σ-monoids, as shown in Theorem 10.3.5. The meta-extension (and metasub-

236 abstRact syntax

stitution) operation is then freely induced by endowing the internal hom 〈〈A,M〉〉 → M with
Σ-monoid structure. The resulting ΣA-algebra homomorphism conditions shown below give
a structural definition of the metasubstitution operation me, ensuring it preserves variables,
constructors, and substitution in a way that aligns with the underlying syntax.

I M

TA 〈〈A,M〉〉 −•M

𝜂

v 𝜅 〈〈A,M〉〉
M

meA,M

Σ(TA) Σ(〈〈A,M〉〉 −•M) 〈〈A,M〉〉 −• ΣM

TA 〈〈A,M〉〉 −•M

ΣmeA,M

a

pΣ

〈〈A,M〉〉,M

id−•𝑎

meA,M

A ⊕ TA (〈〈A,M〉〉 −•M) ⊕ (〈〈A,M〉〉 −•M) 〈〈A,M〉〉 −• (M ⊕M)

TA 〈〈A,M〉〉 −•M

𝛽M
A
⊕meA,M

a

d
〈〈A,M〉〉
M,M

id−•𝜇

meA,M

The diagrams correspond to the following explicit recursive definitions:

me b𝜁 c (v 𝑣) ≜ 𝜂 (𝜄Γ,Δ2 𝑣)
me b𝜁 c (a 𝑡) ≜ 𝑎 (p b𝜁 c (Σme 𝑡))
me b𝜁 c (m{𝜀}a) ≜ 𝜇 {(me b𝜁 c ◦ 𝜀) ⋊ 𝜄Γ,Δ1 } (𝜁 a)

We work through the case of metasubstituting into metavariables. Take a parametrised
metavariable a ∈ A𝛼Π, an environment 𝜀 : Π TA Γ, and a metasubstitution rule 𝜁 ∈
〈〈A, TB〉〉Δ =

∏
𝜏,Θ A𝜏Θ → TB𝜏 (Θ + Δ). Metasubstituting (m{𝜀}a) ∈ TA𝛼Γ with 𝜁 starts

by looking up the metavariable a in the rule, which gives a term 𝜁 a ∈ TB𝛼 (Π + Δ) (instan-
tiating 𝜏 with 𝛼 and Θ with Π). However, ms b𝜁 c (m{𝜀}a) must be in TB𝛼 (Γ + Δ), so the
context of 𝜁 a needs to be adjusted by a substitution rule (TB)Π+Δ

Γ+Δ . This is exactly where
𝜀 ∈ TAΠ

Γ comes in, which maps every parameter in Π to a TA-term in Γ. To bring the
metavariable contexts to the right shape, the terms in 𝜀 are recursively metasubstituted, giv-
ing a substitution rule I𝛼Π

𝜀
TA𝛼Γ

ms b𝜁 c
TB𝛼 (Δ + Γ). Finally, this is widened by the

injection 𝜄Γ,Δ1 : I𝛼Γ → I𝛼 (Δ + Γ) to give the final substitution rule

(me b𝜁 c ◦ 𝜀) ⋊ 𝜄Γ,Δ1 ∈ (TB)Π+Δ
Γ+Δ

Applying this with the object-level substitution operation to 𝜁 a : TB𝛼 (Π + Δ) gives us a term
in s {(me b𝜁 c ◦ 𝜀) ⋊ 𝜄Γ,Δ1 } (𝜁 a) ∈ TB𝛼 (Γ + Δ), as required.

We now have the metasubstitution and meta-extension operations in hand, but their role
and governing laws remain to be placed in an abstract setting. Their representation as inter-
nalised extensions offers a key insight: the term monad T is not merely a monad on Fam𝑆 ,
but a monad enriched in Fam, with hom-objects given by 〈〈−,=〉〉 : Famop

𝑆 × Fam𝑆 → Fam. The
equivalence of enrichment and powering was the subject of Theorem 4.3.2, and instantiated
with the powered monad T , we obtain the enriched unit and extension operations

u : X→ TX ms : 〈〈X, TY〉〉 → 〈〈TX, TY〉〉

second -oRdeR syntax 237

satisfying the following axioms:

〈〈X, TY〉〉 〈〈TX, TY〉〉

〈〈X, TY〉〉

msX,Y

〈〈uX,id〉〉

ms b𝜁 c (u a) = 𝜁 (a)

𝐼 〈〈TX, TX〉〉

〈〈X,X〉〉 〈〈X, TX〉〉

jTX

jX

〈〈X,uX〉〉

msX,X

msbuc 𝑡 = 𝑡

〈〈Y, TZ〉〉 4 〈〈X, TY〉〉 〈〈TY, TZ〉〉 4 〈〈X, TY〉〉 〈〈X, TZ〉〉

〈〈TX, TY〉〉 4 〈〈TY, TZ〉〉 〈〈TX, TZ〉〉

msY,Z4id
msY,Z4msX,Y

MTY
X,TZ

msX,Z

MTY
TX,TZ

ms b𝜉c (ms b𝜁 c 𝑡) = ms bmsb𝜉c ◦ 𝜁 c 𝑡

The equational laws clearly encapsulate the intended unit and associativity laws that metasub-
stitution should satisfy. Similarly, the associativity of meta-extension is the law

〈〈Y,A〉〉 4 〈〈X, TY〉〉 〈〈TY,A〉〉 4 〈〈X, TY〉〉 〈〈X,A〉〉

〈〈TX, TY〉〉 4 〈〈TY,A〉〉 〈〈TX,A〉〉

meY,A4id
meY,A4msX,Y

MTY
X,A

meX,A

MTY
TX,A

(‡)

me b𝜅c (ms b𝜁 c 𝑡) = ms bmeb𝜅c ◦ 𝜁 c 𝑡

that is used in the soundness of the equational theory of the next section.
With this final characterisation of the second-order meta-extension and metasubstitution

operations, our study of second-order abstract syntax is complete. A direct application of
metasubstitution, meta-extension, and their laws concludes this chapter.

11.3.2 Equational logic

Among the first applications of the algebraic theory of second-order abstract syntax were term
equational systems and second-order equational logic. The general theory was developed by
Fiore and Hur (2007, 2008, 2009, 2010), Hur (2010), and Fiore (2013). We distil the core elements
of this research to a simple and implementation-friendly equational system that allows the
specification of second-order axioms between terms with variable binders and parametrised
metavariables, and synthesises a logic for second-order equational reasoning. The soundness
of the logic is established using the metasubstitution laws introduced in the previous section.

Notation. Elements of the set TA𝛼Γ for A ∈ Fam𝑆 , 𝛼 ∈ 𝑆 and Γ ∈ F [𝑆] will also be denoted
A ⊲ Γ ` 𝑡 : 𝛼 . ⌟

Definition 11.3.4 Let 𝐴 ⊆ ∑
A∈Fam𝑆

∑
Γ∈F [𝑆]

∑
𝛼∈Γ (A ⊲ Γ ` 𝑡 : 𝛼) × (A ⊲ Γ ` 𝑡 : 𝛼) be a relation

between (meta)variable contexts, terms and sorts, with elements denoted A ⊲ Γ ` 𝑡 = 𝑠 : 𝛼 .

238 abstRact syntax

Define an equational theory with axioms 𝐴 with the following rules and axioms:

ax
A ⊲ Γ ` 𝑡 = 𝑠 : 𝛼
A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼

Refl
A ⊲ Γ ` 𝑡 ≡ 𝑡 : 𝛼

textsf
A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼
A ⊲ Γ ` 𝑠 ≡ 𝑡 : 𝛼

tRans
A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 A ⊲ Γ ` 𝑠 ≡ 𝑢 : 𝛼

A ⊲ Γ ` 𝑡 ≡ 𝑢 : 𝛼
Ren

A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 𝜌 : Γ → Δ

A ⊲ Δ ` r 𝑡 𝜌 ≡ r 𝑠 𝜌 : 𝛼

msub
A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 𝜁 , 𝜉 ∈ 〈〈A, TB〉〉Δ ∀a ∈ A𝜏Π. B ⊲ Π + Δ ` 𝜁 a ≡ 𝜉 a : 𝜏

B ⊲ Γ + Δ ` ms 𝑡 𝜁 ≡ ms 𝑠 𝜉 : 𝛼
⌟

The rules and axioms above define an inductive proof system for equating two second-order
terms. A second-order axiom is a template for an equality rule, with metavariables standing
for terms that can be instantiated arbitrarily (as long as the type and parameter context match).
For example, in the second-order theory of the 𝜆-calculus (temporarily extended with arith-
metic, to make for more interesting examples), the axioms representing 𝛽 and 𝜂 axioms would
be stated as follows, with metavariable families A and B defined appropriately:

a : A𝛽 [𝛼], b : A𝛼 [] ⊲ [] ` app (lam (𝑥 . a{𝑥}), b) ≡ a{b} : 𝛽
g : B𝛼�𝛽 [] ⊲ [] ` lam (𝑥 . g 𝑥) ≡ g : 𝛼 � 𝛽

Any instance of 𝛽-equivalence may be derived by instantiating the axiom with the msub rule
with terms of the appropriate form. For example, given terms

∅ ⊲ 𝑥 : N � N, 𝑦 : N ` 𝑥 · (𝑦 + 5) : N ∅ ⊲ 𝑦 : N ` 𝑦 − 1 : N

we construct the metasubstitution rule 𝜁 ≜ {ab𝑥c ↦→ 𝑥 · (𝑦 + 5), b ↦→ 𝑦 − 1} ∈ 〈〈A, ∅〉〉[𝑦 : N],
and applying it to both sides of the 𝛽 axiom gives the derived equality:

∅ ⊲ 𝑦 : N ` app (lam (𝑥 . 𝑥 · (𝑦 + 5)), 𝑦 − 1) ≡ (𝑦 − 1) · (𝑦 + 5) : N

The rule Ren, not part of the original equational logic of Fiore and Hur (2010), is required to
prove the general congruence property, where the rewritten subexpressions are open terms.
As a variation of the example above, take

∅ ⊲ 𝑦 : N ` 𝑦 · (app (lam (𝑥 . 𝑥 + 𝑦), 3)) : N

The abstracted term b : BN [N] ⊲ [𝑦 : N] ` 𝑦 · b{𝑦} : N and metasubstitution rules 𝜁 , 𝜉 ∈
〈〈A, ∅〉〉[𝑦 : N] now live in the same nonempty context, and applying ms will combine the
contexts to [𝑦 : N, 𝑦 : N]; or more generally, to Γ+Γ. Collapsing the repeated context elements
is done with the rule Ren, with the diagonal renaming [id, id] : Γ + Γ → Γ. Since metasubsti-
tution always extends the context of terms, such a renaming cannot be captured as a special
case of metasubstitution, hence its addition to the equational logic; this is not a problem in the
presheaf model, as the presheaf exponentials can represent more complex forms of context
manipulation, not just concatenation.

second -oRdeR syntax 239

While the logic allows for equational reasoning within the syntax, this is not connected to
any models yet. Given a set of axioms, we may consider models – Σ-monoids – in which the
axioms become equal when interpreted.

Definition 11.3.5 A Σ-monoidM is a model for a second-order axiom A ⊲ Γ ` 𝑡 = 𝑠 : 𝛼 , denoted
M ⊨ A ⊲ Γ ` 𝑡 = 𝑠 : 𝛼 , if me 𝑡 = me 𝑠 ∈ LMMA; explicitly, for all 𝜁 : 〈〈A,M〉〉Δ, we have
me b𝜁 c 𝑡 = me b𝜁 c 𝑠 ∈ M𝛼 (Γ + Δ). M satisfies A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 , denoted M ⊨ A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 ,
if me 𝑡 = me 𝑠 ∈ LMMA. ⌟

Definition 11.3.6 For a set of axioms 𝐴, a (Σ, 𝐴)-monoidM is a Σ-monoid such that for every
axiom in 𝐴, M ⊨ A ⊲ Γ ` 𝑡 = 𝑠 : 𝛼 . ⌟

The theory of metasubstitution and meta-extension developed earlier makes the soundness of
the equational logic quite easy to prove.
Theorem 11.3.2

Let 𝐴 be a set of axioms over the signature Σ. If A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 is derivable for two terms
𝑡, 𝑠 ∈ TA𝛼Γ, then M ⊨ A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 for all (Σ, 𝐴)-monoids M.

PRoof Let 𝑡, 𝑠 ∈ TA𝛼 (Γ) be two terms and assume A ⊲ Γ ` 𝑡 ≡ 𝑠 : 𝛼 . We prove the soundness
theorem by induction on the derivation of the equality.

Case ax M is a (Σ, 𝐴)-monoid, so it satisfies the axiom by assumption.

Case Refl, sym, tRans Follow by the equivalence relation property of equality.

Case Ren Let 𝜁 : 〈〈A,M〉〉Θ a metasubstitution rule and assume inductively that me𝑎 𝜁 =
me𝑏 𝜁 . We first show that me : TA → 〈〈A,M〉〉 −• M is a □-coalgebra homomorphism
using the diagram below, where the naturality and preservation conditions concerning r

are derived from those of s, and the fact that o, p and T 𝑓 are Σ-monoid homomorphisms:

TA T (〈〈A,M〉〉 −•M) 〈〈A,M〉〉 −• TM 〈〈A,M〉〉 −•M

〈〈A,M〉〉 −• □TM 〈〈A,M〉〉 −• □M

□TA □T (〈〈A,M〉〉 −•M) □(〈〈A,M〉〉 −• TM) □(〈〈A,M〉〉 −•M)

T 𝛽M
A

rA

p〈〈A,M〉〉,M

r 〈〈A,M〉〉−•M

id−•o

id−•rM id−•𝑟
id−•□o

s
〈〈A,M〉〉−•
I,TM s

〈〈A,M〉〉−•
I,M

□T 𝛽M
A

□p〈〈A,M〉〉,M □(id−•o)

r pbr e

obr e

𝑠 2

With this, meta-extension of a renamed term calculates as follows:

me (r 𝑎 𝜌) 𝜅 = 𝑠{𝜌}(𝑟 ◦me𝑎 𝜅)
= 𝑠{𝜌}(𝑟 ◦me𝑏 𝜅) (induction)

= me (r 𝑏 𝜌) 𝜅

Case msub Let 𝜁 , 𝜉 : 〈〈A, TB〉〉Δ be metasubstitution rules, and 𝜅 : 〈〈B,M〉〉Θ a meta-extension
rule. Assume inductively that ms 𝑡 = ms 𝑠 and for all b ∈ B𝜏 (Π), 𝜁 b = 𝜉 b. We use the

associativity property of metasubstitution shown in Diagram (‡) to calculate as follows:

me b𝜅c (ms b𝜁 c 𝑡) = ms bmeb𝜅c ◦ 𝜁 c 𝑡 (Diagram (‡))

= ms bmeb𝜅c ◦ 𝜉c 𝑠 (induction)

= me b𝜅c (ms b𝜉c 𝑠) (Diagram (‡))

Thus, for every model, satisfaction of axioms extends to satisfaction of any equation provable
from the axioms. □

This chapter unified the abstract developments from earlier sections to construct the familial
model of second-order abstract syntax. Using initial algebra semantics, we derived homomor-
phic interpretation maps across models parametrised by renaming, substitution, and metasub-
stitution. We proved a freeness theorem linking initial second-order algebras with free models,
and established correctness and compatibility laws via the uniqueness of initial semantics and
free extensions. Finally, we placed internalised metasubstitution and meta-extension in an en-
riched setting, and used this structure to formulate a sound, syntax-generic equational logic
for second-order reasoning.

Summary of Part III

Part III introduced the family-based model of second-order abstract syn-
tax, deriving it from and relating it to the presheaf model. We addressed
the limitations of the presheaf setting – such as the absence of presheaf
actions and the need for quotienting – by formulating the model in more
general contexts: skew-monoidal categories and the Day convolution
structure. Beginning in Chapters 8 and 9, we developed the general the-
ory of presheaves, showing how enriched structure on the base category
yields stronger substitution principles in the presheaf category. The re-
stricted nature of discrete presheaves, or type- and context-indexed fami-
lies, prompted a careful treatment of renaming, naturality, and parametri-
sation in Chapter 10. This, in turn, enabled a reformulation of the key
theorems of the presheafmodel that underpin the development of second-
order abstract syntax in Chapter 11.

Next, we demonstrate how the abstract theory of the familial model
directly informs the implementation of a generic syntax-formalisation li-
brary, and how it can be used for syntax-generic metatheory.

242 abstRact syntax

paRt iv

A P P L I C A T I O N S

The categorical theory of second-order abstract syntax developed so far has been
entirely mathematical, though always with a practical goal in mind: to distil core
constructions and theorems into a robust foundation for mechanising second-order
calculi. Our aim was not to formally verify the familial model itself, but to use its
insights to build a formalisation framework that eliminates the tedious and error-
prone boilerplate common in mechanised programming language research.

In this final part of the thesis, we outline the key components of our Agda im-
plementation of a second-order formalisation framework. Chapter 12 provides a
guided overview of the library, focusing on the main challenges of encoding ab-
stract categorical ideas in a concrete setting. We then turn to applications in Chap-
ter 13, demonstrating how the framework supports both generic metatheory and
the implementation of specific syntaxes.

244

c h a p t e R 1 2

Computer formalisation

The theory developed thus far represents only part of the contribution of this research. The
practical complement is the development of a syntax-generic formalisation framework for
second-order calculi in Agda, called agda-soas. This framework implements the core ele-
ments of the mathematical theory and serves as a proving ground for its claims of practicality
and formalisability. It is not intended to mechanise the familial model in its full abstraction
and generality. Rather, this principled, selective approach enabled the creation of a stream-
lined and relatively simple system, underpinned by a robust mathematical foundation. Unlike
many existing formalisation frameworks, agda-soas handles nearly all boilerplate upfront,
using syntax-generic initial algebra semantics; only minimal syntax-specific metatheory is re-
quired, and even that is automatically generated from a concise syntax-description language.

Since the theoretical underpinnings of the library have already been presented, we avoid
repeating the formal definitions except for illustrative purposes. Sections 12.1 and 12.2 provide
examples of how the abstract categorical theory is realised as clean, idiomatic Agda code. Of
particular interest is the interface between the generic metatheory and user-defined syntax
signatures, the subtleties of which are discussed in Section 12.3.

This chapter builds on our POPL 2022 distinguished paper (Fiore and Szamozvancev, 2022),
with supplementary materials available at the paper’s website. The agda-soas library, avail-
able on GitHub, currently lags slightly behind the full theory presented in this thesis, as it does
not yet incorporate the enriched metasubstitution framework.

12.1 Familial model

We start by laying down the basic foundations of the familial model: contexts and families in
Section 12.1.1, and the generic axiomatisation of renaming and substitution in Section 12.1.2.

12.1.1 Contexts, families, and variables

The definitions of contexts and variables are well-known from intrinsically-typed treatments
of syntax. Rather than using named variable-type pairs, contexts are lists of types that come

https://www.cl.cam.ac.uk/~ds709/agda-soas/
https://github.com/DimaSamoz/agda-soas

246 computeR foRmalisation

from a fixed set 𝑆 , and variables are typed and scoped de Bruijn indices into the context: new
points to the first element of the context, while old(𝑣) points to the variable 𝑣 in an extended
context. This corresponds to the coproduct structure of the presheaf of variables.

data Ctx : Set where
∅ : Ctx
· : (𝛼 : 𝑆)→ (Γ : Ctx)→ Ctx

data I : 𝑆 → Ctx→ Set where
new : I 𝛼 (𝛼 · Γ)
old : I 𝛽 Γ→ I 𝛽 (𝛼 · Γ)

Families and sorted families are indexed families of sets, expressed in Agda as functions in
the universe level Set1, containing types and the type of types Set:

Fam : Set1
Fam = Ctx→ Set

FamS : Set1
FamS = 𝑆 → Fam

___ : FamS→ FamS→ Set
X _ Y = {𝛼 : 𝑆}{Γ : Ctx}→ X 𝛼 Γ→ Y 𝛼 Γ

The concatenation of contexts is used in the definition of context extension, as well as the
Day homs. The derivation of the latter from the former is possible, but would result in an
unnecessary indirection step – we will often prefer to define things concretely, where the
derivation from a more general construct is of mathematical interest only.

+ : Ctx→ Ctx→ Ctx
∅ + Δ = Δ
(𝛼 · Γ) + Δ = 𝛼 · (Γ + Δ)

𝛿 : Ctx→ Fam→ FamS

𝛿 Θ 𝑋 Γ = 𝑋 (Θ + Γ)

⊸ : Fam→ Fam→ Fam
(𝑋 ⊸ 𝑌) Γ = {Δ : Ctx}→ 𝑋 Δ→ 𝑌 (Γ + Δ)

_ ⊸_ : Fam→ Fam→ Fam
(𝑋 ⊸𝑌) Γ = {Δ : Ctx}→ 𝑋 Δ→ 𝑌 (Δ + Γ)

Renaming and substitution rules are type-preserving families of maps from variables to vari-
ables or families, with a change of context:

–[]�_ : Ctx→ FamS→ Ctx→ Set
Γ –[X]� Δ = {𝛼 : 𝑆}→ I 𝛼 Γ→ X 𝛼 Δ

{ : Ctx→ Ctx→ Set
Γ{ Δ = Γ –[I]� Δ

The cocartesian structure of contexts and renamings is exhibited by the definitions of the
injections and copairing, both done by induction on the variable syntax.

inl : (Δ : Ctx)→ Γ{ (Γ + Δ)
inl Δ new = new
inl Δ (old 𝑣) = old (inl Δ 𝑣)

inr : (Γ : Ctx)→ Δ{ (Γ + Δ)
inr ∅ 𝑣 = 𝑣
inr (𝛼 · Γ) 𝑣 = old (inr Γ 𝑣)

copair : (X : FamS)→ (Γ –[X]� Θ)→ (Δ –[X]� Θ)→ (Γ +Δ) –[X]� Θ

copair X {∅} 𝜎 𝜍 𝑣 = 𝜍 𝑣
copair X {𝛼 · Γ} 𝜎 𝜍 new = 𝜎 new
copair X {𝛼 · Γ} 𝜎 𝜍 (old 𝑣) = copair X (𝜎 ◦ old) 𝜍 𝑣

A useful special case of copairing is adding a single term to a substitution, which corresponds
to the standard cons operation in the theory of explicit substitutions (Abadi et al., 1991).

add : (X : FamS)→ X 𝛼 Δ→ Γ –[X]� Δ→ (𝛼 · Γ) –[X]� Δ

add X 𝑡 𝜎 = copair X (𝜆{ new � 𝑡 }) 𝜎

famil ial model 247

To bridge the gap between the categorical theory and existing syntax formalisation efforts,
we include a glossary of terms to connect agda-soas to other proposed frameworks, most
notably the state of the art work by Allais et al. (2021) on the generic-syntax library.

Families McBride (2005) recognises the value of abstracting intrinsically-typed variables and
terms into intrinsically-typed sets, but gives them the vague name of stuff, denoted ♦. Allais
et al. (2021) calls 𝑆-sorted families 𝑆 -Scoped and introduces some syntactic sugar for con-
structing and manipulating sorted (and unsorted families). The Scope operator corresponds
to context extension.

Substitution rules One of the main innovations of McBride (2005) is to generalise the notion
of a renaming and substitution rule into a type-preserving map from variables over Γ to
“stuf” over Δ. Allais et al. (2021) writes (Γ -Env) X Δ for such transformations, and calls
renaming maps Thinnings. The • operator corresponds to our add, and select is simply the
composition of a renaming and substitution rule.

12.1.2 Renaming and substitution

Renaming We seek a way to equip families with a functorial action of the form

r : {Γ Δ : Ctx}→ (Γ { Δ)→ 𝑋 Γ→ 𝑋 Δ

that, syntactically, corresponds to a renaming operation. Rearranging this to the form

r : {Γ : Ctx}→ 𝑋 Γ→
(
{Δ : Ctx}→ (Γ { Δ) → 𝑋 Δ

)
we note that the codomain is a function of 𝛼 and Γ, and refactoring this as an operator on
families gives us the cofree presheaf comonad:

□ : Fam→ Fam
□ 𝑋 Γ = {Δ : Ctx}→ (Γ{ Δ)→ 𝑋 Δ

The coalgebra structure map for this family expands precisely to the type of r above, with
the coalgebra axioms corresponding to the expected functoriality laws: preservation of iden-
tity and composition of renamings. In Agda, such structures are typically axiomatized us-
ing parametrised records. We follow the standard approach of separating structures – which
equip a given object with additional structure – from bundles – which package the object to-
gether with its structure. This pattern is familiar from libraries such as agda-stdlib and
agda-categories (Hu and Carette, 2021, Section 4.2).

record Coalg (𝑋 : Fam) : Set where
field r : 𝑋 _ □ 𝑋

r-id : {𝑡 : 𝑋 Γ}→ r[id] 𝑡 ≡ 𝑡
r-◦ : {𝜌 : Γ{ Δ}{𝜚 : Δ{ Θ}{𝑡 : 𝑋 Γ}→ r[𝜚 ◦ 𝜌] 𝑡 ≡ r[𝜚] (r[𝜌] 𝑡)

https://github.com/gallais/generic-syntax?tab=readme-ov-file
https://gallais.github.io/generic-syntax/Data.Var.html#531
https://gallais.github.io/generic-syntax/Generic.Syntax.html#1217
https://gallais.github.io/generic-syntax/Data.Environment.html#577
https://gallais.github.io/generic-syntax/Data.Environment.html#710
https://gallais.github.io/generic-syntax/Data.Environment.html#2189
https://gallais.github.io/generic-syntax/Data.Environment.html#2346
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-categories

248 computeR foRmalisation

For syntactic simplicity, we use the synonym r[𝜌] 𝑡 for r 𝑡 𝜌 . Since context transformations
such as weakening, contraction, etc. correspond to renaming maps, the associated structural
rules for a □-coalgebra 𝑋 can be derived via renaming:

wkl : 𝑋 Γ→ 𝑋 (Γ + Δ)
wkl 𝑡 = r[inl Δ] 𝑡

wkr : 𝑋 Δ→ 𝑋 (Γ + Δ)
wkr 𝑡 = r[inr Γ] 𝑡

contr : 𝑋 (Γ + Γ)→ X Γ
contr 𝑡 = r[copair I id id] 𝑡

A morphism of families that preserves the renaming operation is a □-coalgebra homomor-
phism The natural notion of a transformation between □-coalgebras is a homomorphism: a
map 𝑋 _ 𝑌 that preserves the coalgebra structures of 𝑋 and 𝑌 .

record Coalg⇒ (𝑋 □ : Coalg 𝑋)(𝑌 □ : Coalg 𝑌) (𝑓 : 𝑋 _ 𝑌) : Set where

field 〈r〉 : {𝜌 : Γ{ Δ}{𝑡 : 𝑋 Γ}→ 𝑓 (𝑋 .r[𝜌] 𝑡) ≡ 𝑌 .r[𝜌] (𝑓 𝑡)

By turning the structures defined here into bundles, we can define the category of coalgebras
and coalgebra homomorphisms; while we won’t detail it here, the agda-soas library has some
generic functionality to define categories of objects with extra structure with minimal effort.

Coalgebra : Set1
Coalgebra = Σ Set Coalg

Coalgebra⇒ : Coalgebra→ Coalgebra→ Set
Coalgebra⇒ (𝑋 , 𝑋 □) (𝑌 , 𝑌 □) = Σ (𝑋 _ 𝑌) (Coalg⇒ 𝑋 □ 𝑌 □)

Coalgebras : Category
Coalgebras = record { Obj = Coalgebra ; _⇒_ = Coalgebra⇒ ; . . . }

The record PCoalg for pointed coalgebras (equipped with a point 𝜂 : I _ X that commutes
with renaming) and homomorphisms between them are defined similarly.

Substitution The axiomatisation of substitution structure follows the same pattern. We de-
fine the internal substitution hom as a generalisation of the cofree coalgebra, parametrising a
family with an arbitrary substitution rule:

⟬_,_⟭ : FamS→ FamS→ FamS

⟬ X , Y ⟭ 𝛼 Γ = {Δ : Ctx}→ (Γ –[X]� Δ)→ Y 𝛼 Δ

The closed structure of families under this hom is proved easily: the structural transformations
i : ⟬ I , X ⟭_ X, j : I _ ⟬X , X ⟭ and L : ⟬Y , Z ⟭_ ⟬ ⟬X , Y ⟭ , ⟬X , Z ⟭ ⟭ are defined by function
application and composition. A family equipped with a substitution operation is a monoid in
this closed category, with the laws (defined in terms of i, j, L) expanding as:

record Mon (M : FamS) : Set where

field 𝜂 : I _ M

𝜇 : M _ ⟬ M , M ⟭

𝜂-𝜇 : {𝜎 : Γ –[M]� Δ}{𝑣 : I 𝛼 Γ}→ 𝜇[𝜎] (𝜂 𝑣) ≡ 𝜎 𝑣
𝜇-𝜂 : {𝑡 : M 𝛼 Γ}→ 𝜇[𝜂] 𝑡 ≡ 𝑡
𝜇-𝜇 : {𝜎 : Γ –[M]� Δ} {𝜍 : Δ –[M]� Θ} {𝑡 : M 𝛼 Γ}→

𝜇[𝜍] (𝜇[𝜎] 𝑡) ≡ 𝜇[𝜇[𝜍] ◦ 𝜎] 𝑡

famil ial model 249

The multiplication 𝜇 represents simultaneous substitution, replacing every variable in context
Γ with an M-term in Δ. In practice (e.g. in 𝛽-reduction) one often uses one- or two-variable
substitution for the last variable or variables in the context, which is derived using add:

[_/] : M 𝛼 Γ→M 𝛽 (𝛼 · Γ)→M 𝛽 Γ
[𝑠 /] 𝑡 = 𝜇[add M 𝑠 𝜂] 𝑡

[_,_/]2 : M 𝛼 Γ→M 𝛽 Γ→M 𝜏 (𝛼 · 𝛽 · Γ)→M 𝜏 Γ
[𝑠1 , 𝑠2 /]2 𝑡 = 𝜇[add M 𝑠1 (add M 𝑠2 𝜂)] 𝑡

The associativity axiom 𝜇-𝜇 generalises the associativity laws of single-variable substitution,
often encountered in normalisation theorems: the following instance is derivable for every
monoid, where [_/]′ is single-variable substitution for the second variable of the context:

subst-lemma : (𝑡 : M𝛾 (𝛽 · 𝛼 · Γ))(𝑠 : M 𝛽 (𝛼 · Γ))(𝑟 : M 𝛼 Γ)→
[𝑟 /] ([𝑠 /] 𝑡) ≡ [[𝑟 /] 𝑠 /] ([𝑟 /]′ 𝑡)

Monoid homomorphisms preserve the unit and multiplication. WhenM is a family associated
with an inductively defined syntax, N is a model of the syntax, and 𝑓 is a map M _ N, the
preservation of multiplication

〈𝜇〉 : {𝜎 : Γ –[M]� Δ}{𝑡 : M 𝛼 Γ}→ 𝑓 (M.𝜇[𝜎] 𝑡) ≡ N.𝜇[𝑓 ◦ 𝜎] (𝑓 𝑡)

expresses the semantic substitution lemma: the interpretation of substitution in the syntax is
the composition of interpretations in the model. We give its familiar form for single-variable
substitution as an example below. The fact that 𝑓 commuteswith add is established by function
extensionality, case analysis on the variable, and the preservation axiom of the monoidal unit
〈𝜂〉 : {𝑣 : I 𝛼 Γ}→ 𝑓 (M.𝜂 𝑣) ≡ N.𝜂 𝑣 .

sub-lemma : (𝑠 : M 𝛼 Γ)(𝑡 : M 𝛽 (𝛼 · Γ))→ 𝑓 (M.[𝑠 /] 𝑡) ≡ N.[𝑓 𝑠 /] (𝑓 𝑡)
sub-lemma 𝑠 𝑡 = trans 〈𝜇〉 (cong (N.𝜇 (𝑓 𝑡)) (ext 𝜆{ new � refl ; (old 𝑦) � 〈𝜂〉}))

Every monoid M has an underlying pointed □-coalgebra instance M□
∗ : PCoalg. As the free-

ness proof induces substitution structure using an existing renaming structure (since we need
to weaken when substituting under binders), we introduced the notion of a invariant monoid
to ensure that the existing renaming structure is compatible with the one derived from sub-
stitution. The main property of invariant monoid we need is that the strength transformation
(defined later) using either pointed coalgebra structure is equivalent.

record InvMon (M : FamS) : Set where

field M□
∗ : PCoalg M

MM : Mon M

𝜂-compat : {𝑣 : I 𝛼 Γ} → 𝜂□
∗ 𝑣 ≡ 𝜂M 𝑣

𝜇-compat : {𝜌 : Γ{ Δ} {𝑡 : M 𝛼 Γ}→ r 𝑡 𝜌 ≡ 𝜇 𝑡 (𝜂M ◦ 𝜌)

str-eq : str M□
∗ Y ≡ str MM.□∗ Y

250 computeR foRmalisation

Linearity As discussed throughout the mathematical development, parametrised maps in
families are more limited than their presheaf counterparts. The simpler monoidal and closed
substitution structures in families lack the renaming-invariance properties captured by dinat-
urality in natural transformations. To address this, we introduce a set of axioms collectively
encapsulating pointed multilinearity – here simply linearity – which encode the necessary
coherence laws for maps X_ ⟬Y , Z ⟭, assuming all three families are pointed coalgebras:

record Linear (𝑓 : X _ ⟬ Y , Z ⟭) : Set where

field r-f : {𝜎 : Γ –[Y]� Δ}{𝜚 : Δ{ Θ} {𝑡 : X 𝛼 Γ}→ Z.r[𝜚] (𝑓 𝑡 𝜎) ≡ 𝑓 𝑡 (Y.r[𝜚] ◦ 𝜎)
f-r : {𝜌 : Γ{ Δ}{𝜍 : Δ –[Y]� Θ} {𝑡 : X 𝛼 Γ}→ 𝑓 (X.r[𝜌] 𝑡) 𝜍 ≡ 𝑓 𝑡 (𝜍 ◦ 𝜌)
f-𝜂 : {𝑣 : I 𝛼 Γ}→ 𝑓 (X.𝜂 𝑣) Y.𝜂 ≡ Z.𝜂 𝑣

These axioms, spelled out explicitly in Section 10.2.1, capture the structure needed to recover
key properties of presheaf models within the family setting. One immediate consequence is
that the codomain ⟬Y , Z ⟭ becomes a pointed□-coalgebra, and themap 𝑓 qualifies as a pointed
coalgebra homomorphism. Without the linearity axioms, this generally fails: the internal hom
⟬Y , Z ⟭ is not pointed in general, even if both Y and Z are. As shown in Lemma 5.2.1, several
relevant transformations – such as j : I _ ⟬X , X ⟭, r : X _ ⟬ I , X ⟭ and 𝜇 : X _ ⟬X , X ⟭ –
are all linear, with their laws deriving from the axioms of closed categories, coalgebras, and
monoids.

We again compare the definitions above to prior work.

Renaming Our use of coalgebra structure to capture renaming was originally inspired by
Allais et al. (2021), whose Thinnable 𝑋 operator expands to the coalgebra 𝑋 _ □𝑋 . While
their library defines the operations making □ a comonad, comonad and coalgebra laws are
neither stated nor used. The library also includes a free presheaf monad ◇ and various
structural operators, though these are not discussed in the paper.

The VarLike record is a variant of a pointed coalgebra: it equips a sorted family X with
coalgebra structure (a thinning operation), and a distinguished term new : X 𝛼 (𝛼 · Γ), from
which the point base (Γ -Env) X Γ = I _ X and various weakening operations are defined
inductively over lists or renamings.

A similar idea appears inMcBride’s (2005) kit construction, which packages a translation
tm : ♦ 𝛼 Γ→ T 𝛼 Γ of “stuf” into syntactic terms, a variable embedding vr : I 𝛼 Γ→ ♦ 𝛼 Γ,
and a weakening map wk : ♦ 𝛼 Γ→ ♦ 𝛼 (𝛽 · Γ). This concept is further developed in Benton
et al. (2012, Section 7).

Substitution Both McBride and Allais et al. derive substitution as a special case of a generic
traversal (see later), but again, the structure is not axiomatised and families with substitution
structure are not given as much emphasis as families with renaming structure.

Laws and linearity Whereas our work makes coherence axioms an inseparable part of the
structure, Allais et al. decouple operations from laws and prove the latter at an ad hoc basis
using a separate reasoning framework based on simulation and fusion lemmas. Axioms of
coalgebras (ren-id, ren2), monoids (sub-id, sub2), and linear maps (rensub, subren) are stated
and proved for syntactic terms rather than arbitrary families, with a proof technique that

https://gallais.github.io/generic-syntax/Data.Environment.html#3720
https://gallais.github.io/generic-syntax/Data.Environment.html#3294
https://gallais.github.io/generic-syntax/Data.Environment.html#3381
https://gallais.github.io/generic-syntax/Data.Var.Varlike.html#512
https://gallais.github.io/generic-syntax/Data.Var.Varlike.html#590
https://gallais.github.io/generic-syntax/Generic.Identity.html#3125
https://gallais.github.io/generic-syntax/Generic.Fusion.Syntactic.html#1035
https://gallais.github.io/generic-syntax/Generic.Identity.html#3474
https://gallais.github.io/generic-syntax/Generic.Fusion.Syntactic.html#3980
https://gallais.github.io/generic-syntax/Generic.Fusion.Syntactic.html#1410
https://gallais.github.io/generic-syntax/Generic.Fusion.Syntactic.html#2701

famil ial model 251

feels quite independent from abstract syntax. By contrast, our approach builds the axioms
into the fabric of the structures from the outset, allowing us to appeal to syntactic princi-
ples like initiality to establish correctness and compatibility laws systematically, without
requiring an external reasoning framework.

12.1.3 Models

Given a family endofunctor Σ : FamS→ FamS capturing the signature of a second-order syn-
tax, we defined a model for the syntax to be a substitution monoid with compatible Σ-algebra
structure. Aswe’ve seen, to express the compatibility condition, we need to be able to push sub-
stitution rules into constructors and under binders using the pointed strength of Section 10.3.2.
The strength for a functor Σ is axiomatised as a record as follows:

record Strong (Σ : FamS→ FamS) : Set where

field str : (X□
∗ : PCoalg)(Y: FamS)→ Σ⟬X , Y ⟭ _ ⟬X , F Y ⟭

str-n1 : (𝑓 □
∗ ⇒ : PCoalg⇒W□

∗ X
□
∗ 𝑓) (ℎ : Σ⟬ X , Y ⟭ 𝛼 Γ) (𝜎 : Γ –[W]� Δ)→

str X□
∗ Y ℎ (𝑓 ◦ 𝜎) ≡ str W□

∗ Y (Σ1 (𝜆 ℎ′ 𝜎′ � ℎ′ (𝑓 ◦ 𝜎′)) ℎ) 𝜎
str-n2 : (𝑔 : Y _ Z)(ℎ : Σ⟬ X , Y ⟭ 𝛼 Γ)(𝜎 : Γ –[X]� Δ)→

str X□
∗ Z (Σ1 (𝜆 ℎ′ 𝜎′ � 𝑔 (ℎ′ 𝜎′)) ℎ) 𝜎 ≡ Σ1 𝑔 (str X□

∗ Y ℎ 𝜎)
str-i : (ℎ : Σ ⟬ I , Y ⟭ 𝛼 Γ)→ str I□∗ Y ℎ id ≡ Σ1 (i Y) ℎ
str-L : {𝑓 : W _ ⟬X , Y ⟭} (𝑓 Σ : Linear W□

∗ X
□
∗ Y

□
∗ 𝑓)

(ℎ : Σ ⟬Y , Z ⟭ 𝛼 Γ)(𝜎 : Γ –[W]� Δ)(𝜍 : Δ –[X]� Θ)→
str Y□

∗ Z ℎ (𝜆 𝑣 � 𝑓 (𝜎 𝑣) 𝜍)
≡ str X□

∗ Z (str W□
∗ ⟬X , Z ⟭ (Σ1 (𝜆 ℎ 𝜎 𝜍 � ℎ (𝜆 𝑣 � 𝑓 (𝜎 𝑣) 𝜍) ℎ) 𝜎) 𝜍

Though they look rather complicated, the equations correspond the naturality and strength ax-
ioms of synthetic strengths. In particular, str-L expresses the compatibility of strengthwith the
parametrised compositor L[𝑓] : ⟬Y , Z ⟭→ ⟬W , ⟬X , Z ⟭ ⟭, a closed form of Diagram (𝑠𝛼�𝐿).

Σ⟬Y ,Z ⟭ Σ⟬ ⟬X , Y ⟭ , ⟬X ,Z ⟭ ⟭ Σ⟬W , ⟬X ,Z ⟭ ⟭

⟬W , Σ⟬X ,Z ⟭ ⟭

⟬Y , ΣZ ⟭ ⟬ ⟬X , Y ⟭ , ⟬X , ΣZ ⟭ ⟭ ⟬W , ⟬X , ΣZ ⟭ ⟭

strY,Z

L ⟬ 𝑓 ,id ⟭

strW,⟬X ,Z ⟭

⟬ id ,strX,Z ⟭

ΣL Σ⟬ 𝑓 ,id ⟭

Themost important instance of strong functors is the context extension 𝛿 , whose strength uses
the well-known auxiliary lift operation on substitution rules over pointed coalgebras X:

lift : (Θ : Ctx)→ (Γ –[X]� Δ)→ (Θ + Γ) –[X]� (Θ + Δ)
lift ∅ 𝜎 𝑣 = 𝜎 𝑣
lift (𝜏 · Θ) 𝜎 new = X.𝜂 new
lift (𝜏 · Θ) 𝜎 (old 𝑣) = X.r (lift Θ 𝜎 𝑣) old

252 computeR foRmalisation

The Strong instance for context extension requires lift and various derived lemmas thereof, all
ultimately corresponding to the properties listed in Section 2.1.3.

𝛿 :Str : (Ξ : Ctx)→ Str (𝛿 :Functor Ξ)
𝛿 :Str Ξ = record

{ str = 𝜆 X□
∗ Y ℎ 𝜎 → ℎ (lift X 𝜎)

; str-n1 = 𝜆 𝑓 □
∗ ⇒ ℎ 𝜎 → cong ℎ (lift-n1 Ξ 𝑓 □

∗ ⇒ 𝜎)
; str-n2 = 𝜆 𝑓 ℎ 𝜎 → refl
; str-i = 𝜆 Y ℎ → cong ℎ (lift-i Ξ Y)
; str-L = 𝜆 Y 𝑓 Σ ℎ 𝜎 𝜍 → cong ℎ (lift-L Ξ Y 𝑓 𝜎 𝜍) }

To show how lifting, closed structure, and linear maps interact, we spell out the proof of lift-L:

lift-L : (Ξ : Ctx) {𝑓 : W _ ⟬ X , Y ⟭} (𝑓 Σ : Linear W□
∗ X Y 𝑓)

(𝜎 : Γ –[W]→ Δ) (𝜍 : Δ –[X]→ Θ)(𝑣 : I 𝛼 (Ξ + Γ))→
lift Y (𝜆 𝑢 � 𝑓 (𝜎 𝑢) 𝜍) 𝑣 ≡ 𝑓 (lift W 𝜎 𝑣) (lift X 𝜍)

lift-L ∅ 𝑓 Σ 𝜎 𝜍 𝑣 = refl

lift-L (𝛽 · Ξ) 𝑓 Σ 𝜎 𝜍 new = begin
Y.𝜂 new ≡˘〈 f-𝜂 〉
𝑓 (W.𝜂 new) X.𝜂 ≡〈 eq-at-new refl 〉
𝑓 (W.𝜂 new) (lift X 𝜍) ■

lift-L (𝛽 · Ξ) 𝑓 Σ 𝜎 𝜍 (old 𝑣) = begin
Y.r[old] (lift Y (𝜆 𝑢 � 𝑓 (𝜎 𝑢) 𝜍) 𝑣) ≡〈 lift-L Ξ 𝑓 Σ 𝜎 𝜍 𝑣〉
Y.r[old] (𝑓 (lift W 𝜎 𝑣) (lift X 𝜍)) ≡〈 r-f 〉
𝑓 (lift W 𝜎 𝑣) (X.r[old] ◦ lift X 𝜍) ■

The proof proceeds by induction on the extension context and the variable. When looking
at the top variable, we use the fact that linear maps are point-preserving, and propagate the
property of two substitution rules equalling at the first variable to the equality of applications
of the map to the point of X at the first variable:

eq-at-new : {𝜎 : (𝛼 · Γ) –[Y]� (𝛼 · Θ)} {𝜍 : (𝛼 · Δ) –[Y]� (𝛼 · Θ)}→
𝜎 new ≡ 𝜍 new→ 𝑓 (X.𝜂 new) 𝜎 ≡ 𝑓 (X.𝜂 new) 𝜍

Indeed, this key property is inlined in the proof of Lemma 10.3.2 and proved using the linearity
axioms. The recursive case of lift-L again proceeds using axioms of linear maps, justifying the
need for the abstraction. To show how lift-L generalises several lifting lemmas in one fell
swoop, we apply it to the linear maps j I, j X, r and 𝜇 to obtain the familiar compatibility
conditions of lift with composition of renaming and substitution rules, listed in Section 2.1.3.

famil ial model 253

lift I (𝜚 ◦ 𝜌) ≡ lift I 𝜚 ◦ lift I 𝜌

lift X (𝜍 ◦ 𝜌) ≡ lift X 𝜍 ◦ lift I 𝜌

lift X (r[𝜚] ◦ 𝜎) ≡ r[lift I 𝜚] ◦ lift X 𝜎

lift X (𝜇[𝜍] ◦ 𝜎) ≡ 𝜇[lift X 𝜍] ◦ lift X 𝜎

With the appropriate definition of strength, we can define our algebraic models: monoids
with compatible 𝐹 -algebra structure. For the initial model – the syntax – the compatibility
condition axiomatises the structurally recursive definition of substitution on syntactic terms.

record _-Mon (Σ : FamS→ FamS) (M : FamS) : Set where
field MM : Mon M

a : Σ M _ M

𝜇〈a〉 : {𝜎 : Γ –[M]� Δ}{𝑡 : Σ M 𝛼 Γ}→
𝜇 (a 𝑡) 𝜎 ≡ a (str M□

∗ M (Σ1 𝜇 𝑡) 𝜎)

ΣM Σ⟬M ,M ⟭ ⟬M , ΣM ⟭

M ⟬M , M ⟭

Σ𝜇 strM,M

a ⟬ id ,a ⟭

𝜇

While no previous research on formalisation frameworks axiomatisesmodels with substitution
like we do, the associated pattern nevertheless appear.

Lifting and strength The lift operation, which extends the domain and codomain of a sub-
stitution rule by introducing additional variables, has long been recognised as a crucial
abstraction – dating back at least to Altenkirch and Reus (1999) in the context of monadic
syntax. In their setting, the lift operation appears naturally as part of the monad laws, with
the unit and associativity properties ensuring its correctness; however, these properties are
not explicitly abstracted or formalised as a separate concept. In contrast, Bird and Paterson
(1999a) explore a more basic variant of lifting, using a swapping operation sw : T X + 1→
T (X + 1) in their work on nested datatypes and generalised folds.

Later developments make more explicit use of lifting as a generic traversal mechanism.
McBride (2005) and Benton et al. (2012) adopt the lift pattern to systematically define type-
preserving and structurally generic transformations. Inmore recent work, Allais et al. (2021)
incorporate a variant under the name extendS, specialised to 𝜆-terms, and a generalised form
for arbitrary families is given as lift. These usages highlight the continuing relevance of
lifting not just as a programming convenience, but as a structurally important component
in the formal treatment of syntax and substitution.

Laws The laws for lift-like operations naturally arise as part of proving substitution laws for
the family or monad of terms. Altenkirch and Reus (1999) explicitly state the monad axioms
and the interaction laws between lifting, functoriality, and substitution, though they stop
short of isolating the lifting lemmas in a formal setting of their own. In contrast, Bird and
Paterson (1999a, Section 3.3) axiomatise their swap-like operation sw as a distributive law
when establishing monadic structure, taking a more categorical route.

A particularly detailed account is given in Benton et al. (2012), whose practical guide
to intrinsically-typed formalisation in type theory lays out an extensive suite of lemmas re-
quired to endow the family of termswith lawful substitution structure. Their comprehensive
to-do list of identity–renaming–variable–lifting–substitution interaction laws in Section 4

https://gallais.github.io/generic-syntax/StateOfTheArt.ACMM.html#966
https://gallais.github.io/generic-syntax/Data.Var.Varlike.html#1393

254 computeR foRmalisation

(and summarised in Section 2.1.3) vividly illustrates the laborious work typically needed to
formalise syntax and substitution from scratch.

Our framework offers a sharp contrast: not only does the str-L law generalise all four
key lifting-associativity properties (cf. the corresponding instantiations LiftRcR, LiftScR,
LiftRcS, and LiftScS), but it does so generically for any signature endofunctor, with no
additional user effort. This dramatically reduces boilerplate and shifts the burden of proof
from the user to the general theory.

A similar goal motivates the work of Allais et al. (2021), who introduce the generic
Simulation and Fusion constructions. These are designed to derive correctness proofs of
traversal equivalences and compositions from minimal assumptions. Inspired by Kripke
semantics and logical relations, their framework potentially supports reasoning about a
wide variety of traversal behaviours (see their Section 7).

However, the examples they do provide concern only standard syntactic identities in-
volving renaming and substitution – exactly the kind of properties we show can be proved
purely syntactically, using initiality and structured substitution. Moreover, while powerful,
the simulation and fusion abstractions are quite complex and tend to obscure the underlying
syntactic regularities – especially those related to lifting – which in our framework emerge
directly and naturally. As a result, their approach may come across less as a principled
semantic design and more as an elaborate workaround for missing syntactic structure.

A common challenge in formalising lawful substitution structures is the tangled dependency
between definitions and axioms, which hinders modular, bottom-up development. Ideally,
simpler operations would be fully defined and axiomatised before being used to define more
complex ones. In practice, however, axioms for a “primitive” operation often depend on the
definition of “derived” ones. For example, Bird and Paterson (1999a) define sw as a distributive
law between the functor (−) + 1 and the term monad T . But sw is used in the definition of join,
which itself is needed to even state the monad–functor interaction laws required to prove the
monad laws for T . This circular dependency makes clean separation difficult.

Similar issues arise in intrinsically-typed formalisations, where renaming, lifting, and sub-
stitution are deeply interdependent. To manage this, many developments adopt a two-phase
approach: define operations first, then prove the laws. But this clashes with our goal of pack-
aging related concepts – operations and axioms – into coherent Agda records.

Agda’s records don’t permit interleaved definitions: one can’t define some fields in one
record (e.g. lifting), use them in another (e.g. substitution), and return to the original record
later (e.g. lifting-substitution laws). We address this by formulating strength associativity over
arbitrary linear maps, eventually instantiated with application, renaming, or substitution. This
generality allows us to untangle the axiomatisation, supporting modular, idiomatic formalisa-
tion without premature commitments to concrete operations.

12.2 Initial algebRa semantics

The true value of the familial model lies in placing intrinsically-typed formalisation of syn-
taxes on a rigorous mathematical foundation. This, in turn, enables the use of categorical
techniques – such as those provided by the agda-categories library – as practical tools for

https://gallais.github.io/generic-syntax/Generic.Simulation.html#1873
https://gallais.github.io/generic-syntax/Generic.Fusion.html#791

in it ial algebRa semantics 255

reasoning. Our framework is a strong demonstration of this idea: we prove the free algebraic
monoid theorem by assuming the existence of an initial ΣA-algebra via a parametrised Agda
module, and then carry out the proof from Section 11.2 almost verbatim using the library’s
axiomatisation of initial objects.

12.2.1 Free algebraic monoid structure

To be syntax-generic, we fix a signature endofunctor Σ and a metavariable family A. A Σ-
algebra structure map on A captures the constructors of a second-order syntax, whereas the
variable and metavariable constructors are encoded as v : I _ A and m : A _ ⟬A , A ⟭. For
example, the term m[𝑡, 𝑠] : A𝜏 Γ for a metavariable a : A 𝜏 [𝛼, 𝛽], and terms 𝑡 : A𝛼 Γ and
𝑠 : A 𝛽 Γ is represented by m a 𝜆{ new � 𝑡 ; old new � 𝑠 }. Families that support this structure
will be called syntactic algebras or ΣA-algebras, with the expected notion of homomorphism.

record SynAlg (A : FamS) : Set where

field a : Σ A _ A

v : I _ A

m : A _ ⟬A , A ⟭

record SynAlg⇒ (A𝑠 : SynAlg A) (B𝑠 : SynAlg B) (𝑓 : A _ B) : Set where

field 〈a〉 : {𝑡 : Σ A 𝛼 Γ} → 𝑓 (A.a 𝑡) ≡ B.a (Σ 𝑓 𝑡)
〈v〉 : {𝑣 : I 𝛼 Γ} → 𝑓 (A.v 𝑣) ≡ B.v 𝑣
〈m〉 : {a : A 𝛼 Π}{𝜀 : Π –[A]� Γ}→ 𝑓 (A.m a 𝜀) ≡ B.m a (𝑓 ◦ 𝜀)

Such syntactic algebras and their homomorphisms form a category SynAlg, whose initial ob-
ject – whenever it exists – will be denoted T A (or just T , if the metavariable family is clear
from the context) with structural maps a, v and m. The universal property of initial objects
states that there is a unique syntactic algebra homomorphism i : T_ A into any syntactic
algebra A. In Agda, this translates directly to parametrising the metatheory modules with
a variable of type Initial SynAlgebras, the initial object of the category of syntactic algebras
and homomorphisms. The Initial record of the agda-categories library exposes fields for
the initial object ⊥ (renamed to T), the initial morphism ! (renamed to i), and the uniqueness
proof !-unique (used to derive the equality operator eq that equates two syntactic algebra
homomorphisms from T into the same object).

Varying A, the term monad T maps each family A to the initial ΣA-algebra T ,A. In this
section, we sketch the Agda proof of Theorem 11.2.2, establishing that T is the free Σ-monoid
functor on sorted families. Since the initial ΣA-algebra corresponds to the inductively defined
syntax of terms, the theorem formally confirms that the syntactic structure alone determines
the action and laws of substitution. This suggests that much of syntactic metatheory – renam-
ing, lifting, substitution lemmas, etc. – amounts to uninteresting boilerplate. By using initial
algebra semantics, such structure and its associated correctness properties can be derived au-
tomatically, allowing us to focus on deeper properties of the language from the outset.

256 computeR foRmalisation

Traversal Our internalisation of syntactic operations at the level of sorted families is justified
by the initial algebra approach. Since these operations are defined as maps from the initial
syntactic algebra, we can derive renaming T _□T and substitution T _ ⟬ T , T ⟭ by endowing
their codomains – □T and ⟬ T , T ⟭ – with suitable syntactic algebra structures.

Lemma 12.2.1 Given a pointed □-coalgebra X, a Σ-algebra A, and family maps 𝜑 : X _ A and
𝜒 : A _ ⟬A , A ⟭, the internal hom ⟬X , A ⟭ has a ΣA algebra structure.

The proof is encapsulated in the Traversal module, instantiations of which will give rise to
homomorphic initial algebra interpretations T _ ⟬X , A ⟭. It crucially relies Σ being Strong
when defining the structure map Σ ⟬X , A ⟭ _ ⟬X , Σ A ⟭ _ ⟬X , A ⟭. A simple corollary
(derived by instantiating X with I) is that if A is a syntactic algebra, then so is □A.

module Traversal (X□
∗ : PCoalg X) (𝑎 : ΣA _ A) (𝑝 : X _ A) (𝜒 : A _ ⟬A , A ⟭) where

Trav𝑠 : SynAlg ⟬X , A ⟭
Trav𝑠 = record { a = 𝜆 ℎ 𝜎 � 𝑎 (str X□

∗ A ℎ 𝜎)
; v = 𝜆 𝑣 𝜎 � 𝑝 (𝜎 𝑣)
; m = 𝜆 a 𝜀 𝜎 � 𝜒 a (𝜆 𝑣 � 𝜀 𝑣 𝜎) }

An initial interpretation into a homwill be called a Y-parametrised traversal intoA and written
t : T _ ⟬X , A ⟭. The syntactic homomorphism properties simplify to the following diagrams,
which also constitute the proof goal when equating two maps 𝑓 , 𝑔 : T _ ⟬X , A ⟭: if they are
both ΣA-algebra homomorphisms, they must be equal.

Σ⟬X ,A ⟭

ΣT ⟬X , ΣA ⟭

T ⟬X ,A ⟭

Σi
strX,A

a ⟬ id ,𝑎 ⟭

i

I ⟬X , X ⟭

T ⟬X , A ⟭

j

⟬ id ,𝑝 ⟭v

i

⟬A ,A ⟭

A ⟬ ⟬X ,A ⟭ , ⟬X ,A ⟭ ⟭

⟬ T , T ⟭ ⟬ T , ⟬X ,A ⟭ ⟭

𝜒 L

m ⟬ i ,id ⟭

⟬ id ,i ⟭

One might be tempted to immediately define substitution T _ ⟬ T , T ⟭ as a T -parametrised
traversal into T . However, this requires T to first carry a pointed □-coalgebra structure, which
we have yet to construct. Our formalism makes this dependency explicit: substitution relies
on renaming, and the structure of the proof naturally dictates the correct order of construction.
By the time we state the theorem, all necessary lemmas are already in place – avoiding the
usual search for ad hoc auxiliary results. The sequence of constructions unfolds as follows:

1. Prove that traversals t : T_ ⟬X , A ⟭ applied to the point 𝜂 : I _ A are equal to interpreta-
tions i : T _ A, assuming 𝑝 is point-preserving (Lemma 11.2.4).

2. Induce the renaming operator r : T _ □T as an I□∗-parametrised traversal into T and prove
the pointed coalgebra laws to get an instance T □

∗ : PCoalg (Proposition 11.2.3).

The r-id law is an instance of traversal-interpretation equivalence above:

T
r □T i

T = T

in it ial algebRa semantics 257

The comultiplication law is the equality of two parametrised maps T _ ⟬ I , ⟬ I ,A ⟭ ⟭; show-
ing both to be ΣA-algebra homomorphisms is sufficient to establish their equality by unique-
ness. The main complexity in proofs like this is the preservation of Σ-algebra structure, but
using strength axioms – namely str-L – the equational reasoning is quite formulaic. For
example, the Σ-algebra preservation of the composite (with the right side implementing the
comonad comultiplication of □)

T
r □T L ⟬□I ,□T ⟭

⟬ j I ,id ⟭
□□T

calculates as follows, using the linearity of j I : I _ ⟬ I , I ⟭:

r (a 𝑡) (𝜚 ◦ 𝜌) ≡〈 〈a〉 〉
a (str I□∗ T (Σ1 r 𝑡) (𝜚 ◦ 𝜌)) ≡〈 str-L T (jΣ I□∗) 〉
a (str I□∗ T (str I□∗ (□ T) (Σ1 (𝜆 ℎ 𝜌 𝜚 � ℎ (𝜚 ◦ 𝜌)) (Σ1 r 𝑡)) 𝜌) 𝜚) ≡〈 Σ.pres-◦ 〉
a (str I□∗ T (str I□∗ (□ T) (Σ1 (𝜆 𝑡 𝜌 𝜚 � r 𝑡 (𝜚 ◦ 𝜌)) 𝑡) 𝜌) 𝜚) ■

3. Prove that for a ΣA-algebra A with a ΣA-homomorphic coalgebra structure 𝑟 : A _ □A, the
interpretation map i : T _ A is a □-coalgebra homomorphism (Proposition 11.2.4)

4. Prove that a traversal t : T_ ⟬X , A ⟭ is a Linear map assuming A is a pointed □-coalgebra
and 𝑎 and 𝜑 are pointed □-coalgebra homomorphisms (Proposition 11.2.5).

One of the linearity axioms is just a coalgebra homomorphism condition, while the other
one has the same structure as the coalgebra comultiplication law, but with 𝑟 : A _ □A as
the linear map.

5. Induce the substitution operator s : T _ ⟬ T , T ⟭ as a T -parametrised traversal into T , and
prove the monoid laws to get an instance of T M : Mon (Proposition 11.2.6).

The unit and associativity laws follow a similar pattern to coalgebra and linearity laws. Just
as McBride (2005) recognised the similarity of the renaming and substitution operations,
we can establish a clear similarity between their laws. Compare one half of the monoid
associativity law to the comultiplication law above:

s (a 𝑡) (s[𝜍] ◦ 𝜎) ≡〈 〈a〉 〉
a (str T □

∗ T (Σ1 s 𝑡) (s[𝜍] ◦ 𝜎)) ≡〈 str-L T sΣ 〉
a (str T □

∗ T (str T □
∗ ⟬ T , T ⟭ (Σ1 (𝜆 ℎ 𝜎 𝜍 � ℎ (s[𝜍] ◦ 𝜎)) (Σ1 s 𝑡)) 𝜎) 𝜍) ≡〈 Σ.pres-◦ 〉

a (str T □
∗ T (str T □

∗ ⟬ T , T ⟭ (Σ1 (𝜆 𝑡 𝜎 𝜍 � s 𝑡 (s[𝜍] ◦ 𝜎)) 𝑡) 𝜎) 𝜍) ■

The only difference between the proofs is the choice of linear map; the Linear instance sΣ is
derived using the lemma in step 4.

6. Prove that T is an invariant monoid and a Σ-monoid (Proposition 11.2.6).

The renaming-substitution compatibility condition
r 𝑡 𝜌 ≡ s 𝑡 (v ◦ 𝜌)

derives from the lemma in step 1 and the linearity of s. This is then needed to show that T is
a Σ-monoid: the homomorphism condition 〈a〉 and the substitution-algebra compatibility
condition in Σ-Mon differ in the pointed □-coalgebra instance that the strength operates
over, but this is precisely addressed by str-eq:

258 computeR foRmalisation

s (a 𝑡) 𝜎 ≡〈 〈a〉 〉
a (str T □

∗ T (Σ1 s 𝑡) 𝜎) ≡〈 InvMon.str-eq 〉
a (str T M T (Σ1 s 𝑡) 𝜎) ■

7. Prove that for any other Σ-monoid M and map 𝜔 : A _ M, there is a unique Σ-monoid
homomorphism T A_ M (Proposition 11.2.6).

The initial extension and its homomorphism property are derived by equipping M with a
metavariable operator A 𝜔

M
𝜇

⟬M , M ⟭. As the extension is not a traversal map, the
Σ-algebra homomorphism proofs involved will not use str-L, only its naturality conditions.

An even more efficient proof technique (implemented after the publication of the POPL 2022
paper) is to follow the proof as laid out in Section 11.2.2 verbatim: reasoning by explicitly con-
structing and composing ΣA-algebra homomorphisms, rather than repeating slight variations
of the same calculation. With the homomorphic reasoning framework implemented in the
library, the coalgebra and monoid instances for T are strikingly concise1:

T □ : Coalg T

T □ = record
{ r = r ; r-id = t◦𝜂≈s
; r-◦ = ≈2 T ᵃ (j I)
(|– T ᵃ –| r ᵃ⇒ |→

□ᵃ T ᵃ –| □a
1 r ᵃ⇒ |→

□ᵃ (□ᵃ T ᵃ) |■)
(|– T ᵃ –| r ᵃ⇒ |→

□ᵃ T ᵃ –| L[jΣ I□∗]ᵃ⇒ |→
□ᵃ (□ᵃ T ᵃ) |■) }

T M : Mon T
T M = record

{ 𝜂 = v ; 𝜇 = s ; 𝜂-𝜇 = 〈v〉 ; 𝜇-𝜂 = t◦𝜂≈s � s≈id
; 𝜇-𝜇 = ≈2 T ᵃ s
(|– T ᵃ –| sᵃ⇒ |→

⟬ T □
∗ , T ᵃ ⟭ T ᵃ –| ⟬ T □

∗ , sᵃ⇒ ⟭ᵃ |→
⟬ T □
∗ , ⟬ T □

∗ , T ᵃ ⟭ ⟭ |■)
(|– T ᵃ –| sᵃ⇒ |→

⟬ T □
∗ , T ᵃ ⟭ –| L[sΣ]ᵃ⇒ |→

⟬ T □
∗ , ⟬ T □

∗ , T ᵃ ⟭ ⟭ |■) }

Rather than splitting the homomorphism conditions into three pairs of equality laws, we use
combinators to lift the components of the diagrams into ΣA-homomorphisms, which are glued
together as composites in ΣA-Alg. For example, the □a : SynAlg A → SynAlg (□A) lifts □
to syntactic algebras, and □a

1 is the corresponding functorial mapping on homomorphisms.
The L[_]ᵃ⇒ operator encapsulates the homomorphism law of the (parametrised) compositor
L, proving that the composite below is a ΣA-algebra homomorphism for every pointed linear
map 𝑓 : W _ ⟬X , Y ⟭ (Lemma 11.2.3).

⟬Y ,A ⟭ L ⟬ ⟬X , Y ⟭ , ⟬X ,A ⟭ ⟭
⟬ 𝑓 ,id ⟭

⟬W , ⟬X ,A ⟭ ⟭

Whichever approach we use, the free Σ-monoid structure for the term monad T is con-
structed in an efficient and canonical way, with the axiomatised records guiding the develop-
ment. It is worth reiterating that at no point did we make any assumptions about the syntax,
only that its corresponding signature endofunctor is pointed-strong. We can further formalise
the second-order features of the metatheory.

1There is a slight lie here in that the applications of Grothendieck re-indexing maps as in Proposition 11.2.2
are not shown, but these do not complicate matters all that much.

in it ial algebRa semantics 259

12.2.2 Second-order features

Unlike any other formalisation framework we are aware of, ours supports parametrised
metavariables out of the box. The intricate metasubstitution operation is constructed using
the same ideas presented in Section 11.3, using an abstract formalisation of the main results
of Chapter 4, namely monad morphisms into the powered clone monad. Upon instantiating
the theory with a proof that T is a powered monad with powering T (𝑋 −• Y) _ (𝑋 −• TY), we
immediately obtain the meta-extension and metasubstitution maps

me : TA _ [A ⊸M] −•M and ms : TA _ [A ⊸TB] −• TB

Equipping T with a powering over −• and proving the strong monad laws is done by initiality,
in departure from proofs by freeness used in Section 11.3.1 whose higher level of abstraction
lead to slow typechecking times. The central result is that given a parameter𝑊 and a ΣX

A
-

algebra (A, 𝑣, 𝑎,𝑚),𝑊 −• A is a Σ𝑊 −•X𝑊 −•A -algebra, with pointed algebra structure given in terms
of the powering of Σ, and metavariable operator given by the following composite, where dist
is the closed version of the 𝑑 operation of Proposition 10.3.8:

𝑊 −• A 𝑊 −• 𝑚 𝑊 −• ⟬A ,A ⟭ dist ⟬𝑊 −• A ,𝑊 −• A ⟭

In particular, for X ≜ I, and A ≜ TA, we have that𝑊 −• TA is a Σ𝑊 −•A-algebra so, by initiality,
we get a Σ𝑊 −•A-algebra homomorphism

p : T (𝑊 −• A) _ (𝑊 −• TA)

The powered monad proofs proceed by equating maps out of TA for various choices of A.
Some bookkeeping is required to align metavariable families across domain and codomain: a
morphism TA _ TB can be shown to be a ΣA-algebra homomorphism provided we have a
map 𝑓 : A _ B such that TB acquires a compatible ΣA-algebra structure. Nevertheless, the
proofs are fairly straightforward and closely resemble those using freeness in Section 11.3.1.
For instance, if A is a ΣX

A
-algebra, we can show that the transformation dist : 𝑊 −• ⟬X , A ⟭_ ⟬𝑊 −• X , W −• A ⟭ is a Σ𝑊 −•A-algebra homomorphism. The proof relies on the synthetic

associativity of dist (cf. Diagram (𝑠𝛼�𝐿)) and the strength–powering compatibility for Σ (cf.
Diagram (𝑠𝑑𝑝)), paralleling the argument in Theorem 10.3.5 on lifting𝑊 −• to a functor on
Σ-monoids.

A major benefit of implementing the abstract theory is that all operations – renaming, sub-
stitution, and metasubstitution – are fully computable, regardless of whether they are defined
directly by recursion, by initiality, or via freeness. The example in Section 2.2 (Metasubstitu-
tion) illustrates how metasubstitution both computes and interacts with other syntactic oper-
ations. Agda adds further value by enabling a more convenient interface and syntactic sugar,
particularly for equational reasoning. The equational logic developed in Section 11.3.2 can be
internalised as an inductive data type: a relation Axiom : ∀(A Γ 𝛼) → T ,A 𝛼 Γ → T ,A 𝛼 Γ

→ Set, which can be extended to a sound equational theory by defining the corresponding
equivalence relation:

260 computeR foRmalisation

data _▷_`_≈_ : (A : FamS)(Γ : Ctx){𝛼 : 𝑆}→ T A 𝛼 Γ→ T A 𝛼 Γ→ Set1 where
eq : 𝑡 ≡ 𝑠 → A ▷ Γ ` 𝑡 ≈ 𝑠
sy : A ▷ Γ ` 𝑡 ≈ 𝑠 → A ▷ Γ ` 𝑠 ≈ 𝑡
tr : A ▷ Γ ` 𝑡 ≈ 𝑠 → A ▷ Γ ` 𝑠 ≈ 𝑢 → A ▷ Γ ` 𝑡 ≈ 𝑢
ax : Axiom A Γ 𝑡 𝑠 → A ▷ Γ ` 𝑡 ≈ 𝑠
rn : (𝜌 : Γ{ Δ)→ A ▷ Γ ` 𝑡 ≈ 𝑠 → A ▷ Δ ` r [𝜌] 𝑡 ≈ r [𝜌] 𝑠
ms : (𝜁 𝜉 : [A ⊸T B] Δ)→

(
∀{𝜏 Π}(a : A 𝜏 Π)→ B ▷ Π + Γ ` 𝜁 a ≈ 𝜉 a

)
→

A ▷ Γ ` 𝑡 ≈ 𝑠 → B ▷ Δ + Γ ` ms[𝜁] 𝑡 ≈ ms[𝜉] 𝑠

The ms constructor expresses that whenever two terms 𝑡 and 𝑠 are equivalent, and two in-
stantiations for their metavariable context 𝜁 and 𝜉 are equivalent (for every metavariable),
then performing the metasubstitution also gives equivalent terms. Using the equivalence con-
structors one can derive useful proof combinators and a library for equational reasoning; for
example, ax≈ equates two terms via the instantiation of an axiom:

ax≈ : Axiom A Γ 𝑡 𝑠 → (𝜁 : [A ⊸T B] Γ)→ B ▷ Γ ` ms 𝑡 𝜁 ≈ ms 𝑠 𝜁

ax≈ 𝑎 𝜁 = ms (ax 𝑎) 𝜁 𝜁 (𝜆 _� eq refl)

The biggest gains, however, come from not having to tediously encode the congruence rules
for every subterm of every term of the syntax. To rewrite a deeply nested subexpression,
we simply mark its location in the term with a “typed hole” implemented as a distinguished
metavariable ,, and usems to instantiate it with the two sides of an equality rule: for example,
𝑓 ≈ 𝑔 and (,𝑎) ≈ (,𝑎) imply that

𝑓 𝑎 = ms (,𝑎) (𝜆{, � 𝑓 }) ms≈ ms (,𝑎) (𝜆{, � 𝑔}) = 𝑔 𝑎

Further examples of this and other combinators are given in the next section.
The resulting equational reasoning system is very useful in its own right, as instantiating it

with the minimum necessary requirements – the second-order axioms schemes, generalising
an infinite number of equations between terms – generates all the required infrastructure to
write detailed, explicit equational proofs. We also know that this equational system is sound:
given any denotational model of the axioms, every derivable equality in the syntax interprets
to equal elements of the model. With the full formalisation of Section 11.3.1 – including what
amounts to a proof of the enriched monad structure for T – the soundness proof can too be
translated into Agda with very little change. We define an equational model as a Σ-monoid
that equates every term related by Axiom:

record EqModel (MΣ : Σ-Mon M) : Set1 where
field ⊨ax : (𝜅 : [A ⊸M] Γ)(𝑡 𝑠 : TA 𝛼 Γ)→ Axiom A Γ 𝑡 𝑠 → me[𝜔] 𝑡 ≡ me[𝜔] 𝑠

Then, given an equational modelM, the proof of the soundness theorem proceeds by induction
on the equivalence judgment, just as in Theorem 11.3.2:

sound : (𝜅 : [A ⊸M] Γ)(𝑡 𝑠 : TA 𝛼 Γ)→ A ▷ Γ ` 𝑡 ≈ 𝑠 → me[𝜅] 𝑡 ≡ me[𝜅] 𝑠
sound 𝜅 𝑡 𝑠 (ax 𝑥) = ⊨ax 𝜅 𝑡 𝑠 𝑥
sound 𝜅 𝑡 𝑠 (eq refl) = refl
sound 𝜅 𝑡 𝑠 (sy 𝑡≈𝑠) = sym (sound 𝜅 𝑠 𝑡 𝑡≈𝑠)

geneRic s ignatuRes 261

sound 𝜅 𝑡 𝑢 (tr 𝑡≈𝑠 𝑠≈𝑢) = trans (sound 𝜅 𝑡 𝑠 𝑡≈𝑠) (sound 𝜅 𝑠 𝑢 𝑠≈𝑢)
sound 𝜅 .(r [𝜌] 𝑡) .(r [𝜌] 𝑠) (rn 𝜌 𝑡≈𝑠) = begin

me[𝜅] (r [𝜌] 𝑡) ≡〈 me□⇒.〈r〉 〉
M.r[𝜌 + Θ] (me[𝜅] 𝑡) ≡〈M.r≈ (sound 𝜅 𝑡 𝑠 𝑡≈𝑠) 〉
M.r[𝜌 + Θ] (me[𝜅] 𝑠) ≡〈 me□⇒.〈r〉 〉
me[𝜅] (r [𝜌] 𝑠) ■

sound 𝜅 .(ms[𝜁] 𝑡) .(ms[𝜉] 𝑠) (ms 𝜁 𝜉 𝜁≈𝜉 𝑡≈𝑠) = begin
me[𝜅] (ms[𝜁] 𝑡) ≡〈 me-assoc 〉
ms[me[𝜅] ◦ 𝜁] 𝑡 ≡〈 sound (me[𝜅] ◦ 𝜁) 𝑡 𝑠 𝑡≈𝑠 〉
ms[me[𝜅] ◦ 𝜁] 𝑠 ≡〈 ms≈ (𝜆 a � sound 𝜅 (𝜁 a) (𝜉 a) (𝜁≈𝜉 a) 〉
ms[me[𝜅] ◦ 𝜉] 𝑠 ≡〈 me-assoc 〉
me[𝜅] (ms[𝜉] 𝑠) ■

Soundness of the renaming rule follows from me being a □-coalgebra homomorphism, while
metasubstitution soundness uses the me-assoc corollary from monad multiplication preser-
vation (⁇). However, the practical value of the soundness theorem is limited: although the
generic proof applies to all syntaxes, equational theories, and models, instantiating it for a
concrete syntax and axiom set often results in near-intractable typechecking times. If a for-
malisation relies on the computational content of the soundness theorem, this generic equa-
tional framework is unlikely to be applicable. Still, it serves as a valuable formalised proof of
a foundational result in second-order equational logic.

In the next section we cover more implementation-specific details of the formalisation,
namely the inductive construction of the datatype of terms from a second-order signature.

12.3 GeneRic signatuRes

The abstract development so far has been entirely generic over second-order signatures and
term syntax. In this section, we explain how to construct endofunctors Σ from syntactic de-
scriptions, compare different term representations and their trade-offs, and show how code
generation turns our library into a practical tool for language formalisation. Thanks to our
modular design, we retain flexibility in each of the following areas:

• how to encode the signature of a second-order syntax (e.g. binding algebras (Fiore et al.,
1999), indexed containers (Altenkirch et al., 2015), Allais et al. (2021)-style Descriptions);

• how to convert the signature into a Fam𝑆 endofunctor Σ (e.g. polynomial functors (Fiore,
2012; Arkor and Fiore, 2020), higher- or first-order argument collections, Desc interpreta-
tions);

• how to define the data type for the initial ΣA-algebra (implicit or explicit encodings).

Each option comes with its own trade-offs, but we identify three choices that balance con-
venience, flexibility, and good computational behaviour particularly well. Section 12.3.1 de-
fines second-order signatures and their corresponding endofunctors; Section 12.3.2 covers
the construction of their initial algebras; and Section 12.3.3 showcases our framework’s code-
generation capabilities.

262 computeR foRmalisation

12.3.1 Signature endofunctor

Binding signatures introduced by Aczel (1978) generalise standard algebraic signatures to lan-
guages with variable binding. Their definition given by Fiore and Hur (2010) and Defini-
tion 11.1.1 is straightforward to translate to an Agda record with helper functions:

record Signature (𝑂 : Set) : Set1 where
constructor sig

field ∣_∣ : 𝑂 → List (Ctx × 𝑆) × 𝑆

Arity : 𝑂 → List (Ctx × 𝑆)
Arity 𝑜 = proj1 ∣ 𝑜 ∣

Sort : 𝑂 → 𝑆
Sort 𝑜 = proj2 ∣ 𝑜 ∣

The set 𝑆 of sorts is normally given as an inductive data type, and 𝑂 as an enumeration of
operators. For example, the STLC has the following sorts and operator symbols:

data ΛT : Set where
N : ΛT
� : ΛT→ ΛT→ ΛT

data Λₒ : Set where
appₒ lamₒ : {𝛼 𝛽 : ΛT}→ Λₒ

The Signature instances are translations of the signature of the 𝜆-calculus from Example 11.1.2.
Shorthands for specifying argument lists and bound variables make the declaration concise.

Λ:Sig : Signature Λₒ
Λ:Sig = sig 𝜆 where (appₒ {𝛼 }{𝛽}) � (`0 𝛼 � 𝛽) , (`0 𝛼) ↦−→2 𝛽

(lamₒ {𝛼 }{𝛽}) � (𝛼 `1 𝛽) ↦−→1 𝛼 � 𝛽

The signature contains all the information needed to determine the syntactic structure of a
language. To make use of the abstract development in Section 12.2, we convert a Signature
into a sorted-family endofunctor Σ, which associates constructors with argument terms. For
example, given the signature of the STLC, an element of ΣX 𝛽 Γ may be the operator app
associated with two X-terms 𝑓 : X (𝛼 � 𝛽) Γ and 𝑎 : X𝛼 Γ, while an element of ΣX (𝛼 � 𝛽) Γ
may be the operator lam with a term 𝑏 : X 𝛽 (𝛼 · Γ).

For technical reasons explained later, we choose to represent the “collection” of arguments
of an operator as a tuple of terms. An alternative would be a higher-order encoding as a
mapping from an argument index to a term (similar to the implementation of substitution
rules); however, even though constructing the Strong instance for such a representation would
be easier, it complicates the initiality proof which we wish to keep as simple as possible.

Arg : List (Ctx × 𝑇)→ FamS→ Fam
Arg [] X Γ = >
Arg ((Θ , 𝜏) :: 𝑎𝑠) X Γ = 𝛿 Θ X 𝜏 Γ × Arg 𝑎𝑠 X Γ

Note the use of the context extension endofunctor 𝛿 , used to add the new variables bound by
an argument to the global context, making all variables available in the body of the binder. The
definition of the signature endofunctor for a signature (𝑇,𝑂,Arity, Sort) is then as follows:

Σ : FamS→ FamS

Σ X 𝛼 Γ = Σ[𝑜 ∈ 𝑂] (𝛼 ≡ Sort 𝑜 × Arg (Arity 𝑜) X Γ)

geneRic s ignatuRes 263

An element of the set Σ X 𝛼 Γ is a dependent tuple consisting of an operator symbol 𝑜 ∈ 𝑂 ,
a proof that the output sort of the operator is 𝛼 , and a tuple of X-terms for each operand
of the operator of the type and extension context given by the operator arity. For example,
an element of ΣX 𝛽 Γ is (app, refl, (𝑓 , 𝑡,tt)), for terms 𝑓 : X (𝛼 � 𝛽) Γ and 𝑡 : X𝛼 Γ. One can
suppress the tt for operators of positive arity by adding a case for a singleton argument list
in the definition of Arg, and use a pattern synonym (Pickering et al., 2016) to hide the refl
element, writing app o (𝑓 , 𝑡) for the above.

The Strong instance for Σ may be derived from a similar lawful strength transformation
Arg 𝑎𝑠 ⟬X , Y ⟭ _ ⟬X , Arg 𝑎𝑠 Y ⟭ for Arg, which applies the 𝛿 strength to every component of
type 𝛿 Θ ⟬X , Y ⟭𝜏 Γ in the argument list:

str𝐴 : (X□
∗ : PCoalg X)(Y : FamS)(𝑎𝑠 : List (Ctx × 𝑇))→ Arg 𝑎𝑠 ⟬X , Y ⟭ _ ⟬X , Arg 𝑎𝑠 Y ⟭

str𝐴 X□
∗ Y [] tt 𝜎 = tt

str𝐴 X□
∗ Y ((Θ , 𝜏) :: as) (ℎ , ℎ𝑠) 𝜎 = (𝛿 :Str.str Θ X□

∗ Y ℎ 𝜎) , (str𝐴 X□
∗ Y 𝑎𝑠 ℎ𝑠 𝜎)

The strength laws are similarly established by pointwise application of the appropriate 𝛿 :Str
fields to the elements of the argument tuple. Extending Arg-strength to Σ is easy, since the
operation does not modify the operator or sort equality proof. In addition to Σ:Str below, we
also have an instance of convolutional strength for Σ derived via weakening.

Σ:Str : Strong ΣF
Σ:Str = record { str = 𝜆 X□

∗ Y (𝑜 , 𝑒 , 𝑎) 𝜎 � (𝑜 , 𝑒 , str𝐴 X□
∗ Y (Arity 𝑜) 𝑎 𝜎)

; str-nat1 = 𝜆 𝑓 □
∗ ⇒ (𝑜 , 𝑒 , 𝑎) 𝜎 � cong (𝑜 , 𝑒 ,_) (str𝐴-nat1 𝑓 □

∗ ⇒ (Arity 𝑜) 𝑎 𝜎) ; … }

12.3.2 Term syntax

The final piece of the puzzle is constructing the initial ΣA-algebra T from a second-order signa-
ture endofuctor. Such initial algebras correspond to inductive data types whose constructors
combine T -terms into other T -terms, allowing for arbitrarily nested syntactic structure.

One way to encode syntax is to treat the tuples (op o (𝑎1, . . . , 𝑎𝑛)) as the terms, directly
encoding the Σ-algebra structure as a unified term constructor con : Σ T _ T ; another is the
explicit encoding with one constructor per operator.

Implicit encoding Alongside the Σ-algebraic structure, terms of a second-order syntax also
have to include constructors for variables and metavariables. This suggests the following
generic data type of terms for an arbitrary signature:

data Tm : FamS where
con : Σ Tm 𝜏 Γ → Tm 𝜏 Γ

var : I 𝜏 Γ → Tm 𝜏 Γ

mvar : A 𝜏 Π→ Sub Tm Π Γ→ Tm 𝜏 Γ

In place of higher-order substitution rules Π –[Tm]� Γ, we use the inductive family Sub to
implement the metavariable environment:

264 computeR foRmalisation

data Sub (X : FamS) : Ctx→ Ctx→ Set where
• : Sub X ∅ Γ
▶ : X 𝛼 Γ→ Sub X Π Γ→ Sub X (𝛼 · Π) Γ

Sub a first-order, inductive encoding of simultaneous substitution rules, assigning a term in
context Γ to every variable in context Π. Though isomorphic to the higher-order encoding
(with conversion functions lookup and tabulate), this representation is better suited for syntax
as it evaluates structural recursion fully. Since interpretations i recurse into the metavariable
environment, a higher-order encodingwould suspend recursion under binders: the application
i (mvar a (𝜆 new � con (op o 𝑡))) only reduces to mvar a (𝜆 new � i (con (op o 𝑡))), and i doesn’t
reach inside the constructor unless the function is applied to new. In contrast, our first-order
encoding Sub fully normalises each substitution component, so i (mvar a (con (op o 𝑡) ▶ •))
directly reduces to mvar a (con (op o i 𝑡) ▶ •). This same consideration motivates our choice to
represent operator arguments as tuples, not higher-order assignments: though the strength
instance would be simpler with the latter, tuple-based representations simplify recursion and
equational reasoning, since syntactic operations only descend one level into subterms.

Proving initiality for Tm requires defining a recursive function i : Tm_A for any syntactic
algebra A, interpreting constructors and variable structures. The naïve definition runs into
trouble: applying i over a tuple of subterms prevents Agda from seeing the call as structurally
recursive. Allais et al. (2021, Section 4) faced the same issue, resolving it with sized types
(Abel, 2010), which mark terms as larger than their subterms. While this enables defining
i, it introduces a pervasive size index and doesn’t extend to proving uniqueness – a crucial
property in our framework (see Pitts (2019) for details in the context of general 𝐹 -algebras).

Our solution is simple and effective: instead of interpreting subterms via functorial lifting
(X _ Y)→ (Arg 𝑎𝑠 X Γ → Arg 𝑎𝑠 Y Γ), we define mutually recursive functions A and S that
apply i directly to each subterm. This inlining satisfies Agda’s termination checker without
needing sized types.

A : ∀𝑎𝑠 → Arg 𝑎𝑠 Tm Γ→ Arg 𝑎𝑠 A Γ
A [] tt = tt
A (𝑎 :: 𝑎𝑠) (𝑡 , 𝑡𝑠) = (i 𝑡 , A 𝑎𝑠 𝑡𝑠)

S : Sub Tm Π Γ→ Π –[A]� Γ
S (𝑡 ▶ 𝜎) new = i 𝑡
S (𝑡 ▶ 𝜎) (old 𝑣) = S 𝜎 𝑣

i (con (𝑜 , 𝑒 , 𝑎)) = a (𝑜 , 𝑒 , A (Arity 𝑜) 𝑎)
i (var 𝑣) = v 𝑣
i (mvar a 𝜀) = m a (S 𝜀)

The proof that i is the unique ΣA-algebra homomorphism is also fairly straightforward, requir-
ing only a few mutually inductive lemmas about A and S. This establishes an instance of
Initial SynAlgs for the term datatype Tm, enabling us to instantiate the entire generic metathe-
ory – gaining substitution, its correctness properties, sound compositional interpretations in
models, and more, essentially for free.

Explicit encoding The implicit encoding achieves our conceptual goal: it provides a first-
order initial syntactic algebra for any second-order signature. Its main practical drawback is

geneRic s ignatuRes 265

that the resulting term syntax is tightly coupled to the algebraic framework, forcing users into
a cumbersome representation that deviates from themore natural and elegant “one constructor
per typing rule” style of intrinsic typing. Pattern synonyms can help improve surface syntax,
but we found them fragile – especially in parametrised modules – and their untyped nature
feels ill-suited for something as central as the syntax of a formalised language. Ideally, our
framework should integrate seamlessly into existing developments, allowing users to retain
their original syntax definitions without needing to overhaul their core term data types.

This is entirely feasible thanks to our clear separation between signatures, endofunctors,
and initial syntactic algebras. Defining an initial algebra instance for an existing data type is
not particularly burdensome: it requires a recursive interpretation function, a homomorphism
proof, and an inductive uniqueness proof. Metavariables still require the mutually recursive
transformation S (defined as before and omitted here), but since subterm recursion is now
handled manually, the auxiliary transformation A is no longer necessary.
data Λ : FamS where

var : I 𝜏 Γ→ Λ 𝜏 Γ
mvar : A 𝜏 Π→ Sub Λ Π Γ→ Λ 𝜏 Γ
app : Λ (𝛼 � 𝛽) Γ→ Λ 𝛼 Γ→ Λ 𝛽 Γ
lam : Λ 𝛽 (𝛼 · Γ)→ Λ (𝛼 � 𝛽) Γ

i : Λ _ A

i (var 𝑣) = v 𝑣
i (mvar a 𝜀) = m a (S 𝜀)
i (app 𝑔 𝑎) = a (appₒ o i 𝑔 , i 𝑎)
i (lam 𝑏) = a (lamₒ o i 𝑏)

The homomorphism instance uses a simple lemma S-tab : ∀𝜀 → S (tabulate 𝜀) = i ◦ 𝜀, and
the Σ-algebra homomorphism proof, which is satisfied merely by pattern-matching on the
operand and sort equality proof.

iΣ⇒ : MetaAlg⇒ ΛΣ AΣ i

iΣ⇒ = record { 〈a〉 = 𝜆 {𝑡 = 𝑡 } � 〈a〉 𝑡 ; 〈v〉 = refl
; 〈m〉 = 𝜆 {a = a}{𝜀} � cong (m a) (S-tab 𝜀) }

where 〈a〉 : (𝑡 : Σ Λ 𝛼 Γ)→ i (ΛΣ.a 𝑡) ≡ AΣ.a (Σ1 i 𝑡)
〈a〉 (appₒ o _) = refl
〈a〉 (lamₒ o _) = refl

The uniqueness proof – that i is equal to any syntactic algebra homomorphism 𝑔 : Λ _ A –
involves the mutually inductive lemma S-lu and the inverse property of tabulate and lookup
in the metavariable case; everything else follows from the homomorphism properties of 𝑔.

S-lu : (𝜀 : Sub Λ Π Γ)(𝑣 : I 𝛼 Π)→ S 𝜀 𝑣 ≡ 𝑔 (lookup 𝜀 𝑣)
S-lu (𝑡 ▶ 𝜀) new = i! 𝑡
S-lu (𝑡 ▶ 𝜀) (old 𝑣) = S-lu 𝜀 𝑣

i! : (𝑡 : Λ 𝛼 Γ)→ i 𝑡 ≡ 𝑔 𝑡
i! (var 𝑣) = sym 〈v〉
i! (mvar a 𝜀) rewrite S-lu 𝜀 = trans (sym 〈m〉) (cong (𝑔 ◦ mvar a) (tab-lu-id 𝜀))
i! (app 𝑓 𝑎) rewrite i! 𝑓 | i! 𝑎 = sym 〈a〉
i! (lam 𝑏) rewrite i! 𝑏 = sym 〈a〉

266 computeR foRmalisation

With minimal additional boilerplate, we can prove that the inductively defined family Λ is
an initial syntactic algebra and apply this result to instantiate our metatheory. The Theory
module associated with the initial syntactic algebra provides direct access to all definitions
and lemmas in the framework: for example, the coveted single-variable substitution operation
is immediately available as Theory.[_/] : Λ 𝛼 Γ → Λ 𝛽 (𝛼 · Γ)→ Λ 𝛽 Γ, with no extra effort
required. We can reduce the boilerplate even further with code generation.

12.3.3 Code generation

The next natural step is to eliminate boilerplate entirely by allowing users to move directly
from a second-order signature specification to a formalised metatheory of an explicitly en-
coded term datatype. Since the initiality proof for the explicit encoding is highly schematic
and largely signature-independent, we generate the corresponding Agda code from a syntax
description via a simple Python script. This signature-to-Agda “compiler” takes a concise
textual specification of type and term signatures and produces the Signature declaration and
initiality proof code, as described in Sections 12.3.1 and 12.3.2. For example, the signature of
the STLC can be specified as follows, with optional infix symbols and fixity annotations:

type
N : 0-ary
� : 2-ary | r30

term
app : (𝛼 � 𝛽) 𝛼 → 𝛽 | _$_ l20
lam : 𝛼.𝛽 → (𝛼 � 𝛽) | 𝜆_ r10

The input file consists of a type signature and a term syntax block. Type operators are an-
notated with their arity, and term operators are given with their type signatures. Binding
is expressed by prefixing the type of bound variables to the type of the body – for example,
the lam constructor takes an expression of type 𝛽 that binds an additional variable of type
𝛼 . For convenience, term operators may be annotated with mixfix symbolic representations
and fixity (in Agda style): for instance, application will be compiled to the _$_ constructor,
associating to the left with precedence 20.

Saving this file as stlc and running python soas.py stlc generates Signature.agda
and Syntax.agda, containing all necessary imports, the signature declaration Λ:Sig, the in-
ductive term family Λ, and the initiality proof. This enables the user to jump straight to the
substantive aspects of language formalisation – like operational or denotational semantics –
without having to worry about low-level syntax machinery. The generated encoding is id-
iomatic and intrinsically typed, leaving users free to build on it however they choose.

The compiler is a simple Python program that parses the signature description and outputs
formatted Agda using string templates. Its simplicity is an advantage: the generated code is
minimal and systematic (about 1–2 lines per type constructor and 6–7 per term constructor),
and has been manually tested across a range of examples for robustness. Unlike other code-
generation approaches that output the full syntax-specific formalisation – including fragile
and impenetrable de Bruijn proofs – we leverage our generic metatheory and generate just
enough code to instantiate it: namely, the initiality proof, which is both elegant and reusable.
As a result, the output is concise, readable, and easy to maintain.

The compiler also supports useful syntactic sugar in the specification language, including
an Agda-style module system for composing signatures. These are desugared into flat Agda

geneRic s ignatuRes 267

datatypes, avoiding the complexity of defining categorical sums, products, etc., in the under-
lying formalisation. More examples follow in the next section.

To conclude, we compare our approach to existing proposals for generic encoding of sig-
natures and corresponding generic metatheory.

Signatures For signatures involving variable binding, notable approaches to generic syntax
encoding include indexed containers (Altenkirch et al., 2015), initial algebraic encodings of
induction-recursion (Dybjer and Setzer, 1999; Benke et al., 2003), and the universe of descrip-
tions framework by Chapman et al. (2010). The latter underpins the generic syntax descrip-
tions of Allais et al. (2021), which allow one to specify constructors by listing their arities
and binding behaviour, and interpret them as endofunctors on families. The encoding is
similar to ours in that it combines a set of symbols with an arity function, mapping every
symbol to its intended type signature:

data ’STLC : Set where
App Lam : Type→ Type→ ’STLC

STLC : Desc Type
STLC = ’𝜎 ’STLC $ 𝜆 where

(App 𝛼 𝛽) � ’X [] (𝛼 � 𝛽) (’X [] 𝛼 (’■ 𝛽))
(Lam 𝛼 𝛽) � ’X 𝛼 :: [] 𝛽 (’■ (𝛼 � 𝛽))

The Desc datatype is interpreted as an endofunctor on families in a way similar to our
construction of the Σ endofunctor: operators are dependently combined with a list of inter-
pretations of constructor arguments:

J _ K: Desc 𝑆 → 𝑆-Scoped→ 𝑆-ScopedJ ’𝜎 𝐴 𝑑 K X 𝛼 Γ = Σ[𝑜 ∈ 𝐴] (J𝑑 𝑎 K X 𝛼 Γ)J ’X Δ 𝛽 𝑑 K X 𝛼 Γ = X 𝛽 (Δ + Γ) × J𝑑 K X 𝛼 ΓJ ’■ 𝛽 K X 𝛼 Γ = 𝛼 ≡ 𝛽

The interpretations correspond to the operator index, Arg list, and return sort equality proof,
respectively. The benefit of our modular approach is that as long as this generated endofunc-
tor is pointed and convolutional strong (which it is), our Signature encoding of signatures
can be replaced with the Desc encoding, without altering any of the metatheory.

Term encoding Allais et al. (2021) use the Desc interpretation function in their implicit term
encoding Tm, representing terms with the constructor ’con : SJ𝑑 K (Tm 𝑠) _ Tm (↑ 𝑠), where
𝑠 is the size index needed to ensure that the interpretationmap terminates. This ties the term
representation closely to the Desc datatype, which makes much of the generic metatheory
coupled to Desc, rather than an arbitrary endofunctor. In contrast, we have clear abstrac-
tion barriers between the signature encoding, term encoding, and generic metatheory, ex-
emplified by the implicit and explicit encoding of terms that nevertheless satisfy the same
initiality theorem.

Initiality Although Allais et al. (2021) circle around the idea, they never actually prove the
initiality of the syntax datatype. Their central proof – the Fundamental Lemma of Semantics
– is in fact the construction of a parametrised traversal. The Semantics module for a given
description 𝑑 : Desc axiomatises the structure needed on families X,A to induce a function

https://gallais.github.io/generic-syntax/Generic.Syntax.html#527
https://gallais.github.io/generic-syntax/Generic.Semantics.html#814

268 computeR foRmalisation

semantics : Γ –[X]� Δ→ (Tm 𝑠 𝛼 Γ → A 𝛼 Γ), which, with a bit of rearranging, is the
type of an initial traversal map Tm 𝑠 _ ⟬X , A ⟭. The requirements are that X is Thinnable
(i.e. a □-coalgebra), there is an embedding X _ A (analogous to our map 𝑣 for a ΣX

A
-algebra

A), and a map SJ𝑑 K _ A for the interpretation function SJ _ K given below:

SJ _ K: Desc 𝑆 → 𝑆-Scoped→ 𝑆-Scoped
SJ ’𝜎 𝐴 𝑑 K X 𝛼 Γ = Σ[𝑜 ∈ 𝐴] (J𝑑 𝑎 K X 𝛼 Γ)
SJ ’X [] 𝛽 𝑑 K X 𝛼 Γ = A 𝛽 Γ × SJ𝑑 K X 𝛼 Γ

SJ ’X Δ 𝛽 𝑑 K X 𝛼 Γ = □((Sub X Δ) _ A 𝛽) × SJ𝑑 K X 𝛼 Γ

SJ ’■ 𝛽 K X 𝛼 Γ = 𝛼 ≡ 𝛽

The operation is admittedly difficult to parse, even with some of the constructs inlined. At
its core, it translates terms with bound variables into terms parametrised by a renaming
function and an instantiation of those variables as X-terms in the renamed context. While
the analogy with Kripke function spaces is suggested, it remains underdeveloped, and the
definition of semantics –mutually recursive with body – is less intuitive than simply requir-
ing syntactic structure on A. The somewhat ad hoc constructions – Kripke, Scope, body,
and others – also affect downstream results, such as the generic simulation framework. Al-
though Allais et al. (2021, Section 10.3) express scepticism toward the abstract categorical
approach of Fiore et al. (1999), their library ends up sidestepping more canonical and well-
understood categorical tools in favour of bespoke abstractions that may feel unfamiliar or
opaque, regardless of whether the reader approaches from formalisation or category theory.

In this section, we outlined the Agda formalisation of our categorical framework, highlighting
features that retroactively justify our key design choices: the use of sorted families (which
are both natural to represent and easy to manipulate), closed structure and linearity (ensuring
dependent function spaces are readily available), and linear maps (which translate quotient-
ing conditions into function axioms). Throughout, we upheld a modular development style,
limiting interactions between components to minimal, well-defined interfaces such as strong
functors and initial algebras. We also drew comparisons with the state-of-the-art in type- and
scope-safe formalisation, arguing that the agda-soas library successfully addresses limita-
tions in prior work. Next, we showcase a variety of examples of our framework in use.

https://gallais.github.io/generic-syntax/Generic.Semantics.html#971
https://gallais.github.io/generic-syntax/Generic.Semantics.html#1013

c h a p t e R 1 3

Examples

Our framework is flexible and unopinionated: it can be integrated into any intrinsically-typed
formalisation of a second-order calculus to equip the syntax with essential operations like
weakening, substitution, and their associated laws. It also aids in defining evaluation func-
tions, interpreters, and syntactic translations in a concise and provably correct way, while
supporting the construction of signature-generic syntactic operations. In this chapter, we il-
lustrate several ways the library can be applied: Section 13.1 explores its metatheoretic and
equational capabilities through the analysis of various syntaxes, while Section 13.2 focuses on
generic, structurally recursive, and context-aware operations.

13.1 FoRmal systems and second-oRdeR calculi

We present some of the main features of our Agda formalisation framework and syntax de-
scription language using the examples of the simply-typed 𝜆-calculus, algebraic structures,
and partial differentiation.

13.1.1 Semantics of the simply-typed 𝜆-calculus

The simply-typed lambda calculus (STLC) has served as our running example, and our frame-
work offers an ideal playground for experimenting with its various extensions – whether by
adding new types, term constructs, or equations. Below is a list of features that can be easily
specified and compiled into Agda. While the semantics of such an expressive language would
be complicated, its syntax is still captured as a second-order signature.

type
N : 0-ary -- Natural numbers
� : 2-ary -- Functions
⊗ : 2-ary -- Products
⊕ : 2-ary -- Sums
¬_ : 1-ary -- Continuations
T : 1-ary -- Monadic computations

270 examples

term
app : (𝛼 � 𝛽) 𝛼 → 𝛽
lam : 𝛼.𝛽 → (𝛼 � 𝛽)

let : 𝛼 𝛼.𝛽 → 𝛽
fix : (𝛼 � 𝛼) → 𝛼

throw : 𝛼 ¬ 𝛼 → 𝛽
callcc : (¬ 𝛼).𝛼 → 𝛼

return : 𝛼 → T 𝛼
bind : T 𝛼 𝛼.(T 𝛽) → T 𝛽

pair : 𝛼 𝛽 → 𝛼 ⊗ 𝛽
fst : 𝛼 ⊗ 𝛽 → 𝛼
snd : 𝛼 ⊗ 𝛽 → 𝛽

inl : 𝛼 → 𝛼 ⊕ 𝛽
inr : 𝛽 → 𝛼 ⊕ 𝛽
case : 𝛼 ⊕ 𝛽 𝛼.𝛾 𝛽.𝛾 → 𝛾

ze : → N
su : N → N
nrec : N 𝛼 (𝛼,N).𝛼 → 𝛼

We will use the minimal fragment of STLC (with app and lam) to showcase the construction
of models and interpretations. The CCC model of the STLC (Lambek, 1986) in the category
Set interprets types as sets, and terms Γ ` 𝑡 : 𝛼 as functions from the interpretation of Γ to the
interpretation of 𝛼 . Interpretation of contexts can be higher-order or first-order (as a carte-
sian product of type interpretations) – with the higher-order encoding the model definition is
remarkably concise.

J_K : ΛT→ SetJN K = NJ𝛼 � 𝛽 K = J𝛼 K→ J 𝛽 K
J_Kc : Ctx→ SetJ Γ Kc = ∀{𝛼 }→ I 𝛼 Γ→ J𝛼 K
+ : J𝛼 K→ J Γ Kc→ J𝛼 · Γ Kc
(𝑎 + 𝛾) new = 𝑎
(𝑎 + 𝛾) (old 𝑣) = 𝛾 𝑣

Env : FamilyS

Env 𝛼 Γ = J Γ Kc→ J𝛼 K

EnvΣM : ΣMon Env
EnvΣM = record

{ M = record { 𝜂 = 𝜆 𝑣 𝛾 � 𝛾 𝑣 ; 𝜇 = 𝜆 𝑡 𝜎 𝛾 � 𝑡 (𝜆 𝑣 � 𝜎 𝑣 𝛾)
; lunit = refl ; runit = refl ; assoc = refl }

; alg = 𝜆 { (appₒ ⋮ 𝑓 , 𝑎) 𝛾 � 𝑓 𝛾 (𝑎 𝛾)
; (lamₒ ⋮ 𝑏) 𝛾 � 𝜆 𝑎 � 𝑏 (𝑎 + 𝛾) }

; 𝜇〈alg〉 = 𝜆 { (appₒ ⋮ _) � refl
; (lamₒ ⋮ 𝑏) � ext2 𝜆 𝛿 a � cong 𝑏 (dext

𝜆 { new � refl ; (old 𝑣) � refl }) } }

module Env = FreeMonoid Ø EnvΣM (𝜆 ())

eval : Λ0 _ Env
eval = Env.i

Here we restrict to the sorted family Λ0 = ΛØ of 𝜆-terms without metavariables for simplicity.
The eval function interprets 𝜆-terms as Agda programs; for example, eval (lam (lam x1)) (𝜆 ())
(where the 1st de Bruijn index var (old new) is abbreviated x1) normalises to the Agda function
𝜆 𝑥 𝑦 � 𝑥 . Since it is derived by initiality, the interpretation is compositional and satisfies the
semantic substitution lemma by construction. This is an enormous time-saver, since proving
the soundness of substitution is often one of the most tedious steps required for the devel-
opment of denotational semantics – the binding terms are the usual suspects, forcing one to
reason about semantics of lifting, weakening, renaming, etc. Our framework does all the heavy
lifting, allowing users to move on to less bureaucratic proofs. For example, after defining the
predicate Val satisfied by value terms of the form 𝜆 𝑏 for 𝑏 : Λ0 𝛽 (𝛼 · Γ), it takes minimal effort
to equip the language with an intrinsically-typed call-by-value reduction relation and a proof
that it preserves the interpretation of terms:

foRmal systems and second -oRdeR calcul i 271

data _⇝_ : Λ0 𝛼 Γ→ Λ0 𝛼 Γ→ Set where
𝜁 -$1 : {𝑓 𝑔 : Λ0 (𝛼 � 𝛽) Γ} {𝑎 : Λ0 𝛼 Γ} → 𝑓 ⇝ 𝑔→ 𝑓 $ 𝑎 ⇝ 𝑔 $ 𝑎
𝜁 -$2 : {𝑓 : Λ0 (𝛼 � 𝛽) Γ} {𝑎 𝑏 : Λ0 𝛼 Γ} → Val 𝑓 → 𝑎 ⇝ 𝑏 → 𝑓 $ 𝑎 ⇝ 𝑓 $ 𝑏
𝛽-𝜆 : {𝑡 : Λ0 𝛼 Γ} {𝑏 : Λ0 𝛽 (𝛼 · Γ)}→ Val 𝑡 → (𝜆 𝑏) $ 𝑡 ⇝ [𝑡 /] 𝑏

sound : {𝑡 𝑠 : Λ0 𝛼 Γ}→ 𝑡 ⇝ 𝑠 → (𝛾 : J Γ Kc)→ eval 𝑡 𝛾 ≡ eval 𝑠 𝛾
sound (𝜁 -$1 𝑟) 𝛾 rewrite sound 𝑟 𝛾 = refl
sound (𝜁 -$2 _ 𝑟) 𝛾 rewrite sound 𝑟 𝛾 = refl
sound (𝛽-𝜆 {𝑡 }{𝑏} _) 𝛾 rewrite Env.sub-lemma 𝑡 𝑏

= cong (eval 𝑏) (ext 𝜆 { new � refl ; (old 𝑣) � refl })

Note the use of the freely-obtained single-variable substitution [𝑡 /] 𝑏 in the 𝛽-𝜆 axiom, and
the invocation of sub-lemma which translates eval ([𝑡 /] 𝑏) 𝛾 to Env.[eval 𝑡 /] (eval 𝑠) 𝛾 . The
only technical “intervention” needed is forcing the evaluation of environment entries using
function extensionality, as otherwise Agda wouldn’t reduce the equalities in the higher-order
𝛾 argument (cf. discussion of inductive and higher-order substitution rules in Section 12.3.2).

Despite its simplicity, implementing the STLC’s syntax, type system, operational and de-
notational semantics from scratch still involves a considerable amount of effort, mostly spent
defining and reasoning about substitution. Leveraging our framework, this standard but rel-
atively robust formalisation is possible in fewer than 100 lines of Agda code. Further proofs
like progress, determinacy, normalisation, etc. will rarely be held up by having to establish a
metasyntactic property – it is likely to be present in the Theory module already.

13.1.2 Modular theories

While experimentingwith the syntax description language, the benefit ofmodularity and reuse
quickly became apparent: algebraic structures and calculi involve some hierarchical inheri-
tance that can be elegantly exposed using a simple, Agda-like module system. Combined with
the equational reasoning framework, the system becomes an effective tool for formalising
algebraic structures, logics, and second-order extensions thereof.
For example, consider the following signature of amonoid, where the lack of a type declaration
marks the signature as one-sorted with sort ∗:

syntax Monoid | M

term
unit : ∗ | 𝜀

mult : ∗ ∗ → ∗ | _⊕_ l20

Feeding this into the generator produces an axiomatisation of monoids and the Agda data
type M with four constructors: variables, metavariables, the unit 𝜀 and monoid operation ⊕.
To make use of the equational reasoning framework of Section 12.2.2, we extend the syntax
description with the equational axioms of monoids, which will compile to an Axiom instance
in Agda. The system supports formulaic descriptions of several common algebraic properties,
making the axiomatisation very familiar:

272 examples

theory
‘unit’ unit of ‘add’
‘add’ associative

The generated Equality.agda file contains the following relation, expressing the properties
as constructors of a (metavariable) context-indexed relation between terms:

data _▷_`_≈𝐴_ : (A : MCtx)(Γ : Ctx){𝛼 : ∗T}→M A 𝛼 Γ→M A 𝛼 Γ→ Set where
𝜀U⊕𝐿 : ⦍ ∗ ⦐ ▷ ∅ ` 𝜀 ⊕ a ≈𝐴 a

𝜀U⊕𝑅 : ⦍ ∗ ⦐ ▷ ∅ ` a ⊕ 𝜀 ≈𝐴 a

⊕A : ⦍ ∗ ⦐ ⦍ ∗ ⦐ ⦍ ∗ ⦐ ▷ ∅ ` (a ⊕ b) ⊕ c ≈𝐴 a ⊕ (b ⊕ c)

Every axiom quantifies over some number of metavariables listed in the MCtx declaration be-
fore the ▷ that may be mentioned in the equation (as “alphabetic” de Bruijn indices a, b, c, etc.)
and instantiated independently; in this case, the metavariables have no type or parameters, but
we will see more interesting examples later. Each A : MCtx can be turned into the correspond-
ing sorted family of metavariables A : FamS, with the number of constructors determined by
the number of ⦍ Π ⊩ 𝜏 ⦐ blocks (or ⦍ 𝜏 ⦐, if Π is empty), and the parameter context and sort of
the metavariables given by Π and 𝜏 respectively.

Instantiating the generic equational logic with this set of axioms yields a formally verified
equational proof system for monoids. While the resulting derivations can appear pedantic,
this level of rigour is not necessarily unwelcome: carefully stepping through algebraic proofs
– explicitly invoking properties such as associativity, identity laws, and congruence – can be
not only satisfying but also deeply educational. For instance, consider the following reduction
of a monoid expression (𝑥 ⊕ 𝜀) ⊕ (𝑦 ⊕ 𝑥) = (𝑥 ⊕ 𝑦) ⊕ 𝑥 :

calc : ■ ▷ b ∗ · ∗ c ` (x0 ⊕ 𝜀) ⊕ (x1 ⊕ x0) ≈ (x0 ⊕ x1) ⊕ x0
calc = begin (x0 ⊕ 𝜀) ⊕ (x1 ⊕ x0) ≈〈 cong

[
ax 𝜀U⊕𝑅 with〈〈 x0 〉〉

]
inside , ⊕ (x1 ⊕ x0) 〉

x0 ⊕ (x1 ⊕ x0) ≈〈 ax ⊕A with〈〈 x0 ⊳ x1 ⊳ x0 〉〉 〉𝑠
(x0 ⊕ x1) ⊕ x0 ■

The reasoning steps are instances of the ax and ms constructors of the _▷_`_≈_ equality type.
Common metasubstitution patterns are extracted into helper operators, making the proofs
significantly more readable: for example, the ax 𝑎 with 〈〈 𝑡1 ⊳ . . . ⊳ 𝑡𝑛 〉〉 notation associates an
axiom 𝑎 with an instantiation of metavariables in the axiom’s metavariable context, given as a
list of terms – in this case, the right unit is applied to the object variable x0, and associativity to
x0, x1 and x0. Applications of an equation in a subexpression of 𝑡 is done with the congruence
combinator cong[𝑒]inside 𝑡 [,], where the hole , denotes the place in the expression in which
𝑒 is applied. In the calc example, we first apply the right unit axiom to the left subterm of ⊕
by guiding it to the right place with the , ⊕ (x1 ⊕ x0) congruence context.

Returning to modularity, a whole zoo of algebraic structures can be specified by extending
monoids with new axioms and operators, or combining existing structures. For example, a
commutative monoid is a monoid where the binary operator is commutative, while a group is
a monoid with an inverse operator:

foRmal systems and second -oRdeR calcul i 273

syntax CMonoid | CM extends monoid

theory
’add’ commutative

syntax Group | G extends monoid

term
neg : ∗ → ∗ | 	_ r40

theory
‘neg’ inverse of ‘add’ with ‘unit’

The extends keyword imports the signature and equations of the named module. It supports
multiple “inheritance” and renaming of operators and changing of fixities, as shown in the
following declaration of a semiring: an additive commutative monoid with a multiplicative
monoid, connected by distributivity and annihilation axioms.

syntax Semiring | SR extends
- cmonoid (renaming unit:𝜀 to zero:0)
- monoid (renaming unit:𝜀 to one:1, add:⊕ to mult:⊗:l30)

theory
‘mult’ distributes over ‘add’
‘zero’ annihilates ‘mult’

A ring can be presented either by combining an additive commutative group with a multi-
plicative monoid, or by equipping a semigroup with a negation operator – both constructions
ultimately yield the same syntax. However, this modularity exists only at the level of syntax
descriptions: in the generated Agda code, all such extensions are flattened into a single, unified
axiomatisation. While supporting modularity within the formalisation framework itself is pos-
sible, it would require managing nested sums of signature endofunctors and explicit injections
for operators – choices that introduce considerable syntactic and notational overhead.

As an example of a heterogeneous signature with nonstandard equations, we axiomatise
group actions as a group extendedwith a new sort A and left action operator of a group element
to an element of A. The two axioms are written out as explicit second-order equations of the
form (name) metavars ▷ expr1 = expr2, quantifying over metavariables of different sorts:
g and h are group elements (of the implicit sort *), while a is an element of the set A.

syntax GroupAction | GA extends group

type
A : 0-ary

term
act : ∗ A → A | _⊕_ r30

theory
(𝜀A�) a : A ▷ act(unit, a) = a
(⊕A�) g h a : A ▷ act(add(g, h), a) = act(g, act(h, a))

274 examples

Writing out the axioms using the textual operators and applicative style eliminates any ambi-
guity, but the generated Agda axioms use the more natural symbolic operators. In fact, the
descriptive algebraic properties we used above desugar into the explicit specifications: the
‘neg’ inverse of ‘add’ with ‘unit’ directive expands into the axiom

(N⊕𝐿) a ▷ add(neg(a), a) = unit,

with the axiom name splicing the appropriate symbols for the operators. A simple property of
group actions is that action of a group element can be cancelled by action of its inverse, and
the proof in Agda is as simple and clear as it would be on paper:

act-inv : ⦍ ∗ ⦐ ⦍ A ⦐ ▷ ∅ ` (a) � (a � b) ≈ b

act-inv = begin (a) � (a � b) ≈〈 ax ⊕A� with〈〈 	 a ⊳ a ⊳ b 〉〉 〉𝑠
((a) ⊕ a) � b ≈〈 cong

[
ax 	N⊕𝐿 with〈〈 a 〉〉

]
inside ,𝑐 � b 〉

𝜀 � b ≈〈 ax 𝜀A� with〈〈 b 〉〉 〉𝑠
b ■

13.1.3 Partial differentiation

Another example of a second-order calculus is the axiomatisation of partial differentiation
laid out by Plotkin (2020). The syntax consists of the first-order theory of commutative rings
with a second-order partial-differentiation operator PDiff (𝑥 .𝑒 [𝑥], 𝑑), interpreted as the partial
derivative of the expression 𝑒 [𝑥 with respect to𝑥 , evaluated at𝑑 (which has no free occurrences
of 𝑥). This is usually denoted 𝜕 𝑒 〈𝑥〉

𝜕𝑥

��
𝑥=𝑑 . To differentiate 𝑒 〈𝑥〉 without evaluation, one renames

𝑥 to a dummy variable 𝑤 , differentiates 𝑒 〈𝑤〉 with respect to 𝑤 , then evaluates the result at
𝑤 = 𝑥 – thus, the notation 𝜕

𝜕𝑥 𝑒 〈𝑥〉 is taken as abbreviating 𝜕 𝑒 〈𝑤〉
𝜕𝑤

��
𝑤=𝑥 .

The signature of commutative rings augmented with the partial-differentiation operator
can be readily expressed as an unsorted syntax description, extending the syntax cring. De-
rived operations in braces must be manually implemented in Agda and allow for arbitrary
output context: here, 𝜕0 and 𝜕1 implement the partial derivatives with respect to the first and
second variable. Note the use of weakeningwk to extend the context of 𝑒 with an extra dummy
variable that is not affected by the differentiation.

syntax PDiff | PD extends cring

term
pdiff : ∗.∗ ∗ → ∗ | 𝜕_|_
{d0 : ∗.∗ → ∗.∗ | 𝜕0_}
{d1 : (∗,∗).∗ → (∗,∗).∗ | 𝜕1_}

𝜕0_ : PD A ∗ (∗ · Γ)→ PD A ∗ (∗ · Γ)
𝜕0 𝑒 = 𝜕 (wk 𝑒) ∣ x0
𝜕1_ : PD A ∗ (∗ · ∗ · Γ)→ PD A ∗ (∗ · ∗ · Γ)
𝜕1 𝑒 = 𝜕 (wk 𝑒) ∣ x1

The equational theory of partial differentiation may be directly translated from the paper.
Plotkin’s use of function variables as abstract terms parametrised by expressions matches our
notion of a parametrised metavariable, so the laws may be stated as second-order axioms uni-
versally quantifying over both object-level variables, and parametrised metavariables, using
the extended syntax (name) metavars ▷ vars ` expr1 = expr2 that also includes a typing
context given by vars.

foRmal systems and second -oRdeR calcul i 275

theory
‘zero’ unit of ‘add’
‘mult’ distributes over ‘add’

(𝜕⊕) a : ∗ ▷ x : ∗ ` d0 (add (x,a)) = one
(𝜕⊗) a : ∗ ▷ x : ∗ ` d0 (mult(a, x)) = a
(𝜕C) f : (∗,∗).∗ ▷ x : ∗ y : ∗ ` d1 (d0 (f[x,y])) = d0 (d1 (f[x,y]))

Plotkin’s binary chain rule generalises the usual unary chain rule, and may be inductively
extended to a chain rule of arbitrary arity. The corresponding axiom in the theory is as follows:

(𝜕Ch2) f : (*,*).* g h : *.* ▷ x : *
` d0 (f[g[x], h[x]])
= add (mult(pd(z. f[z, h[x]], g[x]), d0(g[x])),

mult(pd(z. f[g[x], z], h[x]), d0(h[x])))

The familiar unary chain rule is then marked as a derived law, to be implemented in Agda
manually after code generation:

{(𝜕Ch1) f g : ∗.∗ ▷ x : ∗
` d0 (f[g[x]]) = mult (pd (z. f[z], g[x]), d0(g[x]))}

The equational logic generated from the axiomatisation is the following Agda datatype:

data _▷_`_≈𝐴_ : (A : MCtx)(Γ : Ctx){𝛼 : ∗T}→ PD A 𝛼 Γ→ PD A 𝛼 Γ→ Set where
𝜕⊕ : ⦍ ∗ ⦐ ▷ b ∗ c ` 𝜕0 (x0 ⊕ a) ≈𝐴 1

𝜕⊗ : ⦍ ∗ ⦐ ▷ b ∗ c ` 𝜕0 (a ⊗ x0) ≈𝐴 a

𝜕C : ⦍ ∗ · ∗ ⊩ ∗ ⦐ ▷ b ∗ · ∗ c ` 𝜕1 (𝜕0 a〈 x0 ▶ x1 〉) ≈𝐴 𝜕0 (𝜕1 a〈 x0 ▶ x1 〉)
𝜕Ch2 : ⦍ ∗ · ∗ ⊩ ∗ ⦐ ⦍ ∗ ⊩ ∗ ⦐ ⦍ ∗ ⊩ ∗ ⦐ ▷ b ∗ c `

𝜕0 a〈 b〈 x0 〉 ▶ c〈 x0 〉 〉 ≈𝐴 (𝜕 a〈 x0 ▶ c〈 x1 〉 〉 ∣ b〈 x0 〉) ⊗ (𝜕0 b〈 x0 〉) ⊕
(𝜕 a〈 b〈 x1 〉 ▶ x0 〉 ∣ c〈 x0 〉) ⊗ (𝜕0 c〈 x0 〉)

Some of Plotkin’s Lemma 2.1 may now be formalised: for example, the simple corollary 𝜕0
𝜕𝑥 = 0

is derivable from the left annihilation law of 0 and ⊗, and the product differentiation axiom.

𝜕0 : ⦍⦐ ▷ b ∗ c ` 𝜕0 0 ≈ 0

𝜕0 = begin 𝜕0 0 ≈〈 cong[ax 0X⊗𝐿 with〈〈 x0 〉〉]in 𝜕0 , 〉S
𝜕0 (0 ⊗ x0) ≈〈 ax 𝜕⊗ with〈〈 0 〉〉 〉
0 ■

The implementation of the derived unary chain rule is more involved, but every step is neces-
sary at the level of rigour we operate in this setting. It is the result of instantiating the binary
axiom with 𝑓 (𝑥,𝑦) ≜ 𝑓 (𝑥) and ℎ(𝑥) = 0, and applying the 𝜕0 corollary above, the unit and
annihilation laws for 0:

276 examples

𝜕Ch1 : ⦍ ∗ ⊩ ∗ ⦐ ⦍ ∗ ⊩ ∗ ⦐ ` 𝜕0 a〈 b〈 x0 〉 〉 ≈ (𝜕 a〈 x0 〉 ∣ b〈 x0 〉) ⊗ (𝜕0 b〈 x0 〉)
𝜕Ch1 = begin 𝜕0 a〈 b〈 x0 〉 〉

≈〈 ax 𝜕Ch2 with〈〈 a〈 x0 〉 ⊳ b〈 x0 〉 ⊳ 0 〉〉 〉
(𝜕 a〈 x0 〉 ∣ b〈 x0 〉) ⊗ (𝜕0 b〈 x0 〉) ⊕ (𝜕 a〈 b〈 x1 〉 〉 ∣ 0) ⊗ 𝜕0 0

≈〈 cong
[
thm 𝜕0

]
in [. . .] ⊕ (𝜕 a〈 b〈 x1 〉 〉 ∣ 0) ⊗ ,c 〉

(𝜕 a〈 x0 〉 ∣ b〈 x0 〉) ⊗ (𝜕0 b〈 x0 〉) ⊕ (𝜕 a〈 b〈 x1 〉 〉 ∣ 0) ⊗ 0

≈〈 cong
[
thm 0X⊗𝑅 with〈〈 𝜕 a〈 b〈 x1 〉 〉 ∣ 0 〉〉

]
in [. . .] ⊕ ,c 〉

(𝜕 a〈 x0 〉 ∣ b〈 x0 〉) ⊗ (𝜕0 b〈 x0 〉) ⊕ 0

≈〈 ax 0U⊕𝑅 with〈〈 (𝜕 a〈 x0 〉 ∣ b〈 x0 〉) ⊗ 𝜕0 b〈 x0 〉 〉〉 〉
(𝜕 a〈 x0 〉 ∣ b〈 x0 〉) ⊗ (𝜕0 b〈 x0 〉) ■

The de Bruijn index annotations on the holes are needed when the proof operates in a
nonempty metavariable context. We wrote [. . .] above for the sake of brevity – the context
of the congruence needs to be written out explicitly for Agda to be able to evaluate the meta-
substitution that instantiates the distinguished hole metavariable. Note also the use of thm,
which uses an established (non-axiomatic) equality as a proof step. Thanks to the precise and
sufficiently general definition of metasubstitution in our framework, metavariables and object
variables are always accessible where needed, making the construction of equational proofs
verbose but quite intuitive.

13.2 GeneRic opeRations

The core advantage of generic programming lies in its ability to define operations over data
without requiring knowledge of the data’s specific structure. In the setting of formalised cal-
culi, this allows us to define auxiliary operations like the free variable function in a syntax-
independent way: it performs the “obvious” recursive traversal, unions the free variables of
subterms, and removes any that are bound. Similarly, pretty-printing is another operation that
can be derived generically – provided we handle free and bound variables correctly – by spec-
ifying how each constructor should be printed. In this section, we present signature-generic
definitions of both free-variable lookup and pretty-printing, all derived via initiality.

13.2.1 Free variables

Thanks to initial algebra semantics, defining a recursive function on syntactic terms amounts
to equipping the codomain with a syntactic algebra structure. To derive an operation comput-
ing the set of free variables, fv(𝑡), we must express the output in a form compatible with the
familial model – specifically, as a sorted family. The intrinsic representation of the set of free
variables is given by a context-indexed family:

FV : Fam
FV Γ = List (Σ[𝜏 ∈ T] I 𝜏 Γ)

geneRic opeRations 277

The type FV Γ represents a list of tuples consisting of sorts paired with proofs that they ap-
pear in the context Γ. While defining a free variable function might seem unnecessary for
intrinsically-typed terms – since the typing context already indicates the variables in scope –
the key point is that the context Γ is merely an upper bound on the free variables actually used
in a term: fv(𝑡) ⊆ Γ. In the FV family, this means that not every variable in Γ must be listed.
The role of the rmVars function below is to eliminate all variables from a term that appear in
a given context, relying on a list lookup function that returns a value of type Maybe.

rmVars : (Θ : Ctx)→ FV (Θ + Γ)→ FV Γ

rmVars Θ [] = []
rmVars Θ ((𝜏 , 𝑣) :: fv) with Θ 3? 𝑣
… | just x = (𝜏 , 𝑥) :: rmVars Θ fv

… | nothing = rmVars Θ fv

The syntactic algebra structure for FV (more precisely, the trivially sorted form FV𝑠 𝛼 = FV) op-
erates as expected: a variable constructor is free, metavariables traverse the environment and
concatenate the free variables, and for the algebra structure we use the following restriction
to Arity, which concatenates the free variables in subterms, but removes every bound variable
from the recursive list.

alg : (as : List (Ctx × 𝑇))(fv : Arg 𝑎𝑠 FV Γ)→ FV Γ

alg [] tt = []
alg ((Θ , 𝜏) :: 𝑎𝑠) (fv , fvs) = rmVars Θ fv ++ alg (𝑎 :: 𝑎𝑠) fvs

With one additional round of deduplicate, which removes duplicates from the list in case of
multiple occurrences of the same variable, we obtain the free variable function fv : T _ FV𝑠 as
an initial interpretation into the syntactic algebra built on FV𝑠 . For example, given the terms

tm1 : Λ (N � 𝛼 � 𝛼)(B · (N � 𝛼) · ∅)
tm1 = 𝜆 (𝜆 (nrec x1 x0 (x₅ $ (plus $ x1 $ x3))))

tm2 : Λ (N � 𝛼 � 𝛼)(B · (N � 𝛼) · ∅)
tm2 = 𝜆 (𝜆 (nrec x1 x0 (x₅ $ if x₄ ze (plus $ x1 $ x3))))

differing only in whether the last variable is used in the term or not, we get the equalities

fv tm1 ≡ ((N � 𝛼 , old new) :: []) fv tm2 ≡ ((N � 𝛼 , old new) :: (B , new) :: [])

that differentiate between variables being listed in the context and actually used in the term.

13.2.2 Pretty-printing

Another standard operation on syntax is printing out a textual representation of the terms.
For a language without binding, a straightforward fold is sufficient: if we know how to print
out the leaf nodes (constants or variables) and branch nodes (operators), an in- or pre-order
traversal produces the desired output. However, variable binding introduces challenges – chief

278 examples

among them being the generation of fresh variable names and the maintenance of correct
binding relationships – unless one is content with printing raw de Bruijn indices.

Our solution builds on the approach of Allais et al. (2021, Section 7.1), but adapts it to
our framework rooted in initial-algebra semantics. Fresh variable names are generated us-
ing a stream of identifiers managed via a State monad. The pretty-printing function is then
parametrised by the names assigned to the free variables in the term, and by a user-defined
template function for rendering each term constructor. This template function, of type Dis-
playOp, is defined by pattern-matching on the operator symbol, its operands, and any bound
variables associated with those operands. It produces the corresponding output string, with
full access to the variable names and type annotations involved. We show the definition of
the function first, then explain its components:

dispOp : DisplayOp
dispOp appₒ (𝑓 ⋮ (𝛼 � 𝛽) , 𝑎 ⋮ 𝛼) = 𝑓 ++ “ (” ++ 𝑎 ++ “)”
dispOp lamₒ ((𝑥 ⋮ 𝛼 � 𝑏) ⋮ 𝛽) = “(𝜆 ” ++ 𝑥 ++ “:” ++ dispTy 𝛼 ++ “. ” ++ 𝑏 ++ “)”
dispOp pairₒ (𝑎 ⋮ 𝛼 , 𝑏 ⋮ 𝛽) = “〈” ++ 𝑎 ++ “, ” ++ 𝑏 ++ “〉”
dispOp fstₒ (𝑝 ⋮ 𝛼 ⊗ 𝛽) = “fst ” ++ 𝑝
dispOp sndₒ (𝑝 ⋮ 𝛼 ⊗ 𝛽) = “snd ” ++ 𝑝

The type of pattern functions for metavariables, types, and operators is as follows:

DisplayMVar : FamilyS→ Set DisplayTy : Set
DisplayMVar X = X _ K String DisplayTy = 𝑆 → String

DisplayOp : Set
DisplayOp = (𝑜 : O)→ ArgStrings (Arity 𝑜)→ String

DisplayMVar is a family of functions from a family of metavariables to the constant family
of strings. DisplayTy pattern-matches on the datatype of sorts and recursively constructs the
string representation. DisplayOpworks similarly, but pattern-matches on the operator symbol
𝑜 , and also accepts the printed payload of the operator as a tuple of type-annotated strings with
optional bound variables:

ArgStrings : List (Ctx × 𝑆)→ Set
ArgStrings [] = >
ArgStrings (([] , 𝜏) :: 𝑎𝑠) = Ann String 𝜏 × ArgStrings 𝑎𝑠
ArgStrings ((Θ , 𝜏) :: 𝑎𝑠) = Ann (Bound Θ) 𝜏 × ArgStrings 𝑎𝑠

If an operator is nullary, there are no printed arguments. For an 𝑛-ary operator, we return a
type-annotated string, and (type-annotated) names for all variables that appear in the body.

data Ann (𝐴 : Set) : 𝑆 → Set where
⋮ : 𝐴→ (𝜏 : 𝑆)→ Ann 𝐴 𝜏

geneRic opeRations 279

Vars : Ctx→ Set data Bound (Γ : Ctx) : Set where
Vars ∅ = > _�_ : Vars Γ→ String→ Bound Γ

Vars (𝛼 · Γ) = Ann String 𝛼 × Vars Γ

For example, in the case of lamₒ above, the payload ((𝑥 ⋮ 𝛼 � 𝑏) ⋮ 𝛽) is a string for the body
𝑏 of type 𝛽 , with the bound variable in 𝑏 named 𝑥 , of type 𝛼 . The output puts the variable
name 𝑥 : String and the pretty-printed type dispTy 𝛼 between a “𝜆” and a “.”, followed by
the body 𝑏. The printing algorithm will ensure that the bound variable in 𝑏 indeed has the
name 𝑥 , retaining the correct binding relationships. The rest of the constructors is similarly
simple, intercalating printed subexpressions with commas, parentheses, and operator names.

Allais et al.’s (2021) trick for generating fresh variables via a stream of unique characters
stored in a state monad works in our approach too: the WithStringSupply = State (Stream
String) monad equips data with an infinite supply of strings, fresh generates such a string and
“increments” the supply (e.g. outputs “a” and shifts the stream to continue from “b”), and
freshVars turns a context into a type-annotated tuple of variable names as strings.

fresh : WithStringSupply String
fresh = do 𝑣𝑠 ← get

put (tail 𝑣𝑠)
return (head 𝑣𝑠)

freshVars : (Γ : Ctx)→WithStringSupply (Vars Γ)
freshVars ∅ = return tt
freshVars (𝛼 · Γ) = do 𝑣 ← fresh

𝑣𝑠 ← freshVars Γ
return ((𝑣 ⋮ 𝛼) , 𝑣𝑠)

The target of the semantics is the constant family that takes a tuple of printed free variables
(in Γ) to a string with access to a supply of strings:

Printer : FamilyS

Printer _ Γ = Vars Γ→WithStringSupply String

This is a pointed family, exhibited by the variable-printing function printVar:

printVar : I _ Printer
printVar new (𝑥 ⋮ 𝛼) = return 𝑥
printVar (old 𝑣) (_ , 𝑠) = printVar 𝑣 𝑠

The printArgs function uses monadic do notation to process a tuple of such printer functions
(one for each argument of an operator) into a printer function for the whole collection of
arguments. For an argument with no binding, it prints the term in the Var context 𝑣Γ, followed
by recursively processing the other arguments; for an argument that binds Θ fresh variables,
it prints them using freshVars, prints the term in the context 𝑣Γ extended with the bound
variables, followed by the rest of the arguments recursively.

printArgs : (𝑎𝑠 : List (Ctx × 𝑆))(𝑎𝑡 : Arg 𝑎𝑠 Printer Γ)→
Vars Γ→WithStringSupply (ArgStrings 𝑎𝑠)

printArgs [] tt 𝑣Γ = return tt
printArgs ((∅ , 𝜏) :: 𝑎𝑠) (tp , tps) 𝑣Γ = do ts← tp 𝑣Γ

280 examples

tss← printArgs 𝑎𝑠 tps 𝑣Γ
return ((ts ⋮ 𝜏) , tss)

printArgs ((Θ , 𝜏) :: 𝑎𝑠) (tp , tps) 𝑣Γ = do bound ← freshVars Θ
body← tp (bound ++v 𝑣Γ)
tss← printArgs 𝑎𝑠 tps 𝑣Γ
return ((bound � body) ⋮ 𝜏 , tss)

Finally, printing of metavariables uses the following function that prints their environment.
Note that the variable context of the output (containing the names of the variables in scope)
is fed into the recursive printing of the environment terms, ensuring that all the de Bruijn
indices get translated into their appropriate string representation.

printEnv : (Π : Ctx)→ (Π –[Printer]� Γ)→ Printer Γ
printEnv ∅ 𝜎 𝑣Γ = return “”
printEnv (𝛼 · Π) 𝜎 𝑣Γ = do ts← 𝜎 new 𝑣Γ

tss← printEnv Π (𝜎 ◦ old) 𝑣Γ
return (ts ++ “ ; ” ++ tss)

With these, a SynAlg instance for Printer can be defined as follows, parametrised by pattern
functions for operators and metavariables:

Printerᵃ : (dop : DisplayOp) (dmv : DisplayMVar X)→ SynAlg X Printer
Printerᵃ X dop dmv = record

{ v = printVar
; a = 𝜆{ (𝑜 o as) 𝑣Γ→ do pargs← printArgs (Arity 𝑜) as 𝑣Γ

return (dop 𝑜 pargs) }
; m = 𝜆 {Π} a 𝜀 𝑣Γ→ do envs← printEnv Π 𝜀 𝑣Γ

return (dmv a ++ “[” ++ envs ++ “]”) }

The semantic interpretation of terms into Printers is parametrised by the variable names in
the typing context, and returns a State monad whose first component also expects an infinite
supply of fresh variable names, which we provide as a stream of characters with an optional
numeric suffix to guarantee uniqueness.

genPrint : (dop : DisplayOp) (dmv : DisplayMVar X)→ T X 𝛼 Γ→ Vars Γ→ String
genPrint X dop dmv 𝑡 𝑣Γ = proj1 (i (Printerᵃ dop dmv) 𝑡 𝑣Γ names)

This generic printing operation can be specialised to a particular syntax by providing an op-
erator pattern function. The DisplayMVar argument can be can be instantiated for inductive
metavariable contexts M : MCtx by translating de Bruijn indices into alphabetic characters
“M”, “N”, etc. For example, the term tm1 = 𝜆 (𝜆 (nrec x1 x0 (x₅ $ (plus $ x1 $ x3)))) pretty-prints
to the following (line breaks added for clarity):

_ : print tm1 ((“x” ⋮ B) , (“y” ⋮ N � 1))
≡ “ ⊲ x : B, y : (N � 1)
` (𝜆 a:N. (𝜆 b:1. nrec[1] (a; 0 → b | (d + 1) c →
y ((𝜆 e:N. (𝜆 f:N. nrec[N] (e; 0 → f | (h + 1) g → g + 1)))
(d) (a))))) : (N � (1 � 1))”

_ = refl

The two free variables in the context (B · (N � 𝛼) · ∅) are given names “x” and “y”, and all
other new variables are given fresh names taken from the stream names. The term plus is
merely an Agda definition, so the primitive recursive printing function expands it fully; on
the other hand, DispTy recurses explicitly, and we are able to “intercept” the type 1 ⊕ 1 as a
special case of the printing for ⊕, and return the string “B” instead.

For a term in a nonempty metavariable context, consider:

tm3 : (⦍ N ⊩ 𝛽 ⦐ ⦍ 𝛼 ⦐ ▷ Λ) 𝛽 ((𝛼 � N) · ∅)
tm3 = (𝜆 a〈 (x1 $ x0) 〉) $ b

_ : print tm3 (“f” ∶ B � N)
≡ “M : N ⊩ B ; N : ⊩ B ▷ f : (B � N) ` (𝜆 a:B. M[f (a)]) (N[]) : B”

_ = refl

As the examples in this section show, the computational behaviour of semantic interpretations
aligns with expectations: terms are represented as syntax trees made out of constructors, and
they are consumed by structurally recursive functions. The ability to interpret terms in families
facilitates context-sensitive interpretations that take variables, binding, etc. into account.

Summary of Part IV

In this part we introduced the our Agda language formalisation library
and showcased some applications of the familial model through the
generic mechanisation of second-order abstract syntax.

c h a p t e R 1 4

Conclusions

This thesis introduced the familial model of second-order abstract syntax – an implementation-
friendlymetatheoretic framework derived from the presheaf approach. We formallymotivated
our solutions to reconcile discrepancies between the two models, grounding widely used but
often opaque techniques in intrinsically-typed formalisation on solid mathematical founda-
tions. Below, we summarise the main contributions and outline directions for future research.

14.1 SummaRy of contRibutions

We highlight the questions that the familial model answers both from a language formalisation
and model-theoretic perspective.

Why bother with intrinsic typing? Where available, intrinsic typing offers the rigorous
discipline essential for formal verification. Instead of promising uninterrupted progress in
formalising a syntax and semantics only to demand laborious sort-preservation and soundness
proofs later, intrinsic typing is clear and upfront: every term must be well-sorted and well-
scoped, and every operation must preserve these properties. As a result, well-sortedness is
built into definitions, streamlining formalisation and reducing metatheoretic overhead. The
familial model naturally supports this approach: elements of a sorted family set encode their
sort and scope at the type level, ensuring that ill-sorted terms and operations are caught as
type errors in the formalisation language.

Why bother with a formalisation framework? Intrinsically-typed encodings of syntax offer
striking directness and elegance: term constructors are typed by their sorting rules, making
ill-sorted terms unrepresentable. This extends to syntactic operations, which are typed by
their sort-preservation laws. Defining such operations typically requires additional lemmas
– structural properties, compatibility conditions, fusion laws, etc. While these proofs often
proceed by induction on the term grammar, the structure is formulaic: structural recursion
with careful handling of bound variables. A capable formalisation framework can automate
much of this routine, freeing attention for the truly challenging aspects of verification.

284 conclus ions

The familialmodel’s abstract theory encapsulates themetatheoretic boilerplate – renaming,
substitution, denotational interpretation, and their correctness proofs – within a mathemati-
cally grounded framework of modules, strong signature endofunctors, and algebraic monoids.
Rather than relying on an ad hoc collection of definitions and lemmas, themodel’s components
build coherently on one another, enabling modular interaction with broader categorical tools.
For instance, the complex compatibility conditions between renaming, strength, substitution,
and metasubstitution arise as instances of a general lifting framework in synthetic monoidal
categories (see Theorem 10.3.3).

Why not just formalise the presheaf model? The presheaf model of Fiore et al. (1999) and
Fiore (2008) offers a comprehensive algebraic account of second-order abstract syntax. How-
ever, its reliance on categorical tools such as colimits, coends, and quotienting makes it im-
practical for formalisation in dependently typed proof assistants, which lack native support
for these constructs without resorting to cumbersome workarounds like setoids, or extensions
such as cubical type theory. The familial model reformulates the presheaf approach to address
these limitations, making it suitable for implementation and practicalmetatheory development
with predictable computational behaviour. For instance, instead of relying on Adámek-style
constructions of initial algebras, the syntax of a signature is represented directly as an alge-
braic data type, allowing terms to be observable and amenable to syntactic transformation.

What are the discrepancies between the models? The main limitation of the familial ap-
proach lies in its weaker substitution structure compared to presheaves, which disrupts many
constructions and results from the original model. This thesis reassembles these elements into
a coherent and practical framework, addressing the following challenges and questions:

• No inherent renaming structure in families
→ Families can be equipped with a module structure equivalent to presheaves (see Sec-
tion 10.1.3)

• Substitution tensor in families is skew-monoidal and does not lift to pointed modules
→The correct structure is that of a synthetic monoidal category (see Section 6.1)

• Laws involving the substitution tensor fail without quotienting
→ These laws can be reformulated using multilinear maps that extensionalise renaming-
invariance (see Section 10.2.1)

• Pointed strength of signature endofunctors cannot be axiomatised directly as a functor in
skew modular categories
→ It is a homomorphism between synthetic modular categories, with multiplication mor-
phisms defined via multilinear maps (see Section 10.2.2)

• Relationship between signature endofunctors in presheaves and families
→ Σ : Fam𝑆 → Fam𝑆 lifts to Θ : PSh𝑆 → PSh𝑆 in the category of synthetic monoidal cate-
gories (see Section 6.3)

• Relationship between categories of semantic models for related signature endofunctors in
presheaves and families

futuRe diRections 285

→ A synthetic strong family endofunctor lifts to presheaves, and the categories of algebraic
monoids are equivalent (see Theorem 10.2.2)

• Relationship between initial syntactic algebras for related signature endofunctors
→ The initial algebra in families induces the corresponding initial algebra in presheaves
(see Section 3.3)

• Parametrised initiality does not directly extend to skew-monoidal categories
→ Initial-algebra semantics into the closed substitution structure avoids issues due to skew
associativity (see Section 11.2)

• The cartesian closed structure of families cannot express enriched Kleisli extension for
capture-permitting metasubstitution
→The term monad in families is enriched over the Day internal hom derived from context
extension (see Section 11.3.1)

14.2 FutuRe diRections

The work presented in this thesis forms the foundation of a multitude of avenues for further
research, being the first step towards bringing the theory of presheaf models into a streamlined
categorical setting. The abstract perspective also suggested some categorical generalisations
that embed the current second-order (skew-)monoidal models into a wider setting.

14.2.1 Advanced type theories

Some extensions involve incorporating advanced type-theoretic features into the presheaf or
familial models, making the approach general enough to capture a variety of syntaxes that
appear in literature.

Substructural syntax Both the presheaf and familial models are cartesian in that their base
category of contexts and renamings admits cocartesian structure, enabling structural lemmas
like weakening, exchange, and contraction. However, substructural type theories impose
stricter constraints– linear type theory, for instance, permits only exchange, forbidding du-
plication or discarding of variables. This restriction must be reflected in the base category
itself. In linear syntax, each bound variable must be used exactly once, deeply affecting the
behaviour of binding and the structure of metatheoretic proofs.
Tanaka (2000) developed a presheaf model of abstract syntax with linear binders by working
over the free strict symmetric monoidal category on sorts. This base supports reassociation
and permutation, but not changes in context length. In this setting, a presheaf over linear
contexts encodes terms Γ ` 𝑡 : 𝜏 where the set of free variables in 𝑡 is exactly Γ. Variables
are typed in singleton contexts, and application combines the disjoint contexts of two terms.
Notably, Fiore and Ranchod (2024) recently resolved the long-standing challenge of encoding
single-variable linear substitution, once thought impossible by Tanaka.
Given the prominence of linear type theories, extending the familial model to linear abstract
syntax is a promising direction for future work– especially since its base category, the free
strict monoidal category, is even weaker than the symmetric monoidal base used by Tanaka.

286 conclus ions

Further exploration of Day convolution to model context-wise extension and substitution
could also clarify the most suitable formalisation techniques for linear binding.

Polymorphic syntax Another axis for enriching type theories is to introduce variables and
binding at the sort level, enabling the modelling of languages with recursive types, Hindley–
Milner-style type schemes, full polymorphism, and type constructors. These extensions were
integrated into the presheaf model by Hamana (2011) and Fiore and Hamana (2013) through
a two-step process. First, the presheaf construction is used to define the presheaf of simply-
kinded types T ∈ �F [1] as the initial algebra of a type signature endofunctor. Then, the cate-
gory of term contexts is constructed via a Grothendieck construction

∫
F T (−) ×T (−), whose

objects are triples (𝑛, Γ, 𝛼): a type variable context [𝑛] (representing 𝑛 free type variables),
a term variable context Γ ∈ F [T (𝑛)], and a sort 𝛼 ∈ T (𝑛). This forms the base category
for the presheaf of polymorphically-typed terms, where elements 𝑛 | Γ ` 𝑡 ∈ 𝛼 are terms
𝑡 ∈ P(𝑛, Γ, 𝛼) of sort 𝛼 in the variable context Γ. Morphisms in the Grothendieck category act
as simultaneous renamings of type and term variables. Hamana (2011) further generalised this
framework to higher-kinded polymorphism, and Fiore and Hamana (2013) extended it to a full
second-order abstract syntax treatment, incorporating type and term metavariables, type-in-
term substitution, polymorphic equational logic, andmore. Addressing all these developments
in a formalisable setting would be a powerful, if challenging extension: as a polymorphic type
system involves metasyntactic computation (substitution), encoding such languages intrinsi-
cally is challenging (Chapman et al., 2019).

Multi-context calculi Judgments in modern type theories often encode rich information –
indices, annotations, labels, effects, stores, and more. While some of this can be absorbed into
the (often unstructured) sort, other aspects require multiple typing contexts to track different
categories of variables. For instance, dual-context calculi arise frequently in modal type the-
ories (Kavvos, 2017), mixed linear–nonlinear systems (Benton, 1995), classical type theories
(Curien and Herbelin, 2000), and most realistic formal systems beyond toy languages. Sup-
porting such systems involves working with presheaves over product categories of contexts,
where each component may have its own structural discipline – linear, cartesian, monoidal,
or otherwise – depending on the needs of the theory.

Mutually recursive terms The original presheaf/familial models only support one grammar
of terms, but we can extend support to mutually recursive term grammars using mutually
recursive signature endofunctors. Fiore (2022) applies this approach for an algebraic analysis
of normalisation by evaluation (Berger and Schwichtenberg, 1991) to encode the mutually
recursive definition of normal and neutral terms, but the technique should be applicable to
other multi-judgment systems like monadic calculi or call-by-push-value (Levy, 1999).

Pattern binding Second-order abstract syntax does not directly support a mechanismwidely
used in languages with binding: pattern matching. It arises naturally whenever we program
in a language with compound algebraic data types, replacing elimination forms like projec-
tion and explicit case analysis with binding-time term decomposition and pattern-matching

futuRe diRections 287

binders. For example, the function (𝛼 × 𝛽) + (𝛼 × 𝛾) → 𝛼 × (𝛽 + 𝛾), written as

𝜆𝑝. case 𝑝 of (inl𝑥) ↦→ (fst𝑥, inl (snd𝑥)) | (inr𝑦) ↦→ (fst𝑦, inr (snd𝑦))

could instead be written in a more concise pattern-matching syntax as

𝜆 inl(𝑥,𝑦) ↦→ (𝑥, inl𝑦) | inr(𝑥, 𝑧) ↦→ (𝑥, inr 𝑧)

Abstraction operators in the presheaf and familial models only allow the binding of a finite
sequence of variables without any further structure. Fiore (2019) sketched out a proposed ex-
tension of the presheaf model with pattern matching, combining a linear grammar of patterns
with a cartesian grammar of terms, interpreting the former in the category B of finite sets and
bijections to ensure linear use of pattern variables. It would be worthwhile to flesh out the
details, and explore interesting connections to combinatorial species of structure (Joyal, 1981;
Bergeron et al., 1997) that connect pattern descriptions to algebraic datatypes.

Parametric signatures and translations The framework generates second-order abstract
metatheory for a single second-order signature; this poses a limitation for systems that are
themselves parametrised by a grammar of symbols, such as first-order logic parametrised over
a first-order language of function and relation symbols. Fortunately, second-order abstract
syntax is general enough to capture such first-order theories using parametrisedmetavariables,
and a useful extension to the familial model would be a wide-ranging support for parametric
signatures, and more generally, signature translations or syntactic translations as introduced
by Fiore and Mahmoud (2010).

14.2.2 Structural generalisations

The following avenues of investigation involve significant categorical redevelopments of
presheaf models, be they the original approach of Fiore et al. (1999) or the familial model
of this thesis. They may be more of theoretical than practical interest, exploring extensions or
formulations discovered upon an abstract look at the algebraic theory of syntax.

Promonoidal categories and multicategories A central technical challenge in the familial
model is that the substitution tensor product ⊕ : Fam𝑆 × Fam𝑆 → Fam𝑆 fails to lift to pointed
modules (i.e. pointed^-algebras or □-coalgebras). Even the skew-monoidal structure requires
quotienting, which is not directly available. We addressed this using synthetic monoidal cate-
gories, but late into the research some useful avenues for generalisation became evident, both
addressing the situation of coherently combining objects of a category without the presence
of a formal monoidal structure.

Synthetic monoidal structure is likely expressible via promonoidal categories (Day, 1970),
which replace hom-sets with profunctors 1op × V → Set and (V × V)op × V → Set. Though
the laws involved are syntactically complex, they reduce to properties similar to those in Sec-
tion 6.1 and interact well with our definitions of pointed multilinear maps. For the familial
model, we likely require a weakening to skew-promonoidal categories (Street, 2013) or skew
proactegories (Campbell, 2018), where isomorphisms are replaced by directed transformations.

288 conclus ions

A related generalisation is the use ofmulticategories (Hermida, 2000; Leinster, 2004), which
avoid tensor products entirely by working with morphisms of the form𝐴1, . . . , 𝐴𝑛 → 𝐵. These
are especially suitable when a tensor product like 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 is undefined. We conjecture
that the most natural setting for formalising multilinear maps – and hence for axiomatising
the familial model – is within a (skew) promonoidal or multicategorical framework.

Finite-order abstract syntax Second-order abstract syntax enables the representation of
terms that bind first-order object variables – such as in 𝜆-abstraction, logical quantification,
and partial differentiation – with substitution and renaming primarily acting on these first-
order variables. While SOAS also accommodates parametrisedmetavariables, alongwithmeta-
renaming and metasubstitution, it does not support binding of metavariables. That is, second-
order signatures restrict binding to variables within operands, precluding native expression
of operators that bind other operators. A typical example of such a third-order construct is a
control operator like call/cc or C, as described by Felleisen and Friedman (1987) and Griffin
(1989), which binds a continuation – a unary operator from a target sort to a resumption sort.
These kinds of higher-order signatures are studied in detail by Arkor (2022, Chapter 4).

We encountered a specific instance of this in contextual modal type theory (CMTT)
(Nanevski et al., 2008) – an extension of modal type theory (Pfenning and Davies, 2001)
with context-indexed modalities – while co-supervising a Master’s project with Marcelo Fiore
(Chekroun, 2022). In CMTT, parametrised metavariables can be explicitly bound and instan-
tiated as terms sorted in a local parameter context. Extending the familial model to support
this requires generalising to categories of terms indexed by sorts, contexts, and metavariable
contexts. This leads naturally to a stratified framework for higher-order syntax. Fixing a set
of sorts 𝑆 , we define a tower of base categories:

C0 ≜ 𝑆 C𝑛+1 ≜ C∗𝑛 × C𝑛

Presheaves over C𝑛 then describe (𝑛 + 1)th-order syntaxes, capable of binding variables,
variable-binding terms (i.e. parametrised metavariables), metavariable-binding terms, and so
on. We conjecture that generalising the substitution constructions of Chapter 9 to arbitrary
levels of this tower will recover the familiar substitution and metasubstitution structure of
SOAS in a uniform and elegant way.

Bicategorical syntax The current framework for simply-sorted second-order abstract syntax
assumes a single grammar of sorts, used both to type terms and to annotate variables in sorting
contexts. Concretely, a sorted presheaf PSh𝑆 := �F [𝑆]𝑆 can be viewed equivalently as a presheaf
over F [𝑆] × 𝑆 , where both variables and terms are sorted using the same set 𝑆 . To handle
systems in which the grammar of variable sorts differs from that of term sorts, we can decouple
the two by considering presheaves over F [𝑆] ×𝑇 , for distinct sort sets 𝑆 and𝑇 . This introduces
the complexity of heterogeneous substitution: a 𝑇 -sorted term in an 𝑆-sorted context can only
be substituted with 𝑆-sorted terms, potentially in a different 𝑅-sorted context.

Accommodating this structure requires generalising the substitution monoidal structure
to a (skew) bicategorical framework (Lack and Street, 2014a), where the skew monoidal ten-
sor becomes a heterogeneous composition equipped with skew unit and associator 2-cells. To

f inal RemaRKs 289

simultaneously address both bicategorical and multicategorical generalisation, the natural set-
ting may be that of fc-multicategories (Leinster, 1999) – a direction first proposed by Ohad
Kammar in private communication.

14.3 Final RemaRKs

Reading back over the proposal and initial progress reports that preceded this thesis, I was
struck by their carefully optimistic, yet grounded tone – describing “the (admittedly rather
ambitious) dream of a general framework that can transform a syntactic specification of a
second-order language into a comprehensive system for reasoning about the language, with-
out the distractions of defining weakening, substitution, renaming, and proving all the associ-
ated correctness lemmas.” Clearly, I underestimated the power of syntax and initiality.

Throughout the development of the Agda library, I encountered several critical decision
points that required choosing between pragmatic implementation and mathematical fidelity
within the limitations of dependently-typed programming. These included axiomatising mul-
tilinear maps rather than rewriting the library using setoids to represent the coend of the
presheaf substitution tensor product; using standard inductive types to define languages in-
stead of encoding term algebras as containers with sized types (to appease the termination
checker); and opting for Python-generated code rather than undertaking the overhead of veri-
fied Agda metaprogramming. In many cases, what began as pragmatic “workarounds” turned
out to be mathematically natural and conceptually well-motivated, opening fruitful directions
in the algebraic theory of presheaf models. These decisions did not compromise the founda-
tional goals; rather, they broadened the theoretical scope and highlighted new possibilities.

This thesis lays the groundwork for a broader programme of research, offering not only
concrete constructions but also a toolkit of principles for extending the categorical model of
second-order abstract syntax. By bridging abstract mathematics with practical formalisation,
our work envisions a future where syntax formalisation is no longer a significant burden –
freeing language designers to focus on expressiveness, safety, and usability, with the benefits
flowing naturally into the next generation of programming tools.

290 conclus ions

Bibliography

Abadi, Martin, Luca CaRdelli, Pierre-Louis CuRien, and Jean-Jacques LÉvy (1991)
Explicit Substitutions
In: Journal of Functional Programming 1 (4), pp. 375–416.
doi: 10.1017/S0956796800000186 53, 246↑

Abel, Andreas (2010)
MiniAgda: Integrating Sized and Dependent Types.
aRxiv: 1012.4896[cs.PL] 264↑

Abel, Andreas, Ralph Matthes, and Tarmo Uustalu (2005)
Iteration and Coiteration Schemes for Higher-Order and Nested Datatypes
In: Proceedings of the 6th International Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS 2005) 333 (1), pp. 3–66.
doi: 10.1016/j.tcs.2004.10.017 57↑

AbRamsKy, Samson, Dan R. Ghica, Andrzej S. MuRawsKi, C. H. Luke Ong, and Ian D. B. StaRK
(2004)
Nominal Games and Full Abstraction for the Nu-Calculus
In: Proceedings of the 19th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2004).
doi: 10.1109/lics.2004.1319609 51↑

Aczel, Peter (1978)
A General Church–Rosser Theorem. Tech. rep. University of Manchester.
uRl: www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf 213,
262↑

AhRens, Benedikt (2012)
Extended Initiality for Typed Abstract Syntax
In: Logical Methods in Computer Science 8 (2), p. 1.
doi: 10.2168/LMCS-8(2:1)2012 56↑

AhRens, Benedikt (2015)
Initiality for Typed Syntax and Semantics. PhD thesis. University of Birmingham, pp. 1–155.
doi: 10.6092/issn.1972-5787/4712 56↑

AhRens, Benedikt (2016)
Modules over relative monads for syntax and semantics
In: Mathematical Structures in Computer Science 26 (1), pp. 3–37.
doi: 10.1017/S0960129514000103 55, 56↑

AhRens, Benedikt, André HiRschowitz, Ambroise Lafont, and Marco Maggesi (2019)
Reduction Monads and Their Signatures
In: Proceedings of the ACM on Programming Languages 4 (POPL), 31:1–31:29.
doi: 10.1145/3371099 56↑

AhRens, Benedikt, André HiRschowitz, Ambroise Lafont, and Marco Maggesi (2021)
Presentable signatures and initial semantics
In: Logical Methods in Computer Science Volume 17, Issue 2.
doi: 10.23638/LMCS-17(2:17)2021 55, 56↑

http://dx.doi.org/10.1017/S0956796800000186
http://arxiv.org/abs/1012.4896
http://dx.doi.org/10.1016/j.tcs.2004.10.017
http://dx.doi.org/10.1109/lics.2004.1319609
www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://dx.doi.org/10.2168/LMCS-8(2:1)2012
http://dx.doi.org/10.6092/issn.1972-5787/4712
http://dx.doi.org/10.1017/S0960129514000103
http://dx.doi.org/10.1145/3371099
http://dx.doi.org/10.23638/LMCS-17(2:17)2021

292 b ibl iogRaphy

AhRens, Benedikt and Ralph Matthes (2018)
Heterogeneous Substitution Systems Revisited
In: Proceedings of the 21st International Conference on Types for Proofs and Programs (TYPES
2015). Vol. 69. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2:1–2:23.
doi: 10.4230/LIPIcs.TYPES.2015.2 57↑

AhRens, Benedikt and Julianna Zsido (2011)
Initial Semantics for higher-order typed syntax in Coq.
aRxiv: 1012.1010[cs.LO] 55↑

Allais, Guillaume, Robert AtKey, James Chapman, Conor McBRide, and James McKinna (2021)
A type- and scope-safe universe of syntaxes with binding: their semantics and proofs
In: Journal of Functional Programming 31, e22.
doi: 10.1017/S0956796820000076 33–35, 39, 120, 167, 247, 250, 253, 254, 261, 264, 267, 268, 278,
279↑

Allais, Guillaume, James Chapman, Conor McBRide, and James McKinna (2017)
Type-and-Scope Safe Programs and Their Proofs
In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017).
ACM Press, pp. 195–207.
doi: 10.1145/3018610.3018613 33↑

AltenKiRch, Thorsten (1993)
A Formalization of the Strong Normalization Proof for System F in LEGO
In: Proceedings of the 1st International Conference on Typed Lambda Calculi and Applications (TLCA
1993). Lecture Notes in Computer Science (LNCS). Springer, pp. 13–28.
doi: 10.1007/BFb0037095 52↑

AltenKiRch, Thorsten, James Chapman, and Tarmo Uustalu (2010)
Monads Need Not Be Endofunctors
In: Proceedings of the 13th International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2010). Lecture Notes in Computer Science (LNCS). Springer, pp. 297–311.
doi: 10.1007/978-3-642-12032-9_21 55, 96, 109, 172↑

AltenKiRch, Thorsten, Neil Ghani, Peter HancocK, Conor McBRide, and Peter MoRRis (2015)
Indexed containers
In: Journal of Functional Programming 25, e5.
doi: 10.1017/S095679681500009X 261, 267↑

AltenKiRch, Thorsten and Bernhard Reus (1999)
Monadic Presentations of Lambda Terms Using Generalized Inductive Types
In: Proceedings of the 13th International Workshop on Computer Science Logic (CSL 1999). Vol. 1683.
Lecture Notes in Computer Science (LNCS). Springer, pp. 453–468.
doi: 10.1007/3-540-48168-0_32 54, 253↑

Anand, Abhishek and Vincent Rahli (2014)
A Generic Approach to Proofs about Substitution
In: Proceedings of the 9th International Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP 2014). ACM, pp. 1–8.
doi: 10.1145/2631172.2631177 52↑

ARKoR, Nathanael (2018)
Formal Abstract Syntax for Type Theories. MA thesis. University of Cambridge 217↑

ARKoR, Nathanael (2022)
Monadic and Higher-Order Structure. PhD thesis. University of Cambridge.
doi: 10.17863/CAM.86347 288↑

ARKoR, Nathanael and Marcelo FioRe (2020)
Algebraic Models of Simple Type Theories: A Polynomial Approach
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2020).

http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.2
http://arxiv.org/abs/1012.1010
http://dx.doi.org/10.1017/S0956796820000076
http://dx.doi.org/10.1145/3018610.3018613
http://dx.doi.org/10.1007/BFb0037095
http://dx.doi.org/10.1007/978-3-642-12032-9_21
http://dx.doi.org/10.1017/S095679681500009X
http://dx.doi.org/10.1007/3-540-48168-0_32
http://dx.doi.org/10.1145/2631172.2631177
http://dx.doi.org/10.17863/CAM.86347

bibl iogRaphy 293

ACM Press, pp. 88–101.
doi: 10.1145/3373718.3394771 58, 181, 261↑

ARKoR, Nathanael and Dylan McDeRmott (2021)
Abstract Clones for Abstract Syntax
In: Proceedings of the 6th International Conference on Formal Structures for Computation and De-
duction (FSCD 2021). Vol. 195. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 30:1–30:19.
doi: 10.4230/LIPIcs.FSCD.2021.30 53, 84↑

AydemiR, Brian, Aaron Bohannon, Matthew FaiRbaiRn, J. Nathan FosteR, Benjamin C. PieRce,
Peter Sewell, Dimitrios Vytiniotis, Geoffrey WashbuRn, Stephanie WeiRich, and Steve
Zdancewic (2005)
Mechanized Metatheory for the Masses: The PoplMaRK Challenge
In: Proceedings of the 18th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2005). Springer, pp. 50–65.
doi: 10.1007/11541868_4 50, 52↑

AydemiR, Brian, Aaron Bohannon, and Stephanie WeiRich (2007)
Nominal Reasoning Techniques in Coq
In: Electronic Notes in Theoretical Computer Science 174 (5), pp. 69–77.
doi: 10.1016/j.entcs.2007.01.028 51↑

AydemiR, Brian, Arthur ChaRguÉRaud, Benjamin C. PieRce, Randy PollacK, and Stephanie
WeiRich (2008)
Engineering Formal Metatheory
In: ACM SIGPLAN Notices 43 (1), pp. 3–15.
doi: 10.1145/1328897.1328443 61↑

AydemiR, Brian and Stephanie WeiRich (2010)
LNgen: Tool Support for Locally Nameless Representations. Tech. rep. 933.
uRl: repository.upenn.edu/handle/20.500.14332/7902 61↑

BacKhouse, Roland, Marcel BijsteRveld, Rik van GeldRop, and Jaap van der Woude (1995)
Categorical fixed point calculus
In: Category Theory and Computer Science. Springer, pp. 159–179.
doi: 10.1007/3-540-60164-3_25 71↑

Baez, John C. and James Dolan (1998)
Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes
In: Advances in Mathematics 135 (2), pp. 145–206.
doi: https://doi.org/10.1006/aima.1997.1695 110↑

BaRendRegt, Hendrik Pieter (1985)
The lambda calculus - its syntax and semantics. Vol. 103. Studies in logic and the foundations
of mathematics. North-Holland. isbn: 978-0-444-86748-3 50↑

BecK, Jon (1968)
The Tripleableness Theorem Untitled manuscript. Distributed at the Conference Held at the
Seattle Research Center of the Battelle Memorial Institute.
uRl: ncatlab.org/nlab/files/Beck_MonadicityTheorem.pdf 176↑

BecK, Jon (1969)
Distributive Laws
In: Seminar on Triples and Categorical Homology Theory. Lecture Notes in Mathematics 80. Repub-
lished in Reprints in Theory and Applications of Categories 18 (2008). Springer, pp. 96–112.
doi: 10.1007/BFb0083084 65, 66, 68↑

BellegaRde, Françoise and James HooK (1994)
Substitution: A Formal Methods Case Study Using Monads and Transformations
In: Science of Computer Programming 23 (2-3), pp. 287–311.
doi: 10.1016/0167-6423(94)00022-0 53↑

http://dx.doi.org/10.1145/3373718.3394771
http://dx.doi.org/10.4230/LIPIcs.FSCD.2021.30
http://dx.doi.org/10.1007/11541868_4
http://dx.doi.org/10.1016/j.entcs.2007.01.028
http://dx.doi.org/10.1145/1328897.1328443
repository.upenn.edu/handle/20.500.14332/7902
http://dx.doi.org/10.1007/3-540-60164-3_25
http://dx.doi.org/https://doi.org/10.1006/aima.1997.1695
ncatlab.org/nlab/files/Beck_MonadicityTheorem.pdf
http://dx.doi.org/10.1007/BFb0083084
http://dx.doi.org/10.1016/0167-6423(94)00022-0

294 b ibl iogRaphy

Bengtson, Jesper and Joachim PaRRow (2007)
Formalising the 𝜋-Calculus Using Nominal Logic
In: Proceedings of the 10th International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2007). Vol. 4423. Springer, pp. 63–77.
doi: 10.1007/978-3-540-71389-0_6 51↑

BenKe, Marcin, Peter DybjeR, and Patrik Jansson (2003)
Universes for Generic Programs and Proofs in Dependent Type Theory
In: Nordic Journal of Computing 10 (4), pp. 265–289 267↑

Benton, Nick (1995)
A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models
In: Computer Science Logic. Vol. 933, pp. 121–135.
doi: 10.1007/BFb0022251 286↑

Benton, Nick, Chung-Kil HuR, Andrew J Kennedy, and Conor McBRide (2012)
Strongly typed term representations in Coq
In: Journal of Automated Reasoning 49 (2), pp. 141–159.
doi: 10.1007/s10817-011-9219-0 34, 167, 250, 253↑

BeRgeR, Ulrich and Helmut SchwichtenbeRg (1991)
An Inverse of the Evaluation Functional for Typed 𝜆-calculus
In: Proceedings of the 6th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 1991).
Ludwig-Maximilians-Universität München, pp. 203–211.
doi: 10.5282/ubm/epub.4261 286↑

BeRgeRon, François, Gilbert Labelle, and Pierre LeRoux (1997)
Combinatorial Species and Tree-like Structures. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press 167,
287↑

BeRghofeR, Stefan (2012)
A Solution to the PoplMaRK Challenge Using de Bruijn Indices in Isabelle/HOL
In: Journal of Automated Reasoning 49 (3), pp. 303–326.
doi: 10.1007/s10817-011-9231-4 52↑

BeRghofeR, Stefan and Christian URban (2007)
A Head-to-Head Comparison of de Bruijn Indices and Names
In: Electronic Notes in Theoretical Computer Science 174 (5), pp. 53–67.
doi: 10.1016/j.entcs.2007.01.018 52↑

BiRd, Richard and Lambert MeeRtens (1998)
Nested Datatypes
In: Proceedings of the 4th International Conference on the Mathematics of Program Construction (MPC
1998). Vol. 1422. Springer, pp. 52–67.
doi: 10.1007/BFb0054285 54↑

BiRd, Richard and Ross PateRson (1999a)
De Bruijn Notation as a Nested Datatype
In: Journal of Functional Programming 9 (1), pp. 77–91.
doi: 10.1017/S0956796899003366 54, 253, 254↑

BiRd, Richard and Ross PateRson (1999b)
Generalised Folds for Nested Datatypes
In: Formal Aspects of Computing 11 (2), pp. 200–222.
doi: 10.1007/s001650050047 54, 56, 57↑

Blanchette, Jasmin Christian, Lorenzo GheRi, Andrei Popescu, and Dmitriy TRaytel (2019)
Bindings as Bounded Natural Functors
In: Proceedings of the ACM on Programming Languages 3 (POPL).
doi: 10.1145/3290335 51↑

http://dx.doi.org/10.1007/978-3-540-71389-0_6
http://dx.doi.org/10.1007/BFb0022251
http://dx.doi.org/10.1007/s10817-011-9219-0
http://dx.doi.org/10.5282/ubm/epub.4261
http://dx.doi.org/10.1007/s10817-011-9231-4
http://dx.doi.org/10.1016/j.entcs.2007.01.018
http://dx.doi.org/10.1007/BFb0054285
http://dx.doi.org/10.1017/S0956796899003366
http://dx.doi.org/10.1007/s001650050047
http://dx.doi.org/10.1145/3290335

bibl iogRaphy 295

BooKeR, Thomas and Ross StReet (2013)
Tannaka duality and convolution for duoidal categories
In: Theory and Applications of Categories 28 (6), pp. 166–205.
uRl: www.tac.mta.ca/tac/volumes/28/6/28-06.pdf 137↑

BoRthelle, Peio, Tom HiRschowitz, and Ambroise Lafont (2020)
A Cellular Howe Theorem
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2020).
ACM Press, pp. 273–286.
doi: 10.1145/3373718.3394738 96, 124, 207, 217, 219↑

Bosman, Roger, Georgios KaRachalias, and Tom SchRijveRs (2023)
No Unification Variable Left Behind: Fully Grounding Type Inference for the HDM Sys-
tem
In: Proceedings of the 14th International Conference on Interactive Theorem Proving (ITP 2023) 268,
8:1–8:18.
doi: 10.4230/LIPICS.ITP.2023.8 61↑

Bunge, Marta (1966)
Categories of Set-Valued Functors. PhD thesis. University of Pennsylvania.
uRl: ncatlab.org/nlab/files/Bunge-CategoriesOfSetValuedFunctors.pdf 151↑

Busenius, Alex (2011)
Mechanized Formalization of a Transformation from an Extensible Spi Calculus to Java.
MA thesis. Saarland University 61↑

Campbell, Alexander (2018)
Skew-Enriched Categories
In: Applied Categorical Structures 26 (3), pp. 597–615.
doi: 10.1007/s10485-017-9504-0 100, 103, 287↑

Capucci, Matteo and Bruno GavRanović (2022)
Actegories for the Working Amthematician
In: arXiv e-prints, arXiv:2203.16351.
aRxiv: 2203.16351[math.CT] 100↑

Chapman, James, Pierre-Évariste Dagand, Conor McBRide, and Peter MoRRis (2010)
The gentle art of levitation
In: ACM SIGPLAN Notices 45 (9), pp. 3–14.
doi: 10.1145/1932681.1863547 33, 267↑

Chapman, James, Roman KiReev, Chad NesteR, and Philip WadleR (2019)
System F in Agda, for Fun and Profit
In: Mathematics of Program Construction. Vol. 11825. Springer, pp. 255–297.
doi: 10.1007/978-3-030-33636-3_10 286↑

ChaRguÉRaud, Arthur (2012)
The locally nameless representation
In: Journal of Automated Reasoning 49 (3), pp. 363–408.
doi: 10.1007/s10817-011-9225-2 61↑

CheKRoun, Nissim (2022)
Formalising Contextual Modal Typed Calculi. MA thesis. University of Cambridge 288↑

Chlipala, Adam (2008)
Parametric Higher-Order Abstract Syntax for Mechanized Semantics
In: Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming (ICFP
2008). ACM Press, pp. 143–156.
doi: 10.1145/1411204.1411226 60↑

ChoudhuRy, Pritam (2015)
Constructive Representation of Nominal Sets in Agda. MA thesis. University of Cambridge.
uRl: cl.cam.ac.uk/~amp12/agda/choudhury/choudhury-dissertation.pdf 51, 52↑

www.tac.mta.ca/tac/volumes/28/6/28-06.pdf
http://dx.doi.org/10.1145/3373718.3394738
http://dx.doi.org/10.4230/LIPICS.ITP.2023.8
ncatlab.org/nlab/files/Bunge-CategoriesOfSetValuedFunctors.pdf
http://dx.doi.org/10.1007/s10485-017-9504-0
http://arxiv.org/abs/2203.16351
http://dx.doi.org/10.1145/1932681.1863547
http://dx.doi.org/10.1007/978-3-030-33636-3_10
http://dx.doi.org/10.1007/s10817-011-9225-2
http://dx.doi.org/10.1145/1411204.1411226
cl.cam.ac.uk/~amp12/agda/choudhury/choudhury-dissertation.pdf

296 b ibl iogRaphy

ChuRch, Alonzo (1932)
A Set of Postulates for the Foundation of Logic
In: Annals of Mathematics 33 (2), pp. 346–366.
doi: 10.2307/1968337. JSTOR: 1968337 50↑

ChuRch, Alonzo (1936)
An Unsolvable Problem of Elementary Number Theory
In: American Journal of Mathematics 58 (2), pp. 345–363.
doi: 10.2307/2371045. eprint: 2371045 50↑

ChuRch, Alonzo (1940)
A Formulation of the Simple Theory of Types
In: The Journal of Symbolic Logic 5 (2), pp. 56–68.
doi: 10.2307/2266170 59↑

Clouston, Ranald A. (2010)
Binding in Nominal Equational Logic
In: Electronic Notes in Theoretical Computer Science. Proceedings of the 26th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2010) 265, pp. 259–276.
doi: 10.1016/j.entcs.2010.08.016 51↑

Clouston, Ranald A. and Andrew M. Pitts (2007)
Nominal Equational Logic
In: Electronic Notes inTheoretical Computer Science. Computation, Meaning, and Logic: Articles Ded-
icated to Gordon Plotkin 172, pp. 223–257.
doi: 10.1016/j.entcs.2007.02.009 51↑

CocKett, J. Robin B. (Oct. 1990)
List-Arithmetic Distributive Categories
In: Journal of Pure and Applied Algebra 66 (1), pp. 1–29.
doi: 10.1016/0022-4049(90)90121-W 41↑

CocKx, Jesper (2021)
1001 Representations of Syntax with Binding.
uRl: jesper.sikanda.be/posts/1001-syntax-representations.html (visited on 02/13/2024)
50↑

Copello, Ernesto (2017)
On the Formalisation of the Metatheory of the Lambda Calculus and Languages with
Binders. PhD thesis. Universidad ORT Uruguay 51↑

Copello, Ernesto, Nora Szasz, and Álvaro TasistRo (2017)
Formal Metatheory of the Lambda Calculus Using Stoughton’s Substitution
In: Theoretical Computer Science. Logical and Semantic Frameworks with Applications 685, pp. 65–
82.
doi: 10.1016/j.tcs.2016.08.025 51↑

Copello, Ernesto, Nora Szasz, and Álvaro TasistRo (2018a)
Formalisation in Constructive Type Theory of Barendregt’s Variable Convention for
Generic Structures with Binders
In: Proceedings of the 13th InternationalWorkshop on Logical Frameworks andMeta-Languages:Theory
and Practice (LFMTP 2018). Vol. 274. Electronic Proceedings in Theoretical Computer Science. Open
Publishing Association, pp. 11–26.
doi: 10.4204/EPTCS.274.2 51↑

Copello, Ernesto, Nora Szasz, and Álvaro TasistRo (2018b)
Machine-Checked Proof of the Church-Rosser Theorem for the Lambda Calculus Using
the Barendregt Variable Convention in Constructive Type Theory
In: Electronic Notes in Theoretical Computer Science. Proceedings of the 12th Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2017) 338, pp. 79–95.
doi: 10.1016/j.entcs.2018.10.006 51↑

http://dx.doi.org/10.2307/1968337
http://www.jstor.org/stable/1968337
http://dx.doi.org/10.2307/2371045
2371045
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.1016/j.entcs.2007.02.009
http://dx.doi.org/10.1016/0022-4049(90)90121-W
jesper.sikanda.be/posts/1001-syntax-representations.html
http://dx.doi.org/10.1016/j.tcs.2016.08.025
http://dx.doi.org/10.4204/EPTCS.274.2
http://dx.doi.org/10.1016/j.entcs.2018.10.006

bibl iogRaphy 297

Copello, Ernesto, Nora Szasz, and Álvaro TasistRo (2021)
Formalization of Metatheory of the Lambda Calculus in Constructive Type Theory Us-
ing the Barendregt Variable Convention
In: Mathematical Structures in Computer Science 31 (3), pp. 341–360.
doi: 10.1017/S0960129521000335 51, 52↑

Copello, Ernesto, Álvaro TasistRo, Nora Szasz, Ana Bove, and Maribel FeRnÁndez (2016)
Alpha-Structural Induction and Recursion for the Lambda Calculus in Constructive
Type Theory
In: Electronic Notes in Theoretical Computer Science 323, pp. 109–124.
doi: 10.1016/j.entcs.2016.06.008 51↑

CuRien, Pierre-Louis and Hugo HeRbelin (2000)
The Duality of Computation
In: ACM SIGPLAN Notices 35 (9), pp. 233–243.
doi: 10.1145/357766.351262 286↑

Day, Brian (1970)
On closed categories of functors
In: Reports of the Midwest Category Seminar IV. Vol. 137. Lecture Notes in Computer Science (LNCS).
Springer, pp. 1–38.
doi: 10.1007/BFb0060438 126, 160, 287↑

de BRuijn, Nicolaas G. (1972)
Lambda calculus notation with nameless dummies, a tool for automatic formula manip-
ulation, with application to the Church–Rosser theorem
In: Indagationes Mathematicae. Vol. 75. 5. Elsevier, pp. 381–392.
doi: 10.1016/1385-7258(72)90034-0 50, 52, 61↑

DespeyRoux, Joëlle, Amy Felty, and André HiRschowitz (1995)
Higher-Order Abstract Syntax in Coq
In: Proceedings of the 2nd International Conference on Typed Lambda Calculi and Applications (TLCA
1995). Lecture Notes in Computer Science (LNCS). Springer, pp. 124–138.
doi: 10.1007/BFb0014049 60↑

DespeyRoux, Joëlle and André HiRschowitz (1994)
Higher-Order Abstract Syntax with Induction in Coq
In: Logic Programming and Automated Reasoning. Vol. 822. Springer, pp. 159–173.
doi: 10.1007/3-540-58216-9_36 59↑

DespeyRoux, Joëlle, Frank Pfenning, and Carsten SchÜRmann (1997)
Primitive Recursion for Higher-Order Abstract Syntax
In: Typed Lambda Calculi and Applications, pp. 147–163.
doi: 10.1007/3-540-62688-3_34 60↑

DomÍnguez, Jesús and Maribel FeRnÁndez (2019)
Nominal Syntax with Atom Substitutions: Matching, Unification, Rewriting
In: Proceedings of the 22nd International Symposium on the Fundamentals of ComputationTheory (FCT
2019). Lecture Notes in Computer Science (LNCS). Springer, pp. 64–79.
doi: 10.1007/978-3-030-25027-0_5 51↑

Dunn, Lawrence, Val Tannen, and Steve Zdancewic (2023a)
Syntax Monads for the Working Formal Metatheorist.
doi: 10.48550/arXiv.2312.08897.
aRxiv: 2312.08897[] 62↑

Dunn, Lawrence, Val Tannen, and Steve Zdancewic (2023b)
Tealeaves: Structured Monads for Generic First-Order Abstract Syntax Infrastructure
In: Proceedings of the 14th International Conference on Interactive Theorem Proving (ITP 2023) 268,
14:1–14:20.
doi: 10.4230/LIPICS.ITP.2023.14 62↑

http://dx.doi.org/10.1017/S0960129521000335
http://dx.doi.org/10.1016/j.entcs.2016.06.008
http://dx.doi.org/10.1145/357766.351262
http://dx.doi.org/10.1007/BFb0060438
http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1007/BFb0014049
http://dx.doi.org/10.1007/3-540-58216-9_36
http://dx.doi.org/10.1007/3-540-62688-3_34
http://dx.doi.org/10.1007/978-3-030-25027-0_5
http://dx.doi.org/10.48550/arXiv.2312.08897
http://arxiv.org/abs/2312.08897
http://dx.doi.org/10.4230/LIPICS.ITP.2023.14

298 b ibl iogRaphy

DybjeR, Peter (1994)
Inductive Families
In: Formal Aspects of Computing 6 (4), pp. 440–465.
doi: 10.1007/BF01211308 28↑

DybjeR, Peter and Anton SetzeR (1999)
A Finite Axiomatization of Inductive-Recursive Definitions
In: Proceedings of the 4th International Conference on Typed Lambda Calculi and Applications (TLCA
1999). Springer, pp. 129–146.
doi: 10.1007/3-540-48959-2_11 267↑

DycKhoff, Roy (2015)
Cut Elimination, Substitution and Normalisation
In: Dag Prawitz on Proofs and Meaning. Springer, pp. 163–187.
doi: 10.1007/978-3-319-11041-7_7 167↑

EilenbeRg, Samuel and G. Max Kelly (1966)
Closed Categories
In: Proceedings of the Conference on Categorical Algebra. Springer, pp. 421–562.
doi: 10.1007/978-3-642-99902-4_22 95, 97, 100, 103, 106, 107, 325↑

Felleisen, Matthias and Daniel P. FRiedman (1987)
Control operators, the SECD-machine, and the 𝜆-calculus
In: Formal Description of Programming Concepts - III: Proceedings of the IFIP TC 2/WG 2.2 Working
Conference on Formal Description of Programming Concepts - III, Ebberup, Denmark, 25-28 August
1986. North-Holland, pp. 193–222.
uRl: legacy.cs.indiana.edu/ftp/techreports/TR197.pdf 288↑

Felty, Amy and Alberto Momigliano (2012)
Hybrid: A Definitional Two-Level Approach to Reasoning with Higher-Order Abstract
Syntax
In: Journal of Automated Reasoning 48 (1), pp. 43–105.
doi: 10.1007/s10817-010-9194-x 61↑

FeRnÁndez, Maribel and Albert Rubio (2012)
Nominal Completion for Rewrite Systems with Binders
In: Proceedings of the 39th International Colloquium on Automata, Languages, and Programming
(ICALP 2012). Lecture Notes in Computer Science (LNCS). Springer, pp. 201–213.
doi: 10.1007/978-3-642-31585-5_21 51↑

FioRe, Marcelo (2002)
Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus
In: Proceedings of the 4th International Conference on Principles and Practice of Declarative Program-
ming (PPDP 2002). ACM Press, pp. 26–37.
doi: 10.1145/571157.571161 35, 58↑

FioRe, Marcelo (2005)
Mathematical Models of Computational and Combinatorial Structures
In: Proceedings of the 8th International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2005). Vol. 3441. Springer, pp. 25–46.
doi: 10.1007/978-3-540-31982-5_2 167↑

FioRe, Marcelo (2007)
Towards a Mathematical Theory of Substitution. Invited talk at Category Theory 2007.
uRl: cl.cam.ac.uk/~mpf23/talks/CT2007.pdf 167↑

FioRe, Marcelo (2008)
Second-Order and Dependently-Sorted Abstract Syntax
In: Proceedings of the 23rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2008),
pp. 57–68.
doi: 10.1109/LICS.2008.38 27, 35, 42–45, 58, 204, 207, 215–218, 232, 233, 284↑

http://dx.doi.org/10.1007/BF01211308
http://dx.doi.org/10.1007/3-540-48959-2_11
http://dx.doi.org/10.1007/978-3-319-11041-7_7
http://dx.doi.org/10.1007/978-3-642-99902-4_22
legacy.cs.indiana.edu/ftp/techreports/TR197.pdf
http://dx.doi.org/10.1007/s10817-010-9194-x
http://dx.doi.org/10.1007/978-3-642-31585-5_21
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1007/978-3-540-31982-5_2
cl.cam.ac.uk/~mpf23/talks/CT2007.pdf
http://dx.doi.org/10.1109/LICS.2008.38

bibl iogRaphy 299

FioRe, Marcelo (2012)
Discrete Generalised Polynomial Functors
In: 39th International Colloquium on Automata, Languages and Programming (ICALP 2012). Vol. 7392.
Lecture Notes in Computer Science. Springer, pp. 214–226.
doi: 10.1007/978-3-642-31585-5_22 261↑

FioRe, Marcelo (2013)
An Equational Metalogic for Monadic Equational Systems
In: Theory and Applications of Categories 27 (18), pp. 464–492.
uRl: www.tac.mta.ca/tac/volumes/27/18/27-18.pdf 48, 84, 91, 237↑

FioRe, Marcelo (2017)
New Dimensions in Formal Systems and Computational Models. Research proposal 58↑

FioRe, Marcelo (2019)
Abstract Syntax and Variable Binding. Talk given on reception of the Test of Time Award at
LICS 2019 287↑

FioRe, Marcelo (2022)
Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus
In: Mathematical Structures in Computer Science 32 (8), pp. 1028–1065.
doi: 10.1017/S0960129522000263 286↑

FioRe, Marcelo, Nicola Gambino, Martin Hyland, and Glynn WinsKel (2008)
The cartesian Closed Bicategory of Generalised Species of Structures
In: Journal of the London Mathematical Society 77 (1), pp. 203–220.
doi: 10.1112/jlms/jdm096 167↑

FioRe, Marcelo and Makoto Hamana (2013)
Multiversal Polymorphic Algebraic Theories: Syntax, Semantics, Translations, and
Equational Logic
In: Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013).
IEEE Computer Society, pp. 520–529.
doi: 10.1109/LICS.2013.59 58, 286↑

FioRe, Marcelo and Chung-Kil HuR (2007)
Equational Systems and Free Constructions
In: Proceedings of the 34th International Colloquium on Automata, Languages, and Programming
(ICALP 2007). Vol. 4596. Lecture Notes in Computer Science (LNCS). Springer, pp. 607–618.
doi: 10.1007/978-3-540-73420-8_53 58, 237↑

FioRe, Marcelo and Chung-Kil HuR (2008)
Term equational systems and logics
In: Electronic Notes in Theoretical Computer Science 218, pp. 171–192.
doi: 10.1016/j.entcs.2008.10.011 48, 58, 91, 237↑

FioRe, Marcelo and Chung-Kil HuR (2009)
On the Construction of Free Algebras for Equational Systems.
doi: 10.1016/j.tcs.2008.12.052 58, 231, 237↑

FioRe, Marcelo and Chung-Kil HuR (2010)
Second-Order Equational Logic
In: Proceedings of the 24th International Workshop on Computer Science Logic (CSL 2010), pp. 320–335.
doi: 10.1007/978-3-642-15205-4_26 42, 48, 58, 91, 213, 237, 238, 262↑

FioRe, Marcelo and Ola Mahmoud (2010)
Second-Order Algebraic Theories
In: Proceedings of the 35th International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2010). Vol. 6281. Lecture Notes in Computer Science (LNCS). Springer, pp. 368–380.
doi: 10.1007/978-3-642-15155-2_33 58, 287↑

FioRe, Marcelo and Ola Mahmoud (2014)
Functorial Semantics of Second-Order Algebraic Theories.

http://dx.doi.org/10.1007/978-3-642-31585-5_22
www.tac.mta.ca/tac/volumes/27/18/27-18.pdf
http://dx.doi.org/10.1017/S0960129522000263
http://dx.doi.org/10.1112/jlms/jdm096
http://dx.doi.org/10.1109/LICS.2013.59
http://dx.doi.org/10.1007/978-3-540-73420-8_53
http://dx.doi.org/10.1016/j.entcs.2008.10.011
http://dx.doi.org/10.1016/j.tcs.2008.12.052
http://dx.doi.org/10.1007/978-3-642-15205-4_26
http://dx.doi.org/10.1007/978-3-642-15155-2_33

300 b ibl iogRaphy

aRxiv: 1401.4697[math.CT].
uRl: https://arxiv.org/abs/1401.4697 58↑

FioRe, Marcelo, Gordon PlotKin, and Daniele TuRi (1999)
Abstract Syntax and Variable Binding
In: Proceedings of the 14th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 1999),
pp. 193–202.
doi: 10.1109/LICS.1999.782615 21, 27, 35, 39, 54, 57, 58, 96, 110, 167, 217, 232, 261, 268, 284,
287↑

FioRe, Marcelo and Sanjiv Ranchod (2024)
A finite algebraic presentation of Lawvere theories in the object-classifier topos.
aRxiv: 2408.08980[math.CT].
uRl: https://arxiv.org/abs/2408.08980 39, 58, 285↑

FioRe, Marcelo and Philip Saville (2017)
List Objects with Algebraic Structure
In: Proceedings of the 2nd International Conference on Formal Structures for Computation and De-
duction (FSCD 2017). Vol. 84. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 16:1–16:18.
doi: 10.4230/LIPIcs.FSCD.2017.16 41, 42, 117, 217↑

FioRe, Marcelo and Philip Saville (2018)
Skew monoidal structures on categories of algebras. Talk given at Category Theory 2018.
uRl: https://www.mat.uc.pt/~ct2018/slides/P_Saville.pdf 96, 117, 121, 123↑

FioRe, Marcelo and Philip Saville (2021)
Skew monoidal categories of algebras. Private communication 118, 123↑

FioRe, Marcelo and Dmitrij Szamozvancev (2022)
Formal Metatheory of Second-Order Abstract Syntax
In: Proceedings of the ACM on Programming Languages 6 (POPL), 53:1–53:29.
doi: 10.1145/3498715 3, 124, 245↑

FioRe, Marcelo and Daniele TuRi (2001)
Semantics of Name and Value Passing
In: Proceedings of the 16th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2001).
IEEE Computer Society, pp. 93–104.
doi: 10.1109/LICS.2001.932486 170↑

FoRsteR, Yannick and Kathrin StaRK (2020)
Coq à La Carte: A Practical Approach to Modular Syntax with Binders
In: Proceedings of the 9th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2020).
ACM Press, pp. 186–200.
doi: 10.1145/3372885.3373817 53↑

Fujii, Soichiro (2016)
A 2-Categorical Study of Graded and Indexed Monads. MA thesis. Graduate School of the
University of Tokyo.
aRxiv: 1904.08083[math.CT] 100↑

Gabbay, Murdoch J. and Aad Mathijssen (2009)
Nominal (Universal) Algebra: Equational Logic with Names and Binding
In: Journal of Logic and Computation 19 (6), pp. 1455–1508.
doi: 10.1093/logcom/exp033 51↑

Gabbay, Murdoch J. and Andrew M. Pitts (1999)
A New Approach to Abstract Syntax Involving Binders
In: Proceedings of the 14th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 1999).
IEEE Computer Society, pp. 214–224.
doi: 10.1109/LICS.1999.782617 51↑

http://arxiv.org/abs/1401.4697
https://arxiv.org/abs/1401.4697
http://dx.doi.org/10.1109/LICS.1999.782615
http://arxiv.org/abs/2408.08980
https://arxiv.org/abs/2408.08980
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.16
https://www.mat.uc.pt/~ct2018/slides/P_Saville.pdf
http://dx.doi.org/10.1145/3498715
http://dx.doi.org/10.1109/LICS.2001.932486
http://dx.doi.org/10.1145/3372885.3373817
http://arxiv.org/abs/1904.08083
http://dx.doi.org/10.1093/logcom/exp033
http://dx.doi.org/10.1109/LICS.1999.782617

bibl iogRaphy 301

Gabbay, Murdoch J. and Andrew M. Pitts (2002)
A New Approach to Abstract Syntax with Variable Binding
In: Formal Aspects of Computing 13 (3-5), pp. 341–363.
doi: 10.1007/s001650200016 51↑

GaceK, Andrew (2008)
The Abella Interactive Theorem Prover (System Description)
In: Automated Reasoning. Springer, pp. 154–161.
doi: 10.1007/978-3-540-71070-7_13 61↑

GaceK, Andrew, Dale MilleR, and Gopalan NadathuR (2011)
Nominal Abstraction
In: Information and Computation 209 (1), pp. 48–73.
doi: 10.1016/j.ic.2010.09.004 61↑

GaRneR, Richard and Michael Shulman (2016)
Enriched categories as a free cocompletion
In: Advances in Mathematics 289, pp. 1–94.
doi: doi.org/10.1016/j.aim.2015.11.012 86, 87↑

GheRi, Lorenzo (2019)
A General Theory of Syntax with Bindings. PhD thesis. Middlesex University London.
uRl: repository.mdx.ac.uk/item/8859v 51↑

Goguen, Joseph A., James W. ThatcheR, and E. G. WagneR (1976)
An Initial Algebra Approach to the Specification, Correctness and Implementation of
Abstract Data Types
In: IBM Research Report 6487 217↑

GoRdon, Andrew D. (1994)
A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion
In: Higher Order Logic Theorem Proving and Its Applications. Springer, pp. 413–425.
doi: 10.1007/3-540-57826-9_152 61↑

GReenbeRg, Michael, Benjamin C. PieRce, and Stephanie WeiRich (2010)
Contracts Made Manifest
In: Proceedings of the 37th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2010). ACM Press, pp. 353–364.
doi: 10.1145/1706299.1706341 61↑

GRiffin, Timothy G. (1989)
A formulae-as-type notion of control
In: Proceedings of the 17th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
1989). POPL ’90. ACM Press, pp. 47–58.
doi: 10.1145/96709.96714 288↑

Hamana, Makoto (2004)
Free Σ-monoids: A higher-order syntax with metavariables
In: Proceedings of the 2nd Asian Symposium on Programming Languages and Systems (APLAS 2024),
pp. 348–363.
uRl: www.cs.gunma-u.ac.jp/~hamana/Papers/free.pdf 41, 43, 58, 215, 232↑

Hamana, Makoto (2011)
Polymorphic Abstract Syntax via Grothendieck Construction
In: Proceedings of the 14th International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2011). Vol. 6604. Springer, pp. 381–395.
doi: 10.1007/978-3-642-19805-2_26 58, 286↑

HaRpeR, Robert, Furio Honsell, and Gordon PlotKin (1993)
A Framework for Defining Logics
In: Journal of the ACM 40 (1), pp. 143–184.
doi: 10.1145/138027.138060 60↑

http://dx.doi.org/10.1007/s001650200016
http://dx.doi.org/10.1007/978-3-540-71070-7_13
http://dx.doi.org/10.1016/j.ic.2010.09.004
http://dx.doi.org/doi.org/10.1016/j.aim.2015.11.012
repository.mdx.ac.uk/item/8859v
http://dx.doi.org/10.1007/3-540-57826-9_152
http://dx.doi.org/10.1145/1706299.1706341
http://dx.doi.org/10.1145/96709.96714
www.cs.gunma-u.ac.jp/~hamana/Papers/free.pdf
http://dx.doi.org/10.1007/978-3-642-19805-2_26
http://dx.doi.org/10.1145/138027.138060

302 b ibl iogRaphy

HeRmida, Claudio (2000)
Representable Multicategories
In: Advances in Mathematics 151 (2), pp. 164–225.
doi: 10.1006/aima.1999.1877 126, 288↑

HeRmida, Claudio and Bart Jacobs (1995)
An algebraic view of structural induction
In: Proceedings of the 8th International Workshop on Computer Science Logic (CSL 1994). Springer,
pp. 412–426.
doi: 10.1007/BFb0022272 71↑

HiRschowitz, André, Tom HiRschowitz, and Ambroise Lafont (2020)
Modules over Monads and Operational Semantics
In: Proceedings of the 5th International Conference on Formal Structures for Computation and De-
duction (FSCD 2020). Vol. 167. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 12:1–12:23.
doi: 10.4230/LIPICS.FSCD.2020.12 55, 56↑

HiRschowitz, André, Tom HiRschowitz, Ambroise Lafont, and Marco Maggesi (2022)
Variable binding and substitution for (nameless) dummies
In: Proceedings of the 25th International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2022).
uRl: hal.science/hal-03547002 53↑

HiRschowitz, André and Marco Maggesi (2007)
Modules over Monads and Linearity
In: Logic, Language, Information and Computation. Lecture Notes in Computer Science (LNCS).
Springer, pp. 218–237.
doi: 10.1007/978-3-540-73445-1_16 55↑

HiRschowitz, André and Marco Maggesi (2012)
Initial Semantics for Strengthened Signatures
In: Proceedings of the 8th Workshop on Fixed Points in Computer Science (FICS 2012). Vol. 77. EPTCS,
pp. 31–38.
doi: 10.4204/EPTCS.77.5 55↑

Hofmann, Martin (1999)
Semantical Analysis of Higher-Order Abstract Syntax
In: Proceedings of the 14th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 1999),
pp. 204–213.
doi: 10.1109/LICS.1999.782616 60↑

Hu, Jason Z. S. and Jacques CaRette (2021)
Formalizing Category Theory in Agda
In: Proceedings of the 10th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2021).
ACM Press, pp. 327–342.
doi: 10.1145/3437992.3439922 247↑

Huet, Gérard (1989)
The Constructive Engine
In: A Perspective in Theoretical Computer Science. World Scientific, pp. 38–69.
doi: 10.1142/9789814368452_0004 61↑

Huet, Gérard (1994)
Residual Theory in 𝜆-Calculus: A Formal Development
In: Journal of Functional Programming 4 (3), pp. 371–394.
doi: 10.1017/S0956796800001106 52↑

Huffman, Brian and Christian URban (2010)
A New Foundation for Nominal Isabelle
In: Proceedings of the 1st International Conference on Interactive Theorem Proving (ITP 2010). Lecture

http://dx.doi.org/10.1006/aima.1999.1877
http://dx.doi.org/10.1007/BFb0022272
http://dx.doi.org/10.4230/LIPICS.FSCD.2020.12
hal.science/hal-03547002
http://dx.doi.org/10.1007/978-3-540-73445-1_16
http://dx.doi.org/10.4204/EPTCS.77.5
http://dx.doi.org/10.1109/LICS.1999.782616
http://dx.doi.org/10.1145/3437992.3439922
http://dx.doi.org/10.1142/9789814368452_0004
http://dx.doi.org/10.1017/S0956796800001106

bibl iogRaphy 303

Notes in Computer Science (LNCS). Springer, pp. 35–50.
doi: 10.1007/978-3-642-14052-5_5 51↑

HuR, Chung-Kil (2010)
Categorical equational systems: algebraic models and equational reasoning. PhD thesis.
University of Cambridge.
uRl: ropas.snu.ac.kr/~gil.hur/publications/thesis.pdf 58, 237↑

Im, Geun Bin and G. Max Kelly (1986)
A Universal Property of the Convolution Monoidal Structure
In: Journal of Pure and Applied Algebra 43 (1), pp. 75–88.
doi: 10.1016/0022-4049(86)90005-8 160, 161↑

Jacobson, Nathan (2012)
Basic Algebra II. Courier Corporation. isbn: 978-0-486-13521-2 115↑

Janelidze, George and G. Max Kelly (2001)
A note on actions of a monoidal category
In: Theory and Applications of Categories 9 (4), pp. 61–91.
uRl: www.tac.mta.ca/tac/volumes/9/n4/n4.pdf 81, 100↑

Jang, Junyoung, Samuel GÉlineau, Stefan MonnieR, and Brigitte PientKa (2022)
Mœbius: Metaprogramming Using Contextual Types: The Stage Where System F Can
Pattern Match on Itself
In: Proceedings of the ACM on Programming Languages 6 (POPL), pp. 1–27.
doi: 10.1145/3498700 61↑

Joyal, André (1981)
Une théorie combinatoire des séries formelles
In: Advances in Mathematics 42 (1), pp. 1–82.
doi: 10.1016/0001-8708(81)90052-9 287↑

KaiseR, Jonas, Steven SchÄfeR, and Kathrin StaRK (2017)
Autosubst 2: Towards Reasoning with Multi-Sorted de Bruijn Terms and Vector Substi-
tutions
In: Proceedings of the 12th International Workshop on Logical Frameworks and Meta-Languages: The-
ory and Practice (LFMTP 2017). ACM Press, pp. 10–14.
doi: 10.1145/3130261.3130263 53↑

KaiseR, Jonas, Steven SchÄfeR, and Kathrin StaRK (2018)
Binder Aware Recursion over Well-Scoped de Bruijn Syntax
In: Proceedings of the 7th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2018).
ACM Press, pp. 293–306.
doi: 10.1145/3167098 53↑

Kavvos, G. A. (2017)
Dual-Context Calculi for Modal Logic
In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017).
IEEE Computer Society, pp. 1–12.
doi: 10.1109/LICS.2017.8005089 286↑

Kelly, G. Max and John PoweR (1993)
Adjunctions Whose Counits Are Coequalizers,
and Presentations of Finitary Enriched Monads
In: Journal of Pure and Applied Algebra 89 (1), pp. 163–179.
doi: 10.1016/0022-4049(93)90092-8 84↑

Kelly, G. Max and Ross StReet (1974)
Review of the Elements of 2-Categories
In: Category Seminar. Springer, pp. 75–103.
doi: 10.1007/BFb0063101 104↑

http://dx.doi.org/10.1007/978-3-642-14052-5_5
ropas.snu.ac.kr/~gil.hur/publications/thesis.pdf
http://dx.doi.org/10.1016/0022-4049(86)90005-8
www.tac.mta.ca/tac/volumes/9/n4/n4.pdf
http://dx.doi.org/10.1145/3498700
http://dx.doi.org/10.1016/0001-8708(81)90052-9
http://dx.doi.org/10.1145/3130261.3130263
http://dx.doi.org/10.1145/3167098
http://dx.doi.org/10.1109/LICS.2017.8005089
http://dx.doi.org/10.1016/0022-4049(93)90092-8
http://dx.doi.org/10.1007/BFb0063101

304 b ibl iogRaphy

KeRKhoff, Sebastian, Reinhard PÖschel, and Friedrich Martin SchneideR (2014)
A Short Introduction to Clones
In: Electronic Notes in Theoretical Computer Science 303, pp. 107–120.
doi: 10.1016/j.entcs.2014.02.006 167↑

Keuchel, Steven and Johan T. JeuRing (2012)
Generic Conversions of Abstract Syntax Representations
In: Proceedings of the 8th ACM SIGPLAN Workshop on Generic Programming. ACM Press, pp. 57–68.
doi: 10.1145/2364394.2364403 62↑

Keuchel, Steven, Stephanie WeiRich, and Tom SchRijveRs (2016)
Needle & Knot: Binder Boilerplate Tied Up
In: Proceedings of the 25th European Symposium on Programming (ESOP 2016). Vol. 9632. Springer,
pp. 419–445.
doi: 10.1007/978-3-662-49498-1_17 53↑

Kmett, Edward (2015)
Bound.
uRl: schoolofhaskell.com/user/edwardk/bound (visited on 02/13/2024) 50↑

KocK, Anders (1970a)
Monads on symmetric monoidal closed categories
In: Archiv der Mathematik 21, pp. 1–10.
doi: 10.1007/BF01220868 103↑

KocK, Anders (1970b)
On double dualization monads
In: Mathematica Scandinavica 27 (2), pp. 151–165.
uRl: jstor.org/stable/24489892 84↑

KocK, Anders (1971a)
Bilinearity and cartesian closed monads
In: Mathematica Scandinavica 29 (2), pp. 161–174.
uRl: jstor.org/stable/24491025 117↑

KocK, Anders (1971b)
Closed categories generated by commutative monads
In: Journal of the Australian Mathematical Society 12 (4), pp. 405–424.
doi: 10.1017/S1446788700010272 103↑

KocK, Anders (1972)
Strong functors and monoidal monads
In: Archiv der Mathematik 23, pp. 113–120.
doi: 10.1007/BF01304852 103↑

KocK, Joachim, André Joyal, Michael Batanin, and Jean-François MascaRi (2010)
Polynomial Functors and Opetopes
In: Advances in Mathematics 224 (6), pp. 2690–2737.
doi: 10.1016/j.aim.2010.02.012 167↑

LacK, Stephen and Ross StReet (2012a)
A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
In: Applied Categorical Structures 22.
doi: 10.1007/s10485-013-9356-1 95↑

LacK, Stephen and Ross StReet (2012b)
Skew monoidales, skew warpings and quantum categories
In: Theory and Applications of Categories 26 (15), pp. 385–402.
uRl: tac.mta.ca/tac/volumes/26/15/26-15.pdf 95, 112, 137↑

LacK, Stephen and Ross StReet (2014a)
On monads and warpings

http://dx.doi.org/10.1016/j.entcs.2014.02.006
http://dx.doi.org/10.1145/2364394.2364403
http://dx.doi.org/10.1007/978-3-662-49498-1_17
schoolofhaskell.com/user/edwardk/bound
http://dx.doi.org/10.1007/BF01220868
jstor.org/stable/24489892
jstor.org/stable/24491025
http://dx.doi.org/10.1017/S1446788700010272
http://dx.doi.org/10.1007/BF01304852
http://dx.doi.org/10.1016/j.aim.2010.02.012
http://dx.doi.org/10.1007/s10485-013-9356-1
tac.mta.ca/tac/volumes/26/15/26-15.pdf

bibl iogRaphy 305

In: Cahiers de Topologie et Géométrie Différentielle Catégoriques LV (4), pp. 244–266.
uRl: cahierstgdc.com/wp-content/uploads/2017/05/LackStreet_55-4.pdf 95, 100, 288↑

LacK, Stephen and Ross StReet (2014b)
Triangulations, orientals, and skew monoidal categories
In: Advances in Mathematics 258, pp. 351–396. issn: 0001-8708.
doi: 10.1016/j.aim.2014.03.003 95↑

LacK, Stephen and Ross StReet (2015)
Skew-monoidal reflection and lifting theorems
In: Theory and Applications of Categories 30 (28), pp. 985–1000.
uRl: www.tac.mta.ca/tac/volumes/30/28/30-28.pdf 95, 137↑

LambeK, Joachim (1986)
Cartesian closed categories and typed 𝜆-calculi
In: Combinators and Functional Programming Languages. Springer, pp. 136–175.
doi: 10.1007/3-540-17184-3_44 270↑

Lamiaux, Thomas and Benedikt AhRens (2025)
A Unified Framework for Initial Semantics.
aRxiv: 2502.10811[cs.LO] 50, 55, 56↑

Laplaza, Miguel L. (1977)
Embedding of Closed Categories Into Monoidal Closed Categories
In: Transactions of the American Mathematical Society 233, pp. 85–91.
doi: 10.2307/1997823. JSTOR: 1997823 97↑

LawveRe, F. William (1963)
Functorial Semantics of Algebraic Theories. PhD thesis. Columbia University.
doi: 10.1007/BFb0077116 58↑

Lee, Gyesik, Bruno C. D. S. OliveiRa, Sungkeun Cho, and Kwangkeun Yi (2012)
GMeta: A Generic Formal Metatheory Framework for First-Order Representations
In: Proceedings of the 21st European Symposium on Programming (ESOP 2012). Lecture Notes in Com-
puter Science (LNCS). Springer, pp. 436–455.
doi: 10.1007/978-3-642-28869-2_22 62↑

LehneR, Marina Christina (2014)
“All Concepts are Kan Extensions”: Kan Extensions as the Most Universal of the Univer-
sal Constructions. Bachelor’s Thesis. Harvard College.
uRl: legacy-www.math.harvard.edu/theses/senior/lehner/lehner.pdf 156↑

LeinsteR, Tom (1999)
fc-Multicategories.
aRxiv: math/9903004[] 289↑

LeinsteR, Tom (2004)
Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series. Cam-
bridge University Press.
doi: 10.1017/CBO9780511525896 126, 167, 288↑

LeRoy, Xavier (2007)
A Locally Nameless Solution to the POPLmark Challenge. Technical report. INRIA, p. 54
61↑

Levy, Paul Blain (1999)
Call-by-Push-Value: A Subsuming Paradigm
In: Proceedings of the 4th International Conference on Typed Lambda Calculi and Applications (TLCA
1999). Springer, pp. 228–242.
doi: 10.1007/3-540-48959-2_17 286↑

LoRegian, Fosco (2019)
A Fubini rule for∞-coends

cahierstgdc.com/wp-content/uploads/2017/05/LackStreet_55-4.pdf
http://dx.doi.org/10.1016/j.aim.2014.03.003
www.tac.mta.ca/tac/volumes/30/28/30-28.pdf
http://dx.doi.org/10.1007/3-540-17184-3_44
http://arxiv.org/abs/2502.10811
http://dx.doi.org/10.2307/1997823
http://www.jstor.org/stable/1997823
http://dx.doi.org/10.1007/BFb0077116
http://dx.doi.org/10.1007/978-3-642-28869-2_22
legacy-www.math.harvard.edu/theses/senior/lehner/lehner.pdf
http://arxiv.org/abs/math/9903004
http://dx.doi.org/10.1017/CBO9780511525896
http://dx.doi.org/10.1007/3-540-48959-2_17

306 b ibl iogRaphy

In: arXiv e-prints, arXiv:1902.06086.
aRxiv: 1902.06086[math.CT] 155↑

LoRegian, Fosco (2021)
(Co)end Calculus. London Mathematical Society Lecture Note Series. Cambridge University
Press.
doi: 10.1017/9781108778657 151, 153, 155, 160↑

Mac Lane, Saunders (1971)
Categories for the Working Mathematician.
Graduate Text in Mathematics. Springer. isbn: 978-0-387-98403-2.
doi: 10.1007/978-1-4757-4721-8 75, 95, 156↑

Mac Lane, Saunders and Garrett BiRKhoff (1967)
Algebra. The Macmillan Company 116↑

MacLane, Saunders and Ieke MoeRdijK (2012)
Sheaves in geometry and logic: A first introduction to topos theory. Springer 151↑

Mahmoud, Ola (2011)
Second-Order Algebraic Theories. PhD thesis. University of Cambridge.
uRl: www.repository.cam.ac.uk/bitstream/handle/1810/241035/Thesis.pdf 58↑

MaRmolejo, Francisco and Richard J. Wood (2010)
Monads as Extension Systems – No Iteration is Necessary
In: Theory and Applications of Categories 24 (4), pp. 84–113.
uRl: tac.mta.ca/tac/volumes/24/4/24-04.pdf 84↑

Matache, Cristina (2017)
Formalisation of the 𝜆µT-calculus in Isabelle/HOL. Undergraduate dissertation. MA thesis.
University of Cambridge.
uRl: homepages.inf.ed.ac.uk/cmatache/documents/diss.pdf 52↑

Matthes, Ralph (2011)
Map Fusion for Nested Datatypes in Intensional Type Theory
In: Science of Computer Programming. Special Issue on the Mathematics of Program Construction
(MPC 2008) 76 (3), pp. 204–224.
doi: 10.1016/j.scico.2010.05.008 57↑

Matthes, Ralph and Tarmo Uustalu (2004)
Substitution in Non-Wellfounded Syntax with Variable Binding
In: 327 (1), pp. 155–174.
doi: 10.1016/j.tcs.2004.07.025 56, 57, 217↑

Matthes, Ralph, Kobe WullaeRt, and Benedikt AhRens (2023)
Substitution for Non-Wellfounded Syntax with Binders through Monoidal Categories.
aRxiv: 2308.05485[cs.PL] 57↑

McBRide, Conor (2005)
Type-preserving renaming and substitution. Unpublished note.
uRl: http://strictlypositive.org/ren-sub.pdf 32, 39, 167, 247, 250, 253, 257↑

McBRide, Conor and James McKinna (2004)
Functional Pearl: I Am Not a Number – I Am a Free Variable
In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell. Haskell ’04. ACM Press, pp. 1–9.
doi: 10.1145/1017472.1017477 61↑

McBRide, Conor and Ross PateRson (2008)
Applicative Programming with Effects
In: Journal of Functional Programming 18 (01).
doi: 10.1017/S0956796807006326 62↑

McDeRmott, Dylan and Tarmo Uustalu (2022)
What Makes a Strong Monad?
In: Proceedings of the 9th Mathematically Structured Functional Programming (MSFP 2022). Vol. 360.

http://arxiv.org/abs/1902.06086
http://dx.doi.org/10.1017/9781108778657
http://dx.doi.org/10.1007/978-1-4757-4721-8
www.repository.cam.ac.uk/bitstream/handle/1810/241035/Thesis.pdf
tac.mta.ca/tac/volumes/24/4/24-04.pdf
homepages.inf.ed.ac.uk/cmatache/documents/diss.pdf
http://dx.doi.org/10.1016/j.scico.2010.05.008
http://dx.doi.org/10.1016/j.tcs.2004.07.025
http://arxiv.org/abs/2308.05485
http://strictlypositive.org/ren-sub.pdf
http://dx.doi.org/10.1145/1017472.1017477
http://dx.doi.org/10.1017/S0956796807006326

bibl iogRaphy 307

Electronic Proceedings in Theoretical Computer Science, pp. 113–133.
doi: 10.4204/EPTCS.360.6 81, 82, 103↑

McKinna, James and Robert PollacK (1993)
Pure Type Systems Formalized
In: Proceedings of the 1st International Conference on Typed Lambda Calculi and Applications (TLCA
1993). Springer, pp. 289–305.
doi: 10.1007/BFb0037113 61↑

MendleR, Nax Paul (1991)
Inductive Types and Type Constraints in the Second-Order Lambda Calculus
In: Annals of Pure and Applied Logic 51 (1), pp. 159–172.
doi: 10.1016/0168-0072(91)90069-X 57↑

Miculan, Marino and Ivan Scagnetto (2003)
A framework for typed HOAS and semantics
In: Proceedings of the 5th International Conference on Principles and Practice of Declarative Program-
ming (PPDP 2003). PPDP ’03. ACM Press, pp. 184–194.
doi: 10.1145/888251.888269 58↑

MilleR, Dale (2000)
Abstract Syntax for Variable Binders: An Overview
In: First International Conference on Computational Logic (CL 2000). Vol. 1861. Springer, pp. 239–253.
doi: 10.1007/3-540-44957-4_16 61↑

Moggi, Eugenio (1991)
Notions of computation and monads
In: Information and Computation 93 (1), pp. 55–92.
doi: 10.1016/0890-5401(91)90052-4 53↑

MuRawsKi, Andrzej S. and Nikos TzeveleKos (2016)
Nominal Game Semantics
In: Foundations and Trends® in Programming Languages 2 (4), pp. 191–269.
doi: 10.1561/2500000017 51↑

NanevsKi, Aleksandar, Frank Pfenning, and Brigitte PientKa (2008)
Contextual Modal Type Theory
In: ACM Transactions on Computational Logic 9 (3), pp. 1–49.
doi: 10.1145/1352582.1352591 61, 288↑

Pagano, Miguel and José E. Solsona (2023)
Nominal Sets in Agda – A Fresh and Immature Mechanization
In: Electronic Proceedings in Theoretical Computer Science 376, pp. 67–80.
doi: 10.4204/EPTCS.376.7.
aRxiv: 2303.13252[cs] 51, 52↑

PaRanhos, Fabrízio S. (2022)
Uma formalização da teoria nominal emCoq. MA thesis. Universidade Federal de Goiás (UFG),
Brasil.
uRl: repositorio.bc.ufg.br/tede/handle/tede/12314 51↑

PaRanhos, Fabrízio S. and Daniel VentuRa (2022)
Towards a Formalization of Nominal Sets in Coq. Presented at the 8th InternationalWorkshop
on Coq for Programming Languages (CoqPL 2022).
uRl: inf.ufg.br/~daniel/papers/coqpl22-final52.pdf 51↑

Paulson, Lawrence (2015)
A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle
In: Journal of Automated Reasoning 55, pp. 1–37.
doi: 10.1007/s10817-015-9322-8 51↑

Paulson, Lawrence (2023)
Large-Scale Formal Proof for the Working Mathematician – Lessons Learnt from the

http://dx.doi.org/10.4204/EPTCS.360.6
http://dx.doi.org/10.1007/BFb0037113
http://dx.doi.org/10.1016/0168-0072(91)90069-X
http://dx.doi.org/10.1145/888251.888269
http://dx.doi.org/10.1007/3-540-44957-4_16
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1561/2500000017
http://dx.doi.org/10.1145/1352582.1352591
http://dx.doi.org/10.4204/EPTCS.376.7
http://arxiv.org/abs/2303.13252
repositorio.bc.ufg.br/tede/handle/tede/12314
inf.ufg.br/~daniel/papers/coqpl22-final52.pdf
http://dx.doi.org/10.1007/s10817-015-9322-8

308 b ibl iogRaphy

ALEXANDRIA Project.
aRxiv: 2305.14407[math] 17↑

Pfenning, Frank and Rowan Davies (2001)
A judgmental reconstruction of modal logic
In: Mathematical Structures in Computer Science 11 (4), pp. 511–540.
doi: 10.1017/S0960129501003322 288↑

Pfenning, Frank and Conal Elliott (1988)
Higher-Order Abstract Syntax
In: Proceedings of the 1st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 1988). ACM Press, pp. 199–208.
doi: 10.1145/53990.54010 59↑

Pfenning, Frank and Carsten SchÜRmann (1999)
System Description: Twelf — A Meta-Logical Framework for Deductive Systems
In: Proceedings of the 16th International Conference on Automated Deduction (CADE 1999). Springer,
pp. 202–206.
doi: 10.1007/3-540-48660-7_14 60↑

PicKeRing, Matthew, Gergő ÉRdi, Simon Peyton Jones, and Richard EisenbeRg (2016)
Pattern Synonyms
In: Proceedings of the 9th ACM SIGPLAN International Symposium on Haskell (Haskell 2016). ACM
Press, pp. 80–91.
doi: 10.1145/2976002.2976013 263↑

PientKa, Brigitte and Jana Dunfield (2008)
Programming with Proofs and Explicit Contexts
In: Proceedings of the 10th International Conference on Principles and Practice of Declarative Program-
ming (PPDP 2008). ACM, pp. 163–173.
doi: 10.1145/1389449.1389469 61↑

PientKa, Brigitte and Ulrich SchÖpp (2020)
Semantical Analysis of Contextual Types
In: Proceedings of the 23rd International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2020). Springer, pp. 502–521.
doi: 10.1007/978-3-030-45231-5_26 61↑

PientKa, Brigitte, David Thibodeau, Andreas Abel, Francisco FeRReiRa, and Rebecca Zucchini
(2021)
A Type Theory for Defining Logics and Proofs
In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2021).
LICS ’19. IEEE Computer Society, pp. 1–13.
doi: 10.5555/3470152.3470181 61↑

Pitts, Andrew M. (2003)
Nominal Logic, a First Order Theory of Names and Binding
In: Information and Computation 186 (2), pp. 165–193.
doi: 10.1016/S0890-5401(03)00138-X 51↑

Pitts, Andrew M. (2006)
Alpha-structural recursion and induction
In: Journal of the ACM 53 (3), pp. 459–506.
doi: 10.1145/1147954.1147961 51↑

Pitts, Andrew M. (2011)
Structural Recursion with Locally Scoped Names
In: Journal of Functional Programming 21 (3), pp. 235–286.
doi: 10.1017/S0956796811000116 51↑

http://arxiv.org/abs/2305.14407
http://dx.doi.org/10.1017/S0960129501003322
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1007/3-540-48660-7_14
http://dx.doi.org/10.1145/2976002.2976013
http://dx.doi.org/10.1145/1389449.1389469
http://dx.doi.org/10.1007/978-3-030-45231-5_26
http://dx.doi.org/10.5555/3470152.3470181
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1145/1147954.1147961
http://dx.doi.org/10.1017/S0956796811000116

bibl iogRaphy 309

Pitts, Andrew M. (2013)
Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press 51↑

Pitts, Andrew M. (2014)
An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
aRxiv: 1401.7807[cs.LO] 51↑

Pitts, Andrew M. (2015)
Nominal Presentation of Cubical Sets Models of Type Theory
In: Proceedings of the 20th International Conference on Types for Proofs and Programs (TYPES
2014). Vol. 39. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, pp. 202–220.
doi: 10.4230/LIPIcs.TYPES.2014.202 51↑

Pitts, Andrew M. (2019)
Initial algebra for a strictly positive endofunctor constructed using sized types and quo-
tient types.
uRl: www.cl.cam.ac.uk/~amp12/agda/initial-T-algebras/InitialTAlgebra.html (visited
on 08/31/2024) 264↑

Pitts, Andrew M. and Murdoch J. Gabbay (2000)
A Metalanguage for Programming with Bound Names Modulo Renaming
In: Proceedings of the 5th International Conference on the Mathematics of Program Construction (MPC
2000). Vol. 1837. Springer, pp. 230–255.
doi: 10.1007/10722010_15 51↑

PlotKin, Gordon (2020)
A Complete Equational Axiomatisation of Partial Differentiation
In: Electronic Notes in Theoretical Computer Science 352, pp. 211–232.
doi: j.entcs.2020.09.011 274↑

PollacK, Randy, Masahiko Sato, and Wilmer Ricciotti (2012)
A Canonical Locally Named Representation of Binding
In: Journal of Automated Reasoning 49 (2), pp. 185–207.
doi: 10.1007/s10817-011-9229-y 51↑

PolonowsKi, Emmanuel (2013)
Automatically Generated Infrastructure for De Bruijn Syntaxes
In: Proceedings of the 4þ International Conference on Interactive Theorem Proving (ITP 2013). Lecture
Notes in Computer Science (LNCS). Springer, pp. 402–417.
doi: 10.1007/978-3-642-39634-2_29 53↑

Popescu, Andrei (2023)
Rensets and Renaming-Based Recursion for Syntax with Bindings
In: Journal of Automated Reasoning 67 (3), p. 23.
doi: 10.1007/s10817-023-09672-4 50, 51↑

Popescu, Andrei (2024)
Nominal Recursors as Epi-Recursors
In: Proceedings of the ACM on Programming Languages 8 (POPL), 15:425–15:456.
doi: 10.1145/3632857 52↑

PoswolsKy, Adam and Carsten SchÜRmann (2009)
System Description: Delphin – A Functional Programming Language for Deductive Sys-
tems
In: Electronic Notes in Theoretical Computer Science. Proceedings of the 1st International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008) 228, pp. 113–120.
doi: 10.1016/j.entcs.2008.12.120 60↑

http://arxiv.org/abs/1401.7807
http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.202
www.cl.cam.ac.uk/~amp12/agda/initial-T-algebras/InitialTAlgebra.html
http://dx.doi.org/10.1007/10722010_15
http://dx.doi.org/j.entcs.2020.09.011
http://dx.doi.org/10.1007/s10817-011-9229-y
http://dx.doi.org/10.1007/978-3-642-39634-2_29
http://dx.doi.org/10.1007/s10817-023-09672-4
http://dx.doi.org/10.1145/3632857
http://dx.doi.org/10.1016/j.entcs.2008.12.120

310 b ibl iogRaphy

PottieR, François (2014)
DBLib: Coq library for working with de Bruijn indices.
uRl: github.com/coq-community/dblib (visited on 02/13/2024) 53↑

PoweR, John (2007)
Abstract Syntax: Substitution and Binders
In: Electronic Notes in Theoretical Computer Science 173, pp. 3–16.
doi: 10.1016/j.entcs.2007.02.024 58, 167↑

PoweR, John and Miki TanaKa (2008)
Category Theoretic Semantics for Typed Binding Signatures with Recursion
In: Fundamenta Informaticae 84 (2), pp. 221–240.
uRl: researchportal.bath.ac.uk/en/publications/category-theoretic-semantics-
for-typed-binding-signatures-with-re 58↑

Rasmussen, Ole (1995)
TheChurch–Rosser theorem in Isabelle: a proof porting experiment. Tech. rep. UCAM-CL-
TR-364. University of Cambridge, Computer Laboratory.
doi: 10.48456/tr-364. 52↑

RatKovic, Kruna Sergt (2012)
Morita theory in enriched context. PhD thesis. Université de Nice Sophia Antipolis.
uRl: theses.hal.science/tel-00785301/document 102↑

Reyes, Marie La Palme, Gonzalo Reyes, and Houman ZolfaghaRi (2004)
Generic figures and their glueings: A constructive approach to functor categories. Poli-
metrica 151↑

Riehl, Emily (2017)
Category theory in context. Courier Dover Publications 156↑

Rose, Kristoffer (1996)
Explicit Substitution: Tutorial & Survey. Technical report LS-96-3. BRICS Lecture Series. Uni-
versity of Århus.
uRl: researchgate . net / publication / 228386201 _ Explicit _ substitution _ tutorial _
survey 53↑

RossbeRg, Andreas, Claudio Russo, and Derek DReyeR (2014)
F-ing modules
In: Journal of Functional Programming 24 (5), pp. 529–607.
doi: 10.1017/S0956796814000264 61↑

SaboK, Marcin, Sam Staton, Dario Stein, and Michael Wolman (2021)
Probabilistic Programming Semantics for Name Generation
In: Proceedings of the ACM on Programming Languages 5 (POPL), 11:1–11:29.
doi: 10.1145/3434292 51↑

Sato, Masahiko, Takafumi SaKuRai, Yukiyoshi Kameyama, and Atsushi IgaRashi (2003)
Calculi of meta-variables
In: Proceedings of the 17th International Workshop on Computer Science Logic (CSL 2003), pp. 484–497.
doi: 10.1007/978-3-540-45220-1_39 58↑

SchÄfeR, Steven, Tobias Tebbi, and Gert SmolKa (2015)
Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions
In: Proceedings of the 6þ International Conference on Interactive Theorem Proving (ITP 2015). Lecture
Notes in Computer Science (LNCS). Springer, pp. 359–374.
doi: 10.1007/978-3-319-22102-1_24 53↑

Sewell, Peter, Francesco Zappa NaRdelli, Scott Owens, Gilles PesKine, Thomas Ridge, Susmit
SaRKaR, et al. (2010)
Ott: Effective tool support for the working semanticist
In: Journal of Functional Programming 20 (1), pp. 71–122.
doi: 10.1145/1291220.1291155 61↑

github.com/coq-community/dblib
http://dx.doi.org/10.1016/j.entcs.2007.02.024
researchportal.bath.ac.uk/en/publications/category-theoretic-semantics-for-typed-binding-signatures-with-re
researchportal.bath.ac.uk/en/publications/category-theoretic-semantics-for-typed-binding-signatures-with-re
http://dx.doi.org/10.48456/tr-364
theses.hal.science/tel-00785301/document
researchgate.net/publication/228386201_Explicit_substitution_tutorial_survey
researchgate.net/publication/228386201_Explicit_substitution_tutorial_survey
http://dx.doi.org/10.1017/S0956796814000264
http://dx.doi.org/10.1145/3434292
http://dx.doi.org/10.1007/978-3-540-45220-1_39
http://dx.doi.org/10.1007/978-3-319-22102-1_24
http://dx.doi.org/10.1145/1291220.1291155

bibl iogRaphy 311

ShanKaR, Natarajan (1988)
A Mechanical Proof of the Church–Rosser Theorem
In: Journal of the ACM 35 (3), pp. 475–522.
doi: 10.1145/44483.44484 52↑

Shinwell, Mark R. (2006)
Fresh O’Caml: Nominal Abstract Syntax for the Masses
In: Electronic Notes in Theoretical Computer Science. Proceedings of the ACM-SIGPLAN Workshop
on ML (ML 2005) 148 (2), pp. 53–77.
doi: 10.1016/j.entcs.2005.11.040 51↑

Shinwell, Mark R., Andrew M. Pitts, and Murdoch J. Gabbay (2003)
FreshML: Programming with Binders Made Simple
In: Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming (ICFP
2003). ACM Press, pp. 263–274.
doi: 10.1145/944705.944729 51↑

StaRK, Kathrin (2020)
Mechanising Syntax with Binders in Coq. PhD thesis. Saarland University, p. 206.
uRl: ps.uni-saarland.de/Publications/documents/Stark_2020_Mechanising.pdf 53↑

Stoughton, Allen (1988)
Substitution Revisited
In: Theoretical Computer Science 59 (3), pp. 317–325.
doi: 10.1016/0304-3975(88)90149-1 51↑

StReet, Ross (2013)
Skew-closed categories
In: Journal of Pure and Applied Algebra 217 (6), pp. 973–988.
doi: 10.1016/j.jpaa.2012.09.020 95, 97, 100, 103, 287↑

SzlachÁnyi, Kornél (2012)
Skew-monoidal categories and bialgebroids
In: Advances in Mathematics 231 (3-4), pp. 1694–1730.
doi: 10.1016/j.aim.2012.06.027 95↑

TanaKa, Miki (2000)
Abstract Syntax and Variable Binding for Linear Binders
In: Proceedings of the 25th International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2000). Vol. 1893. Lecture Notes in Computer Science (LNCS). Springer, pp. 670–679.
doi: 10.1007/3-540-44612-5_62 58, 285↑

TanaKa, Miki (2005)
Pseudo-Distributive Laws and a Unified Framework for Variable Binding. PhD thesis.
Laboratory for Foundations of Computer Science, University of Edinburgh.
uRl: www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-438/index.html 58, 66↑

TanaKa, Miki and John PoweR (2006)
Pseudo-Distributive Laws and Axiomatics for Variable Binding
In: Higher-Order and Symbolic Computation 19 (2), pp. 305–337.
doi: 10.1007/s10990-006-8750-x 58↑

Tao, Terence Chi-Shen (2025)
Machine-Assisted Proof
In: Notices of the American Mathematical Society 72 (01), p. 1.
doi: 10.1090/noti3041 17↑

TasistRo, Álvaro, Ernesto Copello, and Nora Szasz (2015)
Formalisation in Constructive Type Theory of Stoughton’s Substitution for the Lambda
Calculus
In: Electronic Notes in Theoretical Computer Science 312, pp. 215–230.
doi: 10.1016/j.entcs.2015.04.013 51↑

http://dx.doi.org/10.1145/44483.44484
http://dx.doi.org/10.1016/j.entcs.2005.11.040
http://dx.doi.org/10.1145/944705.944729
ps.uni-saarland.de/Publications/documents/Stark_2020_Mechanising.pdf
http://dx.doi.org/10.1016/0304-3975(88)90149-1
http://dx.doi.org/10.1016/j.jpaa.2012.09.020
http://dx.doi.org/10.1016/j.aim.2012.06.027
http://dx.doi.org/10.1007/3-540-44612-5_62
www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-438/index.html
http://dx.doi.org/10.1007/s10990-006-8750-x
http://dx.doi.org/10.1090/noti3041
http://dx.doi.org/10.1016/j.entcs.2015.04.013

312 b ibl iogRaphy

TayloR, Walter (1993)
Abstract Clone Theory
In: Algebras and Orders. Springer, pp. 507–530.
doi: 10.1007/978-94-017-0697-1_11 53, 84↑

Tiu, Alwen (2009)
On the Role of Names in Reasoning about 𝜆-Tree Syntax Specifications
In: Electronic Notes in Theoretical Computer Science. Proceedings of the 1st International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008) 228, pp. 135–150.
doi: 10.1016/j.entcs.2008.12.122 61↑

Tobin-Hochstadt, Sam and Matthias Felleisen (2008)
The Design and Implementation of Typed Scheme
In: Proceedings of the 35th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2008). ACM Press, pp. 395–406.
doi: 10.1145/1328438.1328486 51↑

TRimble, Todd (2013)
Towards a doctrine of operads.
uRl: ncatlab.org/toddtrimble/published/Towards+a+doctrine+of+operads 168↑

URban, Christian (2008)
Nominal Techniques in Isabelle/HOL
In: Journal of Automated Reasoning 40 (4), pp. 327–356.
doi: 10.1007/s10817-008-9097-2 51↑

URban, Christian, James Cheney, and Stefan BeRghofeR (2011)
Mechanizing the metatheory of LF
In: ACM Transactions on Computational Logic 12 (2).
doi: 10.1145/1877714.1877721 51↑

URban, Christian and Cezary KaliszyK (2011)
General Bindings and Alpha-Equivalence in Nominal Isabelle
In: Proceedings of the 20th European Symposium on Programming (ESOP 2011). Lecture Notes in Com-
puter Science (LNCS). Springer, pp. 480–500.
doi: 10.1007/978-3-642-19718-5_25 51↑

URban, Christian and Michael NoRRish (2005)
A Formal Treatment of the Barendregt Variable Convention in Rule Inductions
In: Proceedings of the 3rd ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with
Variable Binding (MERLIN 2005). ACM Press, pp. 25–32.
doi: 10.1145/1088454.1088458 51↑

URban, Christian, Andrew M. Pitts, and Murdoch J. Gabbay (2003)
Nominal Unification
In: Proceedings of the 17th International Workshop on Computer Science Logic (CSL 2003). Lecture
Notes in Computer Science (LNCS). Springer, pp. 513–527.
doi: 10.1007/978-3-540-45220-1_41 51↑

URciuoli, Sebastián, Álvaro TasistRo, and Nora Szasz (2020)
Strong Normalization for the Simply-Typed Lambda Calculus in Constructive TypeThe-
ory Using Agda
In: Electronic Notes in Theoretical Computer Science. Proceedings of the 15th Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2020) 351, pp. 187–203.
doi: 10.1016/j.entcs.2020.08.010 51↑

Uustalu, Tarmo (2010)
Strong relative monads
In: 10th International Workshop on Coalgebraic Methods in Computer Science (CMCS 2010). SEN-1004.
uRl: event.cwi.nl/cmcs10/slides/18_cmcs10-slides.pdf 129↑

http://dx.doi.org/10.1007/978-94-017-0697-1_11
http://dx.doi.org/10.1016/j.entcs.2008.12.122
http://dx.doi.org/10.1145/1328438.1328486
ncatlab.org/toddtrimble/published/Towards+a+doctrine+of+operads
http://dx.doi.org/10.1007/s10817-008-9097-2
http://dx.doi.org/10.1145/1877714.1877721
http://dx.doi.org/10.1007/978-3-642-19718-5_25
http://dx.doi.org/10.1145/1088454.1088458
http://dx.doi.org/10.1007/978-3-540-45220-1_41
http://dx.doi.org/10.1016/j.entcs.2020.08.010
event.cwi.nl/cmcs10/slides/18_cmcs10-slides.pdf

bibl iogRaphy 313

Uustalu, Tarmo, Niccolò VeltRi, and Noam ZeilbeRgeR (2020)
Eilenberg–Kelly Reloaded
In: Electronic Notes in Theoretical Computer Science. Proceedings of the 36th Mathematical Founda-
tions of Programming Semantics Conference (MFPSC 2020) 352, pp. 233–256.
doi: 10.1016/j.entcs.2020.09.012 81, 95, 97, 103, 106, 107↑

VoevodsKy, Vladimir (2014)
The Origins and Motivations of Univalent Foundations
In: The Institute Letter Summer 2014, pp. 8–9.
uRl: ias.edu/sites/default/files/pdfs/publications/letter-2014-summer.pdf 17↑

Vouillon, Jérôme (2011)
A Solution to the PoplMaRK Challenge Based on de Bruijn Indices
In: Journal of Automated Reasoning 49, pp. 327–362.
doi: 10.1007/s10817-011-9230-5 52↑

WadleR, Philip (1990)
Comprehending Monads
In: Proceedings of the 1990 ACM Conference on LISP and Functional Programming (LFP). ACM Press,
pp. 61–78.
doi: 10.1145/91556.91592 53↑

WadleR, Philip (1992)
The Essence of Functional Programming
In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
1992). ACM Press, pp. 1–14.
doi: 10.1145/143165.143169 53↑

Wan, Xinyi and Qinxiang Cao (2024)
Formalization of Lambda Calculus with Explicit Names as a Nominal Reasoning Frame-
work
In: Proceedings of the 9th International Symposium on Dependable Software Engineering. Theories,
Tools, and Applications (SETTA 2024). Lecture Notes in Computer Science (LNCS). Springer, pp. 262–
278.
doi: 10.1007/978-981-99-8664-4_15 52↑

WashbuRn, Geoffrey and Stephanie WeiRich (2003)
Boxes go bananas: encoding higher-order abstract syntax with parametric polymor-
phism
In: Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming (ICFP
2003). ICFP ’03. ACM Press, pp. 249–262.
doi: 10.1145/944705.944728 60↑

WeiRich, Stephanie and Chris Casinghino (2012)
Generic Programming with Dependent Types
In: Generic and Indexed Programming: International Spring School, SSGIP 2010, Oxford, UK, March
22-26, 2010, Revised Lectures. Springer, pp. 217–258.
doi: 10.1007/978-3-642-32202-0_5 33↑

Zsido, Julianna (2010)
Typed Abstract Syntax. PhD thesis. Université Nice Sophia Antipolis.
uRl: theses.hal.science/tel-00535944 55, 56, 58, 129↑

http://dx.doi.org/10.1016/j.entcs.2020.09.012
ias.edu/sites/default/files/pdfs/publications/letter-2014-summer.pdf
http://dx.doi.org/10.1007/s10817-011-9230-5
http://dx.doi.org/10.1145/91556.91592
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1007/978-981-99-8664-4_15
http://dx.doi.org/10.1145/944705.944728
http://dx.doi.org/10.1007/978-3-642-32202-0_5
theses.hal.science/tel-00535944

314 b ibl iogRaphy

a p p e n d i x a

Detailed proofs

We list longer proofs of propositions below.

§ Proof of Proposition 3.3.1 on page 73

Proposition 3.3.1 Let 𝐶 : C → C be a comonad and 𝐹 : C → C an endofunctor with 𝐹 a strict
lifting to 𝐶-Coalg(C). Then, an initial 𝐹 -algebra (f, 𝑓) ∈ 𝐹 -alg(C) lifts to an initial 𝐹 -algebra
(f̂, 𝑓) ∈ 𝐹 -alg(𝐶-Coalg(C)) satisfying U (f̂) = f.

PRoof Assume the following situation:

𝐶-Coalg(C) 𝐶-Coalg(C)

C C

𝐹

𝑈𝑈

𝐹

We show that the initial 𝐹 -algebra (f, 𝑓 : 𝐹f → f) induces an initial 𝐹 -algebra (f̂, 𝑓 : 𝐹 (f̂) →
(f̂)) ∈ 𝐶-Coalg(C) such that Uf̂ = f – that is, the carrier of the initial 𝐹 -algebra has the form
f̂ = (f, 𝑐) for a𝐶-coalgebra structure 𝑐 : f→ 𝐶f. The four steps are: 1⃝ equipping f with this𝐶-
coalgebra structure 𝑐 to obtain an object (f, 𝑐) ∈ 𝐶-Coalg(C), 2⃝ showing that it is an algebra
for 𝐹 : 𝐶-Coalg(C) → 𝐶-Coalg(C), 3⃝ showing that there is a 𝐹 -algebra homomorphism from
(f, 𝑐) into any other 𝐹 -algebra, and 4⃝ proving that this homomorphism is unique.

1⃝𝐶-coalgebra structure By the dual of Proposition 3.1.5, the lifting of 𝐹 to𝐶-coalgebras gives
rise to a lifting 𝐶 : 𝐹 -alg → 𝐹 -alg that has comonad structure. Since the lifting of the initial
𝐹 -algebra 𝐶 (f, 𝑓 : 𝐹f → f) = (𝐶f, 𝐹𝐶f 𝜑f

𝐶𝐹f
𝐶𝑓

𝐶f) is also an 𝐹 -algebra, by initiality
we have a unique 𝐹 -algebra homomorphism 𝑐 : (f, 𝑓) → 𝐶 (f, 𝑓) satisfying

316 appendices

𝐹f f

𝐹𝐶f 𝐶𝐹f 𝐶f

𝑓

𝐹𝑐 𝑐

𝜑f 𝐶𝑓

(†)

which will give the𝐶-coalgebra structure 𝑐 : f→ 𝐶f onf. This homomorphism diagram shows
both that 𝑐 is an 𝐹 -algebra homomorphism from f to𝐶f, and that 𝑓 is a𝐶-coalgebra homomor-
phism from 𝐹f to f.

2⃝ 𝐹 -algebra structure We prove that we have an 𝐹 -algebra structure map on the object
(f, 𝑐) ∈ 𝐶-Coalg(C). Since 𝐹 is a lifting of 𝐹 to 𝐶-coalgebras, an 𝐹 -algebra structure map
is 𝐹 (f, 𝑐) = (𝐹f, 𝑐) → (f, 𝑐), given by 𝑓 : 𝐹f → f which is a 𝐶-algebra homomorphism by (†).
Thus,

(
(f,f 𝑐 𝐶f), 𝐹f 𝑓

f
)
is an 𝐹 -algebra.

3⃝ Initial morphism Let
(
(𝐴,𝑑 : 𝐴 → 𝐶𝐴) ∈ 𝐶-Coalg, 𝑎 : 𝐹 (𝐴,𝑑) → (𝐴,𝑑)

)
be an 𝐹 -algebra

in 𝐶-Coalg(C), with 𝑎 an 𝐹 -algebra 𝐹𝐴→ 𝐴 that preserves the 𝐶-coalgebra structure:

𝐹𝐴 𝐴

𝐹𝐶𝐴 𝐶𝐹𝐴 𝐶𝐴

𝑎

𝐹𝑑 𝑑

𝜑𝐴 𝐶𝑎

(‡)

As before, the diagram also makes 𝑑 : (𝐴, 𝑎) → 𝐶 (𝐴, 𝑎) into an 𝐹 -algebra homomorphism. To
prove initiality, we need to find a unique 𝐹 -algebra homomorphism 𝑘 : ((f, 𝑐), 𝑓) → ((𝐴,𝑑), 𝑎),
i.e. a morphism 𝑘 : f→ 𝐴 that is both 5⃝ a𝐶-coalgebra homomorphism (f, 𝑐) → (𝐴,𝑑) and 6⃝
an 𝐹 -algebra homomorphism (f, 𝑓) → (𝐴, 𝑎). Since f is the initial 𝐹 -algebra, we can induce
𝑘 by initiality as the unique 𝐹 -algebra homomorphism 𝑘 : (f, 𝑓) → (𝐴, 𝑎), satisfying 6⃝. The
𝐶-coalgebra homomorphism condition 5⃝ for 𝑘 is the following diagram:

f 𝐴

𝐶f 𝐶𝐴

𝑘

𝑑𝑐

𝐶𝑘

Since𝐶𝐴 is the carrier of the 𝐹 -algebra𝐶 (𝐴, 𝑎) and (f, 𝑓) ∈ 𝐹 -alg(C) is initial, it suffices to show
that this is a diagram in 𝐹 -alg(C) and therefore the two composites out of the initial object are
equal by uniqueness. For this, we can use the assumptions that 𝑑 : (𝐴, 𝑎) → 𝐶 (𝐴, 𝑎) = (𝐶𝐴, 𝑎)
is an 𝐹 -algebra homomorphism by (‡), and so is 𝑘 : (f, 𝑓) → (𝐴, 𝑎) by 6⃝.

(f, 𝑓) 𝑘 (𝐴, 𝑎) 𝑑 𝐶 (𝐴, 𝑎) = (f, 𝑓) 𝑐 𝐶 (f, 𝑓) 𝐶𝑘 𝐶 (𝐴, 𝑎)

4⃝ Uniqueness Uniqueness of 𝑘 : ((f, 𝑐), 𝑓) → ((𝐴,𝑑), 𝑎) follows from the uniqueness of 𝑘 as
an 𝐹 -algebra homomorphism: any other 𝐹 -algebra homomorphism would in particular be a
morphism of 𝐹 -algebras so must be equal to 𝑘 .

□

detailed pRoofs 317

§ Proof of Lemma 4.1.1 on page 82

Lemma 4.1.1 For a biclosed V-modular category C and all 𝐴 ∈ V, 𝑋,𝑌 ∈ C, we have a natural
family of maps that is compatible with the biclosed structure:

ℓ𝑋𝑌,𝐴 : 〈𝑋,𝑌 〉 ⊗ 𝐴→ 〈𝐴 −• 𝑋,𝑌 〉 : V × Cop × C→ V

𝐼 ⊗ 𝐴 〈𝑋,𝑋 〉 ⊗ 𝐴

𝐴 〈𝐴 −• 𝑋,𝑋 〉

j𝑋⊗𝐴

ℓ𝑋𝑋,𝐴𝜆𝐴

𝛽
𝑋

𝐴

(ℓ𝜆)
〈𝑋,𝑌 〉 ⊗ 𝐼 〈𝐼 −• 𝑋,𝑌 〉

〈𝑋,𝑌 〉

ℓ𝑋𝑌,𝐼

𝜌 〈𝑋,𝑌 〉 〈i𝑋 ,𝑌 〉
(ℓ𝜌)

(〈𝑋,𝑌 〉 ⊗ 𝐴) ⊗ 𝐵 〈𝐴 −• 𝑋,𝑌 〉 ⊗ 𝐵 〈𝐵 −• (𝐴 −• 𝑋), 𝑌 〉

〈𝑋,𝑌 〉 ⊗ (𝐴 ⊗ 𝐵) 〈(𝐴 ⊗ 𝐵) −• 𝑋,𝑌 〉

ℓ𝑋𝑌,𝐴⊗𝐵

𝛼 〈𝑋,𝑌 〉,𝐴,𝐵

ℓ𝐴−•𝑋𝑌,𝐵

〈c𝐴,𝐵𝑋 ,𝑌 〉

ℓ𝑋𝑌,𝐴⊗𝐵

(ℓ𝛼)

PRoof We prove that currying and the transformation 𝑡 are mates under the following ad-
junction:

C C

Vop Vop

〈−,𝑌 〉 (−)−•𝑌 〈−,𝑌 〉 (−)−•𝑌

𝐵−•(−)

(−)⊗𝐵

a a

This establishes an isomorphism between uncurrying c𝐴,𝐵𝑌 : 𝐵 −• (𝐴 −• 𝑌) → (𝐴 ⊗ 𝐵) −•
𝑌 and the transformation ℓ𝑋𝑌,𝐵 : 〈𝑋,𝑌 〉 ⊗ 𝐵 → 〈𝐵 −• 𝑋,𝑌 〉. The naturality squares be-

come, for 𝑓 : 𝐵 → 〈𝑋,𝑌 〉 and 𝑔 : 𝑋 → (𝐵 −• 𝑌)
𝐴 −• 𝑋 𝐴 −• (𝐵 −• 𝑌)

(〈𝑋,𝑌 〉 ⊗ 𝐴) −• 𝑌 (𝐵 ⊗ 𝐴) −• 𝑌

𝛽 (ℓ𝑋𝑌,𝐴)

(𝑓 ⊗𝐴)−•𝑌

𝐴−•𝛽 (𝑓)

c𝐴,〈𝑋,𝑌 〉𝑌

𝐵 ⊗ 𝐴 〈𝐴 −• (𝐵 −• 𝑌), 𝑌 〉

〈𝑋,𝑌 〉 ⊗ 𝐴 〈𝐴 −• 𝑋,𝑌 〉

𝛽 (c𝐴,𝐵𝑌)

〈𝐴−•𝑔,𝑌 〉

ℓ𝑋𝑌,𝐴

𝛽 (𝑔)⊗𝐴

Explicitly, ℓ is defined as the 𝛽-transpose of the composite

(𝐴 −• 𝑋) 𝐴−•𝛽𝑌𝑋 𝐴 −• (〈𝑋,𝑌 〉 −• 𝑌) c𝐴,〈𝑋,𝑌 〉𝑌 (〈𝑋,𝑌 〉 ⊗ 𝐴) −• 𝑌

318 appendices

and the naturality conditions at 𝑓 and 𝑔 become the transposition laws

𝐴 −• 𝑋 𝐴 −• (〈𝑋,𝑌 〉 −• 𝑌)

〈𝐴 −• 𝑋,𝑌 〉 −• 𝑌 (〈𝑋,𝑌 〉 ⊗ 𝐴) −• 𝑌

𝛽𝑌𝐴−•𝑋

ℓ𝑋𝑌,𝐴−•𝑌

𝐴−•𝛽𝑌𝑋

c𝐴,〈𝑋,𝑌 〉𝑌

𝐴 ⊗ 𝐵 〈𝐴 ⊗ 𝐵 −• 𝑌,𝑌 〉

𝐴 ⊗ 〈𝐵 −• 𝑌,𝑌 〉 〈𝐴 −• (𝐵 −• 𝑌), 𝑌 〉

𝛽
𝑌

𝐴⊗𝐵

〈c𝐴,𝐵𝑌 ,𝑌 〉

ℓ𝐵−•𝑌𝑌,𝐴

𝐴⊗𝛽𝑌𝐵 (𝑡 a𝑐)

The laws 𝛽-transpose to

𝐴 −• 𝑋 𝐴 −• (〈𝑋,𝑋 〉 −• 𝑋)

𝐴 −• (𝐼 −• 𝑋)

𝐼 ⊗ 𝐴 −• 𝑋 〈𝑋,𝑋 〉 ⊗ 𝐴 −• 𝑋

𝜆𝐴−•𝑋

𝐴−•𝛽𝑋𝑋

c𝐴,〈𝑋,𝑋 〉𝑋

𝐴⊗j𝑋−•𝑋

𝑐𝐴,𝐼,𝑋

𝐴−•(j𝑋−•𝑋)

𝐴−•i𝑋 𝑖 a 𝑗

𝑐𝜆

𝑐 2

𝑋 𝐼 −• 𝑋

𝐼 −• (〈𝑋,𝑌 〉 −• 𝑌)

〈𝑋,𝑌 〉 −• 𝑌 (〈𝑋,𝑌 〉 ⊗ 𝐼) −• 𝑌

𝛽𝑌𝑋

i𝑋

𝐼−•𝛽𝑌𝑋

c〈𝑋,𝑌 〉,𝐼𝑌

𝜌 〈𝑋,𝑌 〉−•𝑌

i〈𝑋,𝑌 〉−•𝑌

𝑖

𝑐𝜌

(𝐴 ⊗ 𝐵) −• 𝑋 𝐵 −• (𝐴 −• 𝑋) 𝐵 −• (〈𝐴 −• 𝑋,𝑌 〉 −• 𝑌) (〈𝐴 −• 𝑋,𝑌 〉 ⊗ 𝐵) −• 𝑌

𝐵 −• ((〈𝑋,𝑌 〉 ⊗ 𝐴) −• 𝑌)

𝐵 −• (𝐴 −• (〈𝑋,𝑌 〉 −• 𝑌)) ((〈𝑋,𝑌 〉 ⊗ 𝐴) ⊗ 𝐵) −• 𝑌

(𝐴 ⊗ 𝐵) −• (〈𝑋,𝑌 〉 −• 𝑌) (〈𝑋,𝑌 〉 ⊗ (𝐴 ⊗ 𝐵)) −• 𝑌

c𝐴,𝐵𝑋

id−•𝛽𝑌𝑋

𝐵−•𝛽𝑌𝐴−•𝑋

𝐵−•(𝐴−•𝛽𝑌𝑋)

c〈𝐴−•𝑋,𝑌 〉,𝐵𝑌

𝐵−•(ℓ𝑋𝑌,𝐴−•𝑌)

ℓ𝑋𝑌,𝐴⊗𝐵−•𝑌

c𝐴,𝐵⊗〈𝑋,𝑌 〉𝑌𝐵−•c〈𝑋,𝑌 〉,𝐴𝑌

c𝐴,𝐵〈𝑋,𝑌 〉−•𝑌

c〈𝑋,𝑌 〉,𝐴⊗𝐵𝑌

𝛼 〈𝑋,𝑌 〉,𝐴,𝐵−•𝑌

𝑐 3

𝑡 a𝑐 𝑐 2

𝑐𝛼

The transformation may also be derived from the enrichment as the composite

〈𝑋,𝑌 〉 ⊗ 𝐴 id⊗𝛽𝑋𝐴 〈𝑋,𝑌 〉 ⊗ 〈𝐴 −• 𝑋,𝑋 〉
M𝑋
𝐴−•𝑋,𝑌 〈𝐴 −• 𝑋,𝑌 〉

with the laws derived from axioms of𝑀 . □

§ Proof of Theorem 4.3.2 on page 91

Theorem 4.3.2
Every powered monad gives rise to an enriched Kleisli triple, and every algebra for a powered
monad induces an algebra for the corresponding enriched Kleisli triple.

PRoof Let (𝑇, 𝜂, 𝜇) be a monad with 𝑝𝐴,𝑋 : 𝑇 (𝐴 −• 𝑋) → 𝐴 −• 𝑇𝑋 a powering. We define
Υ𝑋𝑌 : 〈𝑋,𝑇𝑌 〉 → 〈𝑇𝑋,𝑇𝑌 〉 as the 𝛽-transpose of 𝜔 (𝜇𝑌)𝑋 : 𝑇𝑋 =⇒ L𝑇𝑌 M𝑋 that expands to

𝑇𝑋
𝑇 L𝜂M𝑇𝑌𝑋 𝑇 (〈𝑋,𝑇𝑌 〉 −• 𝑇𝑌)

(L𝑝M𝑇𝑌,𝑇𝑌)𝑋 〈𝑋,𝑇𝑌 〉 −• 𝑇𝑇𝑌 Lid,𝜇𝑌 M(𝑋) 〈𝑋,𝑇𝑌 〉 −• 𝑇𝑌

detailed pRoofs 319

One unit law (𝜂Υ) transposes to the unit-preservation of the monad morphism 𝜔 (𝜇𝑌) from
Theorem 4.3.1, while the other (Υ𝜂) transposes to one of the zig-zag identities of the adjunction
(−)(𝑇𝑌) a L𝑇𝑌,−M applied to the powered monad 𝑇 . The associativity law (ΥΥ) 𝛽-transposes
to

𝑇𝑋 〈𝑋,𝑇𝑍 〉 −• 𝑇𝑍 〈𝑇𝑌,𝑇𝑍 〉 ⊗ 〈𝑋,𝑇𝑌 〉 −• 𝑇𝑍

〈𝑋,𝑇𝑌 〉 −• 𝑇𝑌 〈𝑋,𝑇𝑌 〉 −• (〈𝑌,𝑇𝑍 〉 −• 𝑇𝑍) 〈𝑌,𝑇𝑍 〉 ⊗ 〈𝑋,𝑇𝑌 〉 −• 𝑇𝑍

𝜔 (𝜇𝑍)𝑋

𝜔 (𝜇𝑌)𝑋

M𝑇𝑌
𝑋,𝑇𝑍−•𝑇𝑍

Υ𝑌𝑍⊗id−•𝑇𝑍

id−•𝜔 (𝜇𝑍)𝑋 c〈𝑋,𝑇𝑌 〉,〈𝑌,𝑇𝑍 〉𝑇𝑍

which commutes as follows:

𝑇𝑋 L𝑇𝑍 M𝑋 〈𝑇𝑌,𝑇𝑍 〉 ⊗ 〈𝑋,𝑇𝑌 〉 −• 𝑇𝑍

〈𝑇𝑌,𝑇𝑍 〉 ⊗ 〈𝑋, L𝑇𝑍 M𝑌 〉 −• 𝑇𝑍
〈L𝑇𝑍 M𝑌,𝑇𝑍 〉 ⊗ 〈𝑋, L𝑇𝑍 M𝑌 〉 −• 𝑇𝑍

LL𝑇𝑍 M𝑌, L𝑇𝑍 ML𝑇𝑍 M𝑌 M𝑋
LL𝑇𝑍 M𝑌 M𝑋 〈𝑌,𝑇𝑍 〉 ⊗ 〈𝑋, L𝑇𝑍 M𝑌 〉 −• 𝑇𝑍

L𝑇𝑌 M𝑋 L𝑇𝑌, L𝑇𝑍 M𝑌 M𝑋 〈𝑌,𝑇𝑍 〉 ⊗ 〈𝑋,𝑇𝑌 〉 −• 𝑇𝑍

𝜔 (𝜇𝑍)𝑋

𝜔 (𝜇𝑌)𝑋

M𝑇𝑌
𝑋,𝑇𝑍−•𝑇𝑍

M 〈𝑌,𝑇𝑍 〉−•𝑇𝑍
𝑋,𝑇𝑍 −•𝑇𝑍

L𝜂ML𝑇𝑍 M𝑌L𝑇𝑍 M

Υ𝑌𝑍⊗id−•id

id⊗〈𝑋,𝜔 (𝜇𝑍)𝑋 〉−•id

Υ𝑌𝑍⊗id−•𝑇𝑍

〈𝜔 (𝜇𝑍)𝑌 ,𝑇𝑍 〉⊗id→id

c
〈L𝑇𝑍 M𝑌,𝑇𝑍 〉,〈𝑋,L𝑇𝑍 M𝑌 〉
𝑇𝑍

〈𝛽𝑇𝑍𝑌 ,𝑇𝑍 〉⊗id−•idLid,L𝜇M𝑇𝑍𝑌 M
c
〈𝑌,𝑇𝑍 〉,〈𝑋,L𝑇𝑍 M𝑌 〉
𝑇𝑍L𝜔 (𝜇𝑍)𝑌 ,idM𝑋 id⊗〈𝑋,𝜔 (𝜇𝑍)𝑌 〉−•𝑇𝑍

id−•𝜔 (𝜇𝑍)𝑋
c〈𝑋,𝑇𝑌 〉,〈𝑌,𝑇𝑍 〉𝑇𝑍

𝜔L𝜇M

𝑀 1

𝑐 1

𝑐

†

Υ≜

where † reduces to the equivalence of ℓ (that defines pL𝑇𝑍 M and therefore L𝜂ML𝑇𝑍 M𝑌L𝑇𝑍 M) and 𝑀 , and
(𝜔L𝜇M) is an instance of the diagram

𝑇 L𝑇𝑌 M
L𝐴M LL𝐴M𝑌 M L𝑇𝑌, L𝐴M𝑌 M

𝜔𝑇𝐴 (𝑎)

𝜔𝑇𝑇𝑌 (𝜇𝑌)

L𝑇𝑌,𝜔𝑇𝐴 (𝑎)𝑌 M
𝜔L𝐴ML𝐴M𝑌 (L𝜇M𝐴𝑌) L𝜔𝑇𝐴 (𝑎)𝑌 ,idM

(𝜔L𝜇M)

established as follows. Given 𝑎 : 𝑇𝐴 → 𝐴, the transpose 𝜔𝑇
𝐴 (𝑎) : 𝑇 =⇒ L𝐴M is a monad mor-

phism, so it satisfies the two monads’ multiplication-preservation condition (𝜑 b𝜇e):

𝑇𝑇𝑌 L𝐴M𝑇𝑌 L𝐴ML𝐴M𝑌

𝑇𝑌 L𝐴M𝑌
𝜔𝑇𝐴 (𝑎)𝑌

𝜇𝑌 L𝜇M𝐴𝑌
𝜔𝑇𝐴 (𝑎)𝑇𝑌 L𝐴M𝜔𝑇𝐴 (𝑎)𝑌

320 appendices

Transposing this using the adjunction 𝜔 : (−)(𝑇𝑌) a L𝑇𝑌,−M gives the following:

𝑇 L𝑇𝑌, L𝐴M𝑇𝑌 M L𝑇𝑌, L𝐴ML𝐴M𝑌 M

L𝑇𝑌 M L𝑇𝑌, L𝐴M𝑌 ML𝑇𝑌,𝜔𝑇𝐴 (𝑎)𝑌 M
𝜔𝑇𝑇𝑌 (𝜇𝑌) L𝑇𝑌,L𝜇M𝐴𝑌 M

𝜔 (𝜔𝑇𝐴 (𝑎)𝑇𝑌) L𝑇𝑌,L𝐴M𝜔𝑇𝐴 (𝑎)𝑌 M
(‡)

We use this diagram in the proof of (𝜔L𝜇M):
𝑇 L𝑇𝑌 M

L𝑇𝑌, L𝐴M𝑇𝑌 M L𝑇𝑌, L𝐴ML𝐴M𝑌 M L𝑇𝑌, L𝐴M𝑌 M

L𝐴M LL𝐴M𝑌, L𝐴ML𝐴M𝑌 M LL𝐴M𝑌 M

𝜔𝑇𝐴 (𝑎)

𝜔𝑇𝑇𝑌 (𝜇𝑌)

L𝑇𝑌,𝜔𝑇𝐴 (𝑎)𝑌 M

L𝜔𝑇𝐴 (𝑎)𝑌 ,idM
Lid,L𝜇M𝐴𝑌 MLid,L𝐴M𝜔𝑇𝐴 (𝑎)𝑌 M

𝜔 (𝜔𝑇𝐴 (𝑎)𝑇𝑌)

Lid,L𝜇M𝐴𝑌 M
L𝜔𝑇𝐴 (𝑎)𝑌 ,idML𝜂M𝑇𝑌L𝐴M

L𝜂ML𝐴M𝑌L𝐴M

‡

L𝜂M

where the bottom composite amounts to the 𝜔-transpose of L𝜇M𝐴𝑌 . The reasoning for algebras
for a powered monad is similar to the above, using the algebra structure instead of 𝜇𝑍 . □

§ Proof of Lemma 5.1.1 on page 105

Lemma 5.1.1 Given an adjunction 𝜏 : 𝐹 a 𝐺 : C → D between left skew-monoidal closed V-
modular categories, the following conditions are equivalent:

1. 𝐹 is an oplax left skew V⊗-modular functor with strength s𝐹𝐴,𝑌 : 𝐹 (𝐴 �𝑌) → 𝐴 	 𝐹𝑌
2. 𝐺 is a lax left skew V[]-functor with strength s𝐺𝑌,𝑍 : 〈〈𝑌, 𝑍 〉〉 → 〈𝐺𝑌,𝐺𝑍 〉;
3. 𝜏 has a lax internal transpose

t𝑋,𝑌 : 〈〈𝐹𝑋,𝑌 〉〉 → 〈𝑋,𝐺𝑌 〉 : C ×D→ V

that satisfies the unit and associativity axioms

𝐼 〈𝑋,𝑋 〉

〈〈𝐹𝑋, 𝐹𝑋 〉〉 〈𝑋,𝐺𝐹𝑋 〉

j 〈〉𝑋

〈𝑋,𝜏𝑋 〉j
〈〈〉〉
𝐹𝑋

t𝑋,𝐹𝑋

(𝑡 𝑗)

detailed pRoofs 321

〈〈𝐹 (𝐴 �𝑋), 𝑌 〉〉

〈〈𝐴 	 𝐹𝑋,𝑌 〉〉 〈𝐴 �𝑋,𝐺𝑌 〉

[𝐴, 〈〈𝐹𝑋,𝑌 〉〉] [𝐴, 〈𝑋,𝐺𝑌 〉]

〈〈s𝐹𝐴,𝑋 ,𝑌 〉〉 t𝐴 �𝑋,𝑌

c 	𝐴,𝐹𝑋,𝑌 c �𝐴,𝑋,𝐺𝑌

[𝐴,t𝑋,𝑌]

(𝑡𝑐)

〈〈𝑌, 𝑍 〉〉 〈𝐺𝑌,𝐺𝑍 〉

[〈〈𝐹𝑋,𝑌 〉〉, 〈〈𝐹𝑋, 𝑍 〉〉] [〈𝑋,𝐺𝑌 〉, 〈𝑋,𝐺𝑍 〉]

[〈〈𝐹𝑋,𝑌 〉〉, 〈𝑋,𝐺𝑍 〉]

s𝐺𝑌,𝑍

L
〈〈〉〉𝐹𝑋
𝑌,𝑍

L〈〉𝑋𝐺𝑌,𝐺𝑍

[id,t𝑋,𝑍] [t𝑋,𝑌 ,id] (𝑡𝐿)

PRoof The bijection between s �𝐴,𝑌 : 𝐹 (𝐴 �𝑋) → 𝐴 	 𝐹𝑌 and t𝑋,𝑌 : 〈〈𝐹𝑋,𝑌 〉〉 → 〈𝑋,𝐺𝑌 〉 is the
Yoneda transpose

D
(
𝐴 	 𝐹𝑋,𝑌

)
D(𝐹 (𝐴 �𝑋), 𝑌)

C(𝐴 �𝑋,𝐺𝑌)

V
(
𝐴, 〈〈𝐹𝑋,𝑌 〉〉

)
V
(
𝐴, 〈𝑋,𝐺𝑌 〉

)
𝜏

𝜅C

𝜅D

D(s𝐴,𝑋 ,𝑌)

V(𝐴,t𝑋,𝑌)

that, evaluated at 𝑓 : 𝐴 	 𝐹𝑋 → 𝑌 ∈ D and 𝑔 : 𝐴 → 〈〈𝐹𝑋,𝑌 〉〉 ∈ V gives the following
transposition schemes:

𝐴

〈〈𝐹𝑋,𝑌 〉〉 〈𝑋,𝐺𝑌 〉
𝜅D 𝑓

𝜅C𝜏 (𝑓 ◦s𝐹𝐴,𝑋)

t𝑋,𝑌

𝐹 (𝐴 �𝑋)

𝐴 	 𝐹𝑋 𝑌

s𝐹𝐴,𝑋
𝜏𝜅C (t𝑋,𝑌◦𝑔)

𝜅D𝑔

(𝑠 a𝑡)

The transformations s𝐺𝑋,𝑌 : 〈〈𝑋,𝑌 〉〉 → 〈𝐺𝑋,𝐺𝑌 〉 and 𝑡 are mates under the functors on the left,
inducing the diagram on the right for 𝑓 : 𝐹𝑋 → 𝑌 ∈ D

C Vop

D Vop

𝐹 𝐺

〈−,𝐺𝑌 〉

〈〈−,𝑌 〉〉

a
〈〈𝑌, 𝑍 〉〉 〈𝐺𝑌,𝐺𝑍 〉

〈〈𝐹𝑋, 𝑍 〉〉 〈𝑋,𝐺𝑍 〉

s𝐺𝑌,𝑍

〈𝜏 𝑓 ,id〉〈〈𝑓 ,𝑍 〉〉

t𝑋,𝑍

(𝑡𝑠𝜏)

We can transpose the oplax version of Diagram (𝑠𝜆 �) using the transposition schemes to obtain
the unit axiom for 𝑡 from that of 𝑠𝐹 :

𝐴
𝜅C𝜏 (𝜆 �

𝐹𝑋◦s𝐼 ,𝑋) 〈𝑋,𝐺𝐹𝑋 〉

𝐴
𝜅D (𝜆 	𝐹𝑋) 〈〈𝐹𝑋, 𝐹𝑋 〉〉 t𝑋,𝑋 〈𝑋,𝐺𝐹𝑋 〉

𝐴
j𝐹𝑋 〈〈𝐹𝑋, 𝐹𝑋 〉〉 t𝑋,𝑋 〈𝑋,𝐺𝐹𝑋 〉

𝐹 (𝐼 �𝑌) 𝐹𝜆 �
𝑌 𝐹𝑌 𝐹𝑌

𝐼 �𝑌 𝜆 �
𝑌 𝑌

𝜏𝑌 𝐺𝐹𝑌

𝐼
j 〈〉𝑌 〈𝑌,𝑌 〉 〈𝑌,𝜏𝑌 〉 〈𝑌,𝐺𝐹𝑌 〉

The associativity axiom of 𝑠𝐹 transposes to the first associativity axiom of 𝑡 . The equiva-
lence of two associativity axioms for 𝑡 is shown as follows:

322 appendices

〈〈𝐴 	 𝐹𝑋,𝑌 〉〉 〈〈𝐹 (𝐴 �𝑋), 𝑌 〉〉

〈𝐺 (𝐴 �𝐹𝑋),𝐺𝑌 〉 〈𝐴 �𝑋,𝐺𝑌 〉

[〈𝑋,𝐺 (𝐴 	 𝐹𝑋)〉, 〈𝑋,𝐺𝑌 〉] [〈𝑋,𝐴 �𝑋 〉, 〈𝑋,𝐺𝑌 〉]

[〈〈𝐹𝑋,𝐴 	 𝐹𝑋 〉〉, 〈〈𝐹𝑋,𝑌 〉〉] [〈〈𝐹𝑋,𝐴 	 𝐹𝑋 〉〉, 〈𝑋,𝐺𝑌 〉]

[𝐴, 〈〈𝐹𝑋,𝑌 〉〉] [𝐴, 〈𝑋,𝐺𝑌 〉]

L
〈〈〉〉𝐹𝑋
𝐴 	𝐹𝑋,𝑌

[𝜅𝐴,id]

〈〈s𝐹𝑋,𝑌 ,id〉〉

t𝐴 �𝑋,𝑌

L〈〉𝑋𝐴 �𝑋,𝐺𝑌

[𝜅𝐴,id]

[id,t𝑋,𝑌]

s𝐺
𝐴 	𝐹𝑋,𝑌

〈𝜏 (s𝐹𝐴,𝑋),id〉

L〈〉𝑋
𝐺 (𝐴 	𝐹𝑋),𝐺𝑌

[𝜏 (s𝐹𝐴,𝑋),id]

[id,t𝑋,𝑌]
[t𝑋,𝐴 	𝐹𝑋 ,id]

[𝜅𝐴,id]

[𝜅𝜏 (s𝐹𝐴,𝑋),id]

𝑡𝑠𝜏

𝑡𝐿 𝐿 2

𝑠 a𝑡

〈〈𝑌, 𝑍 〉〉 〈〈𝐹𝐺𝑌, 𝑍 〉〉 〈𝐺𝑌,𝐺𝑍 〉

〈〈𝐹 (〈𝑋,𝐺𝑌 〉 �𝑋), 𝑍 〉〉 〈〈𝑋,𝐺𝑌 〉 �𝑋,𝐺𝑍 〉

〈〈〈〈𝐹𝑋,𝑌 〉〉 	 𝐹𝑋, 𝑍 〉〉 〈〈𝐹 (〈〈𝐹𝑋,𝑌 〉〉 �𝑋), 𝑍 〉〉

〈〈〈𝐹𝑋,𝑌 〉〉 �𝑋,𝐺𝑍 〉

[〈〈𝐹𝑋,𝑌 〉〉, 〈〈𝐹𝑋, 𝑍 〉〉] [〈〈𝐹𝑋,𝑌 〉〉, 〈𝑋,𝐺𝑍 〉] [〈𝑋,𝐺𝑌 〉, 〈𝑋,𝐺𝑍 〉][t𝑋,𝑌 ,id]

〈𝜅𝐺𝑌 ,id〉

〈𝜅𝑌 ,id〉

c 	〈𝐹𝑋,𝑌 〉,𝐹𝑋,𝑍

[id,t𝑋,𝑍]

c �〈𝑋,𝐺𝑌 〉,𝑋,𝐺𝑍

t〈𝑋,𝐺𝑌 〉 �𝑋,𝑍

〈𝜏𝑌 ,id〉 t𝐺𝑌,𝑍

〈〈𝐹𝜅𝐺𝑌 ,𝑍 〉〉

〈〈𝐹 (t𝑋,𝑌 �𝑋),𝑍 〉〉
〈s𝐹〈〈𝐹𝑋,𝑌〉〉,𝑋 ,id〉

c 	〈〈𝐹𝑋,𝑌〉〉,𝑋,𝐺𝑍

t〈〈𝐹𝑋,𝑌〉〉 �𝑋,𝑍

〈t𝑋,𝑌 �𝑋,id〉

†

𝑡 1

𝑡 1

𝑐 1
𝑡𝑐

where † is an instance of Diag. (𝑠 a 𝑡) with 𝑔 = id : 〈𝐹𝑋,𝑌 〉 → 〈𝐹𝑋,𝑌 〉, with the transposition
𝜏𝜅 (t𝑋,𝑌) : 𝐹 (〈〈𝐹𝑋,𝑌 〉〉 �𝑋) → 𝑌 equalling the composite 𝜏𝑌 ◦ 𝐹𝜅𝐺𝑌 ◦ 𝐹 (t𝑋,𝑌 �𝑋) by naturality
of 𝜏 and 𝜅. Finally, the second associativity axiom of 𝑡 is equivalent to the associativity of 𝑠 〈〉:

〈〈𝑌, 𝑍 〉〉 [〈〈𝑋,𝑌 〉〉, 〈〈𝑋,𝑍 〉〉]

〈𝐺𝑌,𝐺𝑍 〉 [〈〈𝐹𝐺𝑋,𝑌 〉〉, 〈〈𝐹𝐺𝑋,𝑍 〉〉] [〈〈𝑋,𝑌 〉〉, 〈〈𝐹𝐺𝑋,𝑍 〉〉]

[〈𝐺𝑋,𝐺𝑌 〉, 〈𝐺𝑋,𝐺𝑍 〉] [〈〈𝐹𝐺𝑋,𝑌 〉〉, 〈𝐺𝑋,𝐺𝑍 〉] [〈〈𝑋,𝑌 〉〉, 〈𝐺𝑋,𝐺𝑍 〉]

L𝑋𝑌,𝑍

[id,〈𝜏𝑋 ,𝑍 〉]

[id,t𝐺𝑋,𝑍]

[〈〈𝜏𝑋 ,id〉〉,id]

L〈〉𝐺𝑋𝐺𝑌,𝐺𝑍

[t𝑋,𝑌 ,id]

L
〈〈〉〉𝐹𝐺𝑋
𝑌,𝑍

[〈〈𝜏𝑋 ,id〉〉,id]

s𝐺𝑌,𝑍

[id,t𝐺𝑋,𝑍]

𝐿 1

𝑡𝐿

detailed pRoofs 323

〈〈𝑌, 𝑍 〉〉 〈𝐺𝑌,𝐺𝑍 〉 [〈𝑋,𝐺𝑌 〉, 〈𝑋,𝐺𝑍 〉]

[〈𝐺𝐹𝑋,𝐺𝑌 〉, 〈𝐺𝐹𝑋,𝐺𝑍 〉] [〈𝐺𝐹𝑋,𝐺𝑌 〉, 〈𝑋,𝐺𝑍 〉]

[〈〈𝐹𝑋,𝑌 〉〉, 〈〈𝐹𝑋, 𝑍 〉〉] [〈〈𝐹𝑋,𝑌 〉〉, 〈𝐺𝐹𝑋,𝐺𝑍 〉] [〈〈𝐹𝑋,𝑌 〉〉, 〈𝑋,𝐺𝑍 〉]

L
〈〈〉〉𝐹𝑋
𝑌,𝑍

s𝐺𝑌,𝑍 L〈〉𝑋𝐺𝑌,𝐺𝑍

[〈𝜏𝑋 ,id〉,id]

[s𝐹𝑋,𝑌 ,id]

[id,〈𝜏𝑋 ,id〉][id,s𝐺𝐹𝑋,𝑍]

L〈〉𝐺𝑋𝐺𝑌,𝐺𝑍

[s𝐺𝐹𝑋,𝑌 ,id]

[id,〈𝜏𝑋 ,id〉]
𝑠𝐿〈〉

𝐿 1

□

§ Proof of Lemma 5.1.2 on page 106

Lemma 5.1.2 Given a strong V �-modular functor 𝐹 with right adjoint 𝜏 : 𝐹 a 𝐺 : C → D, the
induced V〈〉-strength s𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈〈𝐹𝑋, 𝐹𝑋 〉〉 and internal transpose t𝑋,𝑌 : 〈〈𝐹𝑋,𝑌 〉〉 → 〈𝑋,𝐺𝑌 〉
are compatible in the sense of the following diagrams:

〈𝑋,𝑌 〉

〈〈𝐹𝑋, 𝐹𝑌 〉〉 〈𝑋,𝐺𝐹𝑌 〉
s〈〉𝑋,𝑌

〈𝑋,𝜏𝑌 〉

t𝑋,𝐹𝑌

(𝜏𝑡𝑠)

〈〈𝐹𝑋,𝑌 〉〉 〈〈𝐹𝑋,𝑌 〉〉

〈𝑋,𝐺𝑌 〉 〈〈𝐹𝑋, 𝐹𝐺𝑌 〉〉
〈〈id,𝜏𝑌 〉〉t𝑋,𝑌

s〈〉𝑋,𝐺𝑌

(𝜏𝑡𝑠)

PRoof A strong strength s �𝐴,𝑋 : 𝐴 	 𝐹𝑋 � 𝐹 (𝐴 �𝑋) decomposes into a lax and oplax
direction: the former s �𝐴,𝑋 : 𝐴 	 𝐹𝑋 → 𝐹 (𝐴 �𝑋) is equivalent to the V〈〉-strength
s〈〉𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈〈𝐹𝐴, 𝐹𝐵〉〉, and the latter 𝑠 �𝐴,𝑋 : 𝐹 (𝐴 �𝑋) → 𝐴 	 𝐹𝑋 induces the transpose
t𝑋,𝑌 : 〈〈𝐹𝑋,𝑌 〉〉D → 〈𝑋,𝐺𝑌 〉C by Lemma 5.1.1.

The proof proceeds by expressing the transformations back in terms of the two directions
of 𝑠 �. Firstly, s〈〉𝑋,𝑌 : 〈𝑋,𝑌 〉 → 〈〈𝐹𝑋, 𝐹𝑌 〉〉 expands as the 𝜅-transpose of

〈𝑋,𝑌 〉 	 𝐹𝑋
s �〈𝑋,𝑌 〉,𝑋

𝐹 (〈〈𝑋,𝑌 〉〉 �𝑋) 𝐹𝜅𝑌 𝐹𝑌

and, instantiating the transposition scheme Diag. (𝑠 a𝑡) with the composite above to get

〈𝑋,𝑌 〉

〈〈𝐹𝑋, 𝐹𝑌 〉〉 〈𝑋,𝐺𝐹𝑌 〉

𝜅 (𝐹𝜅𝑌◦s �〈𝑋,𝑌 〉,𝑋)
𝜅𝜏 (𝐹𝜅𝑌◦s �〈𝑋,𝑌 〉,𝑋◦s

�
〈𝑋,𝑌 〉,𝑋)

t𝑋,𝐹𝑌

where the inverse compositions of 𝑠 �cancel, it is sufficient to show that the 𝜅𝜏-transpose of

𝐹 (〈𝑋,𝑌 〉 �𝑋) 𝐹𝜅𝑌 𝐹𝑌

equals 〈𝑋,𝑌 〉 〈𝑋,𝜏𝑌 〉 〈𝑋,𝐺𝐹𝑌 〉, which is immediate by naturality.
The second diagram 𝜅-transposes to the counit 𝜅𝑌 : 〈〈𝐹𝑋,𝑌 〉〉 	 𝐹𝑋 → 𝑌 equalling the

transpose of the bottom composite

〈〈𝐹𝑋,𝑌 〉〉 	 𝐹𝑋
t𝑋,𝐹𝑌 �id 〈𝑋,𝐺𝑌 〉 	 𝐹𝑋

s �〈𝑋,𝐺𝑌 〉,𝑋
𝐹 (〈𝑋,𝐺𝑌 〉 �𝑋) 𝐹 (𝜅𝐺𝑌)

𝐹𝐺𝑌
𝜏𝑌 𝑌

324 appendices

which, by naturality of 𝑠 �, equals

〈〈𝐹𝑋,𝑌 〉〉 	 𝐹𝑋
s �〈𝐹𝑋,𝑌 〉,𝑋

𝐹 (〈〈𝐹𝑋,𝑌 〉〉 �𝑋) 𝜏𝜅 (t𝑋,𝑌) 𝑌

By the transposition scheme Diag. (𝑠 a𝑡) with 𝑔 ≜ id, the second map 𝜏𝜅 (t𝑋,𝑌)

𝐹 (〈〈𝐹𝑋,𝑌 〉〉 �𝑋)

〈〈𝐹𝑋,𝑌 〉〉 	 𝐹𝑋 𝑌

s �〈〈𝐹𝑋,𝑌〉〉,𝑋
𝜏𝜅 (t𝑋,𝑌)

𝜅𝑌

and the inverse compositions of 𝑠 �cancel, leaving 〈〈𝐹𝑋,𝑌 〉〉 	 𝐹𝑋 𝜅𝑌 𝑌 , as required. □

§ Proof of Proposition 6.1.1 on page 128

Proposition 6.1.1 If A|V and B|W are representable synthetic monoidal categories, and a
monoidal functor 𝐾 : V → W lifts to a 𝐿 : A → B with 𝐾𝐴

A
= 𝐿𝐴

B
, then 𝐿 is representable

synthetic monoidal A|V → B|W.

PRoof Suppose we have a lifting of a monoidal 𝐾 to 𝐿 with 𝐾𝐴
A
= 𝐿𝐴

B
. We show that 𝐿 is

representable synthetic monoidal, with unit, multiplication, and laws as follows

𝑢 [𝑓 : 𝐼 → 𝐶
A
] ≜ 𝐽 𝑢𝐾 𝐾𝐼

𝐾𝑓
𝐾𝐶

A
= 𝐿𝐶

B

𝑚[𝑔 : 𝐴
A
⊗ 𝐵

A
→ 𝐶

A
] ≜ 𝐿𝐴

B
⊕ 𝐿𝐵

B
= 𝐾𝐴

A
⊕ 𝐾𝐵

A

m𝐾
𝐴,𝐵

𝐾 (𝐴
A
⊗ 𝐵

A
) 𝐾𝑔

𝐾𝐶
A
= 𝐿𝐶

B

• The diagram on the left makes the bottom right of the left unit law commute:

𝐼 ⊗ 𝐵
A

𝐴
A
⊗ 𝐵

A

𝐵
A

𝐶
A

𝜆⊗𝐵

𝑓 ⊗id

𝑔

ℎ

𝐽 ⊕ 𝐾𝐵
A

𝐾𝐼 ⊕ 𝐾𝐵
A

𝐾𝐴
A
⊕ 𝐾𝐵

A

𝐾 (𝐼 ⊗ 𝐵
A
) 𝐾 (𝐴

A
⊗ 𝐵

A
)

𝐾𝐵
A

𝐾𝐶
A

𝜆⊕𝐾𝐵

𝐾ℎ

𝑢𝐾⊕id 𝐾𝑓 ⊕id

m𝐾
𝐴,𝐵

𝐾𝑔

m𝐾
𝐼,𝐵

𝐾𝜆⊗𝐵

𝐾 (𝑓 ⊗id)

𝑢ℎ 𝑚 1

• The diagram on the left makes the top half of the right unit law commute:

𝐴
A

𝐶
A

𝐴
A
⊗ 𝐼 𝐴

A
⊗ 𝐵

Aid⊗𝑓

𝜌⊗𝐴

ℎ

𝑔

𝐾𝐴
A

𝐾𝐶
A

𝐾 (𝐴
A
⊗ 𝐼) 𝐾 (𝐴

A
⊗ 𝐵

A
)

𝐾𝐴
A
⊕ 𝐽 𝐾𝐴

A
⊕ 𝐾𝐼 𝐾𝐴

A
⊕ 𝐾𝐵

A

𝜌⊕𝐾𝐴

𝐾ℎ

𝐾𝑔

m𝐾
𝐴,𝐵

id⊕𝐾𝑓id⊕𝑢𝐾

m𝐾
𝐴,𝐼

𝐾𝜌⊗𝐴

𝐾 (id⊗𝑓)
𝑚𝑢 𝑚 2

detailed pRoofs 325

• The diagram on the top makes the middle bottom pentagon of the associativity law below
it commute:

(𝐴
A
⊗ 𝐵

A
) ⊗ 𝐶

A
𝐴

A
⊗ (𝐵

A
⊗ 𝐶

A
)

𝐷
A
⊗ 𝐶

A
𝐹

A
𝐴

A
⊗ 𝐸

A

𝛼⊗𝐴,𝐵,𝐶

𝑒⊗id id⊗𝑓

𝑔 ℎ

(𝐾𝐴
A
⊕ 𝐾𝐵

A
) ⊕ 𝐾𝐶

A
𝐾𝐴

A
⊕ (𝐾𝐵

A
⊕ 𝐾𝐶

A
)

𝐾 ((𝐴
A
⊗ 𝐵

A
) ⊗ 𝐶

A
) 𝐾𝐴

A
⊕ 𝐾 (𝐵

A
⊗ 𝐶

A
)

𝐾 (𝐴
A
⊗ 𝐵

A
) ⊕ 𝐾𝐶

A
𝐾 (𝐴

A
⊗ (𝐵

A
⊗ 𝐶

A
))

𝐾𝐷
A
⊕ 𝐾𝐶

A
𝐾 (𝐷

A
⊗ 𝐶

A
) 𝐾𝐹

A
𝐾 (𝐴

A
⊗ 𝐸

A
) 𝐾𝐴

A
⊕ 𝐾𝐸

A𝐾ℎ m𝐾
𝐴,𝐸

id⊕𝐾𝑓

id⊕m𝐾
𝐵,𝐶

𝛼⊕𝐾𝐴,𝐾𝐵,𝐾𝐶

m𝐾
𝐴,𝐵⊕id

𝐾𝑒⊕id

𝐾𝑔

m𝐾
𝐴⊗𝐵,𝐶 𝐾𝛼⊗𝐴,𝐵,𝐶 m𝐾

𝐴,𝐵⊗𝐶

𝐾 (𝑒⊗id)

𝐾 (id⊗𝑓)

m𝐾
𝐷,𝐶

𝑚𝑚

𝑚 1 𝑚 2

□

§ Proof of Theorem 7.1.3 on page 141

Theorem 7.1.3
Suppose we have an adjunction 𝐹 a 𝐺 : C → V for (V, 𝐼 , ⊗, [−,=]) skew-monoidal closed
and (C, �, 〈−,=〉) a left skew-monoidal closed action. Then, 𝐹 is a skew-monoidal warping
riding �if and only if 𝐺 is a skew-closed warping riding 〈−,=〉.

PRoof We follow a similar proof pattern to Eilenberg and Kelly (1966) in establishing an
equivalence between monoidal and closed structure over a category: namely, by finding in-
termediate forms for the transformations and axioms that can be shown equivalent. We write
𝜏 : V(𝐹𝑋, 𝐵) � C(𝑋,𝐺𝐵), 𝜉 : V(𝐴 ⊗ 𝐵,𝐶) � V(𝐴, [𝐵,𝐶]) and 𝜅 : C(𝐴 �𝑌, 𝑍) � V(𝐴, 〈𝑌, 𝑍 〉) for
the adjoint transpose isomorphisms.

Relating the data

• The skew-monoidal and skew-closed warping functors are adjoint by assumption: 𝐹 a 𝐺 .

• The unit objects 𝐽 ∈ C are identical.

• The morphism 𝑣 : 𝐹 𝐽 → 𝐼 ∈ V and 𝑢 : 𝐽 → 𝐺𝐼 ∈ C are adjoint transposes: 𝑢 = 𝜏𝑣 .

• The natural transformations k𝑋 : 𝑋 → 𝐹𝑋 �𝐽 and l𝑋 : 𝐺 〈𝐽 , 𝑋 〉 → 𝑋 are in bijection through
the Yoneda embedding as shown on the left, and evaluating it on 𝑓 : 𝐹𝑋 � 𝐽 → 𝑌 gives us
the transposition scheme on the right:

326 appendices

C(𝐹𝑋 �𝐽 , 𝑌) C(𝑋,𝑌)

V(𝐹𝑋, 〈𝐹,𝑌 〉)

C(𝑋,𝐺 〈𝐽 , 𝑌 〉) C(𝑋,𝑌)

C(k𝑋 ,𝑌)

C(𝑋,l𝑋)

𝜅

𝜏

𝑋 𝐺 〈𝐽 , 𝑌 〉

𝑌

l𝑌

𝜏𝜅𝑓

𝑓 ◦k𝑋
(𝑘 a𝑙)

• The natural transformation p𝑋,𝑌 : 𝐹 (𝐹𝑋 �𝑌) → 𝐹𝑋 ⊗ 𝐹𝑌 : C × C → V is in bijection with
the warped transpose t𝑋,𝐵 : 𝐺 [𝐹𝑋, 𝐵] → 𝐺 〈𝑋,𝐺𝐵〉 : C × V→ C via Yoneda:

V(𝐹𝑋 ⊗ 𝐹𝑌, 𝐵) V(𝐹 (𝐹𝑋 �𝑌), 𝐵)

C(𝐹𝑋 �𝑌,𝐺𝐵)
V(𝐹𝑋, [𝐹𝑌, 𝐵])

V(𝐹𝑋, 〈𝑌,𝐺𝐵〉)

C(𝑋,𝐺 [𝐹𝑌, 𝐵]) C(𝑋,𝐺 〈𝑌,𝐺𝐵〉)

V(p𝑋,𝑌 ,𝐵)

C(𝑋,t𝑌,𝐵)

𝜉

𝜏

𝜏

𝜅

𝜏

Evaluating this at 𝑓 : 𝐹𝑋 ⊗ 𝐹𝑌 → 𝐶 and 𝑔 : 𝑋 → 𝐺 [𝐹𝑌, 𝐵] gives the transposition schemes

𝑋 𝐺 [𝐹𝑌,𝐶]

𝐺 〈𝑌,𝐺𝐶〉

𝜏𝜉 𝑓

t𝑌,𝐶𝜏𝜅𝜏 (𝑓 ◦p𝑋,𝑌)

𝐹 (𝐹𝑋 �𝑌) 𝐹𝑋 ⊗ 𝐹𝑌

𝐵

𝜉𝜏𝑔

p𝑋,𝑌

𝜏𝜅𝜏 (t𝑌,𝐵◦𝑔)
(𝑝 a𝑡)

The transformations t𝑋,𝐵 : 𝐺 [𝐹𝑋, 𝐵] → 𝐺 〈𝑋,𝐺𝐵〉 and q𝐴,𝐵 : 𝐺 [𝐴, 𝐵] → 𝐺 〈𝐺𝐴,𝐺𝐵〉 are mates
under the adjunction on the left, such that for all 𝑧 : 𝐹𝑋 → 𝐴, the right square commutes:

C Cop

V Cop

𝐹 𝐺

𝐺 〈−,𝐺𝐵〉

𝐺 [−,𝐵]

a
𝐺 [𝐴, 𝐵] 𝐺 〈𝐺𝐴,𝐺𝐵〉

𝐺 [𝐹𝑋, 𝐵] 𝐺 〈𝑋,𝐺𝐵〉

q𝐴,𝐵

𝐺 [𝑧,𝐵]

t𝑋,𝐵

𝐺 〈𝜏𝑧,id〉 (𝑡𝑞𝜏)

Instantiating this at the identity, we have expansions of 𝑡 and 𝑞 in terms of each other:

𝐺 [𝐴, 𝐵] 𝐺 [𝐹𝐺𝐴, 𝐵] 𝐺 [𝐹𝑌, 𝐵] 𝐺 〈𝐺𝐹𝑌,𝐺𝐵〉

𝐺 〈𝐺𝐴,𝐺𝐵〉 𝐺 〈𝑌,𝐺𝐵〉

t𝐺𝐴,𝐵q𝐴,𝐵

𝐺 [𝜏,𝐵] q𝐹𝑌,𝐵

𝐺 〈𝜏,𝐵〉
t𝑌,𝐵

(𝑡 a𝑞)

Relating the axioms Again, we connect the skew-monoidal and skew-closed axioms via
properties of 𝑡 defined above.

detailed pRoofs 327

(𝜌𝑝)⇔ (𝑖𝑞)

𝐹𝑋 𝐹𝑋 ⊗ 𝐼

𝐹 (𝐹𝑋 �𝐽) 𝐹𝑋 ⊗ 𝐹 𝐽

𝜌⊗𝐹𝑋

𝐹k𝑋

p𝑋,𝐽

𝐹𝑋⊗𝑣 ⇔
𝐺 [𝐼 , 𝐵] 𝐺𝐵

𝐺 [𝐹 𝐽 , 𝐵] 𝐺 〈𝐽 ,𝐺𝐵〉

l𝐺𝐵

𝐺 i[]𝐵

𝐺 [𝑣,𝐵]

t𝐽 ,𝐵

⇔
𝐺 [𝐼 , 𝐵] 𝐺𝐵

𝐺 〈𝐺𝐼,𝐺𝐵〉 𝐺 〈𝐽 ,𝐺𝐵〉

l𝐺𝐵

𝐺 i[]𝐵

q𝐼 ,𝐵

𝐺 〈𝑢,id〉

The Yoneda embedding of the left diagram transposes to the middle one. Then, instantiating
Diagram (𝑡𝑞𝜏) with 𝑧 ≜ 𝑣 : 𝐹 𝐽 → 𝐼 gives the equivalence between the middle and right axioms.

𝐺 [𝐼 , 𝐵] 𝐺𝐵

𝐺 [𝐹 𝐽 , 𝐵]

𝐺 〈𝐺𝐼,𝐺𝐵〉 𝐺 〈𝐽 ,𝐺𝐵〉

t𝐽 ,𝐵

l𝐵

𝐺 i[]𝐵

𝐺 [𝑣,𝐵]

𝐺 〈𝑢,id〉

p𝐼 ,𝐵

𝑡𝑞𝜏

(𝛼𝑘)⇔ (𝐿𝑙)

𝐹𝑋 �𝑌 𝐹𝑋 �(𝐹𝑌 �𝐽) 𝐺 〈𝑌, 𝑍 〉 𝐺 〈𝐺 〈𝐽 , 𝑌 〉, 𝑍 〉

𝐹 (𝐹𝑋 �𝑌) �𝐽 (𝐹𝑋 ⊗ 𝐹𝑌) �𝐽 𝐺 [〈𝐽 , 𝑌 〉, 〈𝐽 , 𝑍 〉] 𝐺 〈𝐺 〈𝐽 , 𝑌 〉,𝐺 〈𝐽 , 𝑍 〉〉

𝐺 〈𝐹𝑌 �𝐽 , 𝑍 〉 𝐺 〈𝑌, 𝑍 〉

𝐺 [𝐹𝑌, 〈𝐽 , 𝑍 〉] 𝐺 〈𝑌,𝐺 〈𝐽 , 𝑍 〉〉
𝐺 〈𝑌,l𝑍 〉

t𝑌,〈 𝐽 ,𝑍 〉

𝐺c �𝐹𝑌,𝐽 ,𝑍

𝐺 〈k𝑌 ,𝑍 〉

k𝐹𝑋 �𝑌

p𝑋,𝑌 �𝐽

𝛼𝐹𝑋,𝐹𝑌,𝐽

id �k𝑌

𝐺L〈〉 𝐽𝑌 ,𝑍

𝐺 〈l𝑌 ,𝑍 〉

𝐺 〈id,l𝑍 〉

q〈 𝐽 ,𝑌 〉,〈 𝐽 ,𝑍 〉

⇔⇔

The Yoneda embedding of the left diagram transposes to the middle one. Then, assuming the
middle diagram 2⃝, the right diagram 3⃝ is derived by expanding q[𝐽 ,𝑌],[𝐽 ,𝑍] as t𝐺 〈 𝐽 ,𝑌 〉,〈 𝐽 ,𝑍 〉◦𝐺 [𝜏, id],
instantiating the transposition scheme between 𝑐 and 𝐿 obtained as mates:

〈𝑌, 𝑍 〉 [〈𝑋,𝑌 〉, 〈𝑋,𝑍 〉]

[𝐴 �𝑋,𝑍] [𝐴, 〈𝑋,𝑍 〉]

L〈〉𝑋𝑌,𝑍

[𝑦,id][𝜅𝑦,𝐷]

c �𝐴,𝑋,𝑍

(𝑐𝐿𝜅)

with 𝑦 ≜ 𝜏 (id𝐺 〈 𝐽 ,𝑌 〉) : 𝐹𝐺 〈𝐽 , 𝑌 〉 → 〈𝐽 , 𝑌 〉, and (𝑘 a𝑙) with 𝑓 ≜ 𝜅𝜏 (id𝐺 〈 𝐽 ,𝑌 〉) : 𝐹𝐺 〈𝐽 , 𝑌 〉 �𝐽 → 𝑌 :

328 appendices

𝐺 〈𝑌, 𝑍 〉 𝐺 〈𝐺 〈𝐽 , 𝑌 〉, 𝑍 〉

𝐺 〈𝐹𝐺 〈𝐽 , 𝑌 〉 �𝐽 , 𝑍 〉

𝐺 [〈𝐽 , 𝑌 〉, 〈𝐽 , 𝑍 〉] 𝐺 [𝐹𝐺 〈𝐽 , 𝑌 〉, 〈𝐽 , 𝑍 〉] 𝐺 〈𝐺 〈𝐽 , 𝑌 〉,𝐺 〈𝐽 , 𝑍 〉〉

𝐺 〈l𝑌 ,𝑍 〉

𝐺 〈id,l𝑍 〉𝐺L〈〉 𝐽𝑌 ,𝑍

𝐺 [𝜏,id]

𝐺c �𝐹𝐺 〈 𝐽 ,𝑌 〉,𝐽 ,𝑍

𝐺 〈𝜅𝜏,𝑍 〉 𝐺 〈k𝐺 〈 𝐽 ,𝑌 〉,𝑍 〉

t𝐺 〈 𝐽 ,𝑌 〉,〈 𝐽 ,𝑍 〉

𝑐𝐿𝜅

𝑘 a𝑙

2⃝

Conversely, axiom 3⃝ implies axiom 2⃝ after expanding c �𝐹𝑌,𝐽 ,𝑍 : 〈𝐹𝑌 �𝐽 , 𝑍 〉 → [𝐹𝑌, 〈𝐽 , 𝑍 〉]

as the composite 〈𝐹𝑌 �𝐽 , 𝑍 〉
L𝐽𝐹𝑌 �𝐽 ,𝑍 [〈𝐽 , 𝐹𝑌 �𝐽 〉, 〈𝐽 , 𝑍 〉] [𝜅,id] [𝐹𝑌, 〈𝐽 , 𝑍 〉], instantiating

Diag. (𝑘 a𝑙) with 𝑓 ≜ id : 𝐹𝑌 �𝐽 → 𝐹𝑌 �𝐽 , and Diag. (𝑡𝑞𝜏) with 𝜅 (id𝐹𝑌 �𝐽) : 𝐹𝑌 → 〈𝐽 , 𝐹𝑌 �𝐽 〉:

𝐺 〈𝐹𝑌 �𝐽 , 𝑍 〉 𝐺 〈𝑌, 𝑍 〉

𝐺 〈𝐺 〈𝐽 , 𝐹𝑌 �𝐽 〉, 𝑍 〉

𝐺 [〈𝐽 , 𝐹𝑌 �𝐽 〉, 〈𝐽 , 𝑍 〉] 𝐺 〈𝐺 〈𝐽 , 𝐹𝑌 �𝐽 〉,𝐺 〈𝐽 , 𝑍 〉〉

𝐺 [𝐹𝑌, 〈𝐽 , 𝑍 〉] 𝐺 〈𝑌,𝐺 〈𝐽 , 𝑍 〉〉]

𝐺 〈k𝑌 ,𝑍 〉

𝐺 〈𝑌,l𝑍 〉

t𝑌,〈 𝐽 ,𝑍 〉

𝐺 〈𝜏𝜅,id〉
𝐺 [𝜅,id]

q〈 𝐽 ,𝐹𝑌 �𝐽 〉,〈 𝐽 ,𝑍 〉

𝐺 〈id,l𝑍 〉

𝐺 〈𝜏𝜅,𝑍 〉
𝐺 〈l𝐹𝑌 �𝐽 ,𝑍 〉

𝐺L〈〉 𝐽𝐿𝑌 �𝐽 ,𝑍

3⃝

𝑘 a𝑙

𝑡𝑞𝜏

(𝜆𝑝)⇔ (𝑗𝑞)

𝐹 (𝐹 𝐽 �𝑌) 𝐹 𝐽 ⊗ 𝐹𝑌 𝐼 ⊗ 𝐹𝑌 𝐺𝐼

𝐹 (𝐼 �𝑌) 𝐹𝑌 𝐺 [𝐴,𝐴] 𝐺 〈𝐺𝐴,𝐺𝐴〉

𝐺𝐼 𝐺 [𝐹𝑋, 𝐹𝑋]

𝐺 〈𝑋,𝑋 〉 𝐺 〈𝑋,𝐺𝐹𝑋 〉

t𝑌,𝐹𝑌

𝐺 〈𝑌,𝜏𝑌 〉

𝐺 j 〈〉𝑌

𝐺 j []𝐹𝑌

𝐹𝜆 �
𝑌

p𝐽 ,𝑌 𝑣⊗id

𝜆⊗𝐹𝑌𝐹 (𝑣 �𝑌)
𝐺 j []𝐴

q𝐴,𝐴

𝐺 j 〈〉𝐺𝐴

⇔⇔

The top composite of the left diagram 1⃝ is an instance of Diag. (𝑝 a𝑡), with the composite 𝑓 ≜
𝜆⊗𝐹𝑌 ◦(𝑣⊗𝐹𝑌) : 𝐹 𝐽 ⊗𝐹𝑌 → 𝐹𝑌 , so we have that 𝜏𝜅𝜏 (𝜆⊗𝐹𝑌 ◦(𝑣⊗𝐹𝑌)◦p𝐽 ,𝑌) = t𝐽 ,𝐹𝑌 ◦𝜏𝜉 (𝜆⊗𝐹𝑌 ◦(𝑣⊗𝐹𝑌)).
Then, 𝜆⊗𝐹𝑌 ◦ (𝑣 ⊗ 𝐹𝑌) transposes to 𝐺 j []𝐹𝑌 ◦ 𝑢, and the bottom composite 𝐹𝜆 �

𝑌 ◦ 𝐹 (𝑣 �𝑌) of 1⃝
transposes to 𝐺 〈𝑌, 𝜏〉 ◦ 𝐺 j〈〉𝑌 ◦ 𝑢, by naturality of 𝜏 , 𝜅 and 𝜉 . Their equality in the middle
diagram 2⃝ is implied by the equality of 1⃝. To show that 2⃝ implies 3⃝, we expand q𝐴,𝐴 as
t𝐺𝐴,𝐴 ◦𝐺 [𝜏,𝐴], and apply the zig-zag identity to show that𝐺𝜏 (id𝐹𝐺𝐴) ◦𝜏 (id𝐹𝐺𝐴) = 𝐺𝜀𝐴 ◦𝜂𝐺𝐴 = id:

detailed pRoofs 329

𝐺𝐼 𝐺 〈𝐺𝐴,𝐺𝐴〉

𝐺 [𝐹𝐺𝐴, 𝐹𝐺𝐴] 𝐺 〈𝐺𝐴,𝐺𝐹𝐺𝐴〉

𝐺 [𝐴,𝐴] 𝐺 [𝐹𝐺𝐴,𝐴] 𝐺 〈𝐺𝐴,𝐺𝐴〉

𝐺 j []𝐴

𝐺 [𝜏,𝐴] t𝐺𝐴,𝐴

𝐺 [id,𝜏]

𝐺 j []𝐹𝐺𝐴

t𝐺𝐴,𝐹𝐺𝐴

𝐺 〈id,𝐺𝜏〉

𝐺 〈𝐺𝐴,𝜏〉

𝐺 j 〈〉𝐺𝐴

2⃝

𝑗

𝑡 2

a

Conversely, assuming 3⃝, we construct axiom 2⃝ using Diagram (𝑡 a𝑞):

𝐺𝐼 𝐺 [𝐹𝑋, 𝐹𝑋]

𝐺 〈𝐺𝐹𝑋,𝐺𝐹𝑋 〉

𝐺 〈𝑋,𝑋 〉 𝐺 〈𝑋,𝐺𝐹𝑋 〉

𝐺 j[]𝐹𝑋

𝐺 j 〈〉𝐺𝐹𝑋

𝐺 j 〈〉𝐼

q𝐹𝑋,𝐹𝑋

t𝑋,𝐹𝑋

𝐺 〈𝜏𝑋 ,𝐺𝐹𝑋 〉

𝐺 〈𝑋,𝜏𝑋 〉

3⃝

𝑡 a𝑞

𝑗

(𝜆𝑣)⇔ (𝑗𝑢)

𝐽 𝐽

𝐹 𝐽 �𝐽 𝐼 �𝐽
k𝐽

𝑣 �𝐽

𝜆 �
𝐽

⇔
𝐽 𝐽

𝐺𝐼 𝐺 〈𝐽 , 𝐽 〉
𝑢

𝐺 j 〈〉𝐽

l𝐽

The transposition scheme Diagram (𝑘 a𝑙) states that

(𝜆𝐽 ◦ (𝑣 �𝐽)) ◦ k𝐽 = l𝐽 ◦ 𝜏𝜅
(
𝜆𝐽 ◦ (𝑣 �𝐽)

)
and the transpose of 𝜆𝐽 ◦ (𝑣 �𝐽) is 𝐽

𝑢 𝐺𝐼
𝐺 j𝐽

𝐺 〈𝐽 , 𝐽 〉 by naturality.

(𝛼𝑝)⇔ (𝐿𝑞)

𝐹 (𝐹 (𝐹𝑋 �𝑌) �𝑍) 𝐹 (𝐹𝑋 �𝑌) ⊗ 𝐹𝑍

𝐹 ((𝐹𝑋 ⊗ 𝐹𝑌) �𝑍) (𝐹𝑋 ⊗ 𝐹𝑌) ⊗ 𝐹𝑍

𝐹 (𝐹𝑋 �(𝐹𝑌 �𝑍)) 𝐹𝑋 ⊗ 𝐹 (𝐹𝑌 �𝑍) 𝐹𝑋 ⊗ (𝐹𝑌 ⊗ 𝐹𝑍)

p𝐹𝑋 �𝑌,𝑍

p𝑋,𝑌 �𝐹𝑍

𝛼⊗𝐹𝑋,𝐹𝑌,𝐹𝑍𝐹𝛼 �
𝐹𝑋,𝐹𝑌,𝑍

p𝐹𝑋,𝐹𝑌 �𝑍

𝐹 (p𝑋,𝑌 �𝑍)

𝐹𝑋⊗p𝑌,𝑍

m

330 appendices

𝐺 [𝐹𝑋 ⊗ 𝐹𝑌,𝐶] 𝐺 [𝐹 (𝐹𝑋 �𝑌),𝐶] 𝐺 〈𝐹𝑋 �𝑌,𝐺𝐶〉

𝐺 [𝐹𝑋, [𝐹𝑌,𝐶]] 𝐺 〈𝐹𝑋, 〈𝑌,𝐺𝐶〉〉

𝐺 〈𝑋,𝐺 [𝐹𝑌,𝐶]〉 𝐺 〈𝑋,𝐺 〈𝑌,𝐺𝐶〉〉
𝐺 〈𝑋,t𝑌,𝐶〉

𝐺 [p𝑋,𝑌 ,𝐶] t𝐹𝑋 �𝑌,𝐶

𝐺c⊗𝐹𝑋,𝐹𝑌,𝐶

t𝑋,[𝐹𝑌,𝐶]

𝐺c �𝐹𝑋,𝑌,𝐺𝐶

t𝑋,〈𝑌,𝐺𝐶 〉

m

𝐺 [𝐵,𝐶] 𝐺 〈𝐺𝐵,𝐺𝐶〉 𝐺 [〈𝐺𝐴,𝐺𝐵〉, 〈𝐺𝐴,𝐺𝐶〉]

𝐺 [[𝐴, 𝐵], [𝐴,𝐶]] 𝐺 〈𝐺 〈𝐺𝐴,𝐺𝐵〉,𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺 〈𝐺 [𝐴, 𝐵],𝐺 [𝐴,𝐶]〉 𝐺 〈𝐺 [𝐴, 𝐵],𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺L[]𝐴𝐵,𝐶

q[𝐴,𝐵],[𝐴,𝐶] 𝐺 〈q𝐴,𝐵,id〉

q𝐵,𝐶 𝐺L〈〉𝐺𝐴𝐺𝐵,𝐺𝐶

q〈𝐺𝐴,𝐺𝐵〉,〈𝐺𝐴,𝐺𝐶 〉

𝐺 〈id,q𝐴,𝐶〉

The first diagram 1⃝ transposes to the second one 2⃝ via Yoneda. Axiom 3⃝ follows from 2⃝
using the expansions of 𝐿 in terms of 𝑐 , and 𝑞 in terms of 𝑡 :

[𝐵,𝐶] [𝜁 ,𝐶] [[𝐴, 𝐵] ⊗ 𝐴,𝐶] c[𝐴,𝐵],𝐴,𝐶 [[𝐴, 𝐵], [𝐴,𝐶]]

𝐺 [𝐵,𝐶] 𝐺 [𝜏,𝐶]
𝐺 [𝐹𝐺𝐵,𝐶] t𝐺𝐵,𝐶

𝐺 〈𝐺𝐵,𝐺𝐶〉

The proof of 3⃝ is made up of the following diagrams, joined together by the red composites.
We abbreviate 𝐹𝐺 : V→ V as 𝐷 and 𝐺𝐹 : C→ C as 𝑇 .

𝐺 [[𝐴, 𝐵] ⊗ 𝐴,𝐶] 𝐺 [𝐵,𝐶]

𝐺 [[𝐴, 𝐵] ⊗ 𝐷𝐴,𝐶] 𝐺 [[𝐷𝐴, 𝐵] ⊗ 𝐷𝐴,𝐶]

𝐺 [[𝐴, 𝐵], [𝐴,𝐶]] 𝐺 [[𝐴, 𝐵], [𝐷𝐴,𝐶]] 𝐺 [𝐷 [𝐴, 𝐵] ⊗ 𝐷𝐴,𝐶] 𝐺 [𝐷 [𝐷𝐴, 𝐵] ⊗ 𝐷𝐴,𝐶]

𝐺 [𝐷 [𝐴, 𝐵], [𝐴,𝐶]] 𝐺 [𝐷 [𝐴, 𝐵], [𝐷𝐴,𝐶]] 𝐺 [𝐷 [𝐷𝐴, 𝐵], [𝐷𝐴,𝐶]]

𝐺 〈𝐺 [𝐴, 𝐵],𝐺 [𝐴,𝐶]〉 𝐺 〈𝐺 [𝐴, 𝐵],𝐺 [𝐷𝐴,𝐶]〉 𝐺 〈𝐺 [𝐷𝐴, 𝐵],𝐺 [𝐷𝐴,𝐶]〉

𝐺 [id⊗𝜏,𝐶]

𝐺c[𝐴,𝐵],𝐴,𝐶

𝐺 [𝜉,id]

𝐺 [𝜉,𝐶]

𝐺c[𝐴,𝐵],𝐷𝐴,𝐶
𝐺 [𝜏⊗id,𝐶]

𝐺 [[𝜏,𝐵]⊗id,𝐶]

𝐺 [𝜏⊗id,𝐶]

𝐺 [id,[𝜏,id]]

𝐺 [𝜏,id] 𝐺 [𝜏,id]
𝐺c[𝐷𝐴,𝐵],𝐷𝐴,𝐶

𝐺 [𝐷 [𝜏,𝐵]⊗id,𝐶]

𝐺c𝐷 [𝐷𝐴,𝐵],𝐷𝐴,𝐶

𝐺 [id,[𝜏,id]]

t𝐺 [𝐴,𝐵],[𝐴,𝐶] t𝐺 [𝐴,𝐵],[𝐷𝐴,𝐶]

𝐺 [𝐷 [𝜏,𝐵],id]

t𝐺 [𝐷𝐴,𝐴],[𝐷𝐴,𝐶]

𝐺 〈id,𝐺 [𝜏,𝐶]〉 𝐺 〈𝐺 〈𝜏,id〉,id〉

𝜉

𝜏

𝑐 1

𝑐 1

𝑐 2

𝑡 2 𝑡 1

detailed pRoofs 331

𝐺 [𝐵,𝐶] 𝐺 [𝐷𝐵,𝐶] 𝐺 〈𝐺𝐵,𝐺𝐶〉

𝐺 [[𝐷𝐴, 𝐵] ⊗ 𝐷𝐴,𝐶] 𝐺 [𝐹 (〈𝐺𝐴,𝐺𝐵〉 �𝐺𝐴),𝐶] 𝐺 〈〈𝐺𝐴,𝐺𝐵〉 �𝐺𝐴,𝐺𝐶〉

𝐺 [𝐹 (𝐷 〈𝐺𝐴,𝐺𝐵〉 �𝐺𝐴),𝐶] 𝐺 〈𝐷 〈𝐺𝐴,𝐺𝐵〉 �𝐺𝐴,𝐺𝐶〉 𝐺 [〈𝐺𝐴,𝐺𝐵〉, 〈𝐺𝐴,𝐺𝐶〉]

𝐺 [𝐷 [𝐷𝐴, 𝐵] ⊗ 𝐷𝐴,𝐶] 𝐺 [𝐹 (𝐷 [𝐷𝐴, 𝐵] �𝐺𝐴),𝐶] 𝐺 〈𝐷 [𝐷𝐴, 𝐵] �𝐺𝐴,𝐺𝐶〉 𝐺 [𝐷 〈𝐺𝐴,𝐺𝐵〉, 〈𝐺𝐴,𝐺𝐶〉]

𝐺 [𝐷 [𝐷𝐴, 𝐵], [𝐷𝐴,𝐶]] 𝐺 [𝐷 [𝐷𝐴, 𝐵], 〈𝐺𝐴,𝐺𝐶〉] 𝐺 〈𝐺 〈𝐺𝐴,𝐺𝐵〉,𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺 〈𝐺 [𝐷𝐴, 𝐵],𝐺 [𝐷𝐴,𝐶]〉 𝐺 〈𝐺 [𝐷𝐴, 𝐵],𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺 〈𝐺 [𝐴, 𝐵],𝐺 [𝐷𝐴,𝐶]〉 𝐺 〈𝐺 [𝐴, 𝐵],𝐺 〈𝐺𝐴,𝐺𝐶〉〉

𝐺 [𝜏,𝐶]

𝐺 [𝜉,𝐶]

t𝐺𝐵,𝐶

𝐺 [𝐹𝜅,𝐶] 𝐺 〈𝜅,id〉

𝐺 [𝜏⊗id,𝐶]

t〈𝐺𝐴,𝐺𝐵〉 �𝐺𝐴,𝐶

𝐺 [𝐹 (𝜏 �id),id]
𝐺 〈𝜏 �id,id〉

𝐺c〈𝐺𝐴,𝐺𝐵〉,𝐺𝐴,𝐺𝐶

t𝐷 〈𝐺𝐴,𝐺𝐵〉 �𝐺𝐴,𝐶

𝐺 [𝐹 (𝐹 t𝐺𝐴,𝐵 �id),id] 𝐺 [𝐹 t𝐺𝐴,𝐵 �id,id]
𝐺c𝐷 〈𝐺𝐴,𝐺𝐵〉,𝐺𝐴,𝐺𝐶

𝐺 [𝜏,id]

𝐺 [p𝐺 [𝐷𝐴,𝐵],𝐺𝐴,𝐶]
𝐺c𝐷 [𝐷𝐴,𝐵],𝐷𝐴,𝐶

t𝐷 [𝐷𝐴,𝐵] �𝐺𝐴,𝐶

𝐺c𝐷 [𝐷𝐴,𝐵],𝐺𝐴,𝐺𝐶
𝐺 [𝐹 t𝐺𝐴,𝐵,id]

t𝐺 〈𝐺𝐴,𝐺𝐵〉,〈𝐺𝐴,𝐺𝐶 〉

t𝐺 [𝐷𝐴,𝐵],[𝐷𝐴,𝐶]
t𝐺 [𝐷𝐴,𝐵],〈𝐺𝐴,𝐺𝐶 〉

𝐺 〈t𝐺𝐴,𝐵,id〉

𝐺 〈id,t𝐺𝐴,𝐶〉

𝐺 〈𝐺 〈𝜏,id〉,id〉 𝐺 〈𝐺 〈𝜏,id〉,id〉

𝐺 〈id,t𝐺𝐴,𝐶〉

𝑝 a𝑡

2⃝

𝑡 1

𝑡 1

𝑡 1

𝑐 1

𝑐 1

𝑡 1

Conversely, from 3⃝ we derive 2⃝ by the opposite expansions of 𝑐 and 𝑡 in terms of 𝐿 and 𝑞:

[𝐴 ⊗ 𝐵,𝐶]
L𝐵𝐴⊗𝐵,𝐶 [[𝐵,𝐴 ⊗ 𝐵], [𝐵,𝐶]] [𝜉,id] [𝐴, [𝐵,𝐶]]

𝐺 [𝐹𝐴, 𝐵] q𝐹𝐴,𝐵
𝐺 〈𝐺𝐹𝐴,𝐺𝐵〉 𝐺 〈𝜏,id〉

𝐺 〈𝐴,𝐺𝐵〉

𝐺 [𝐹𝑋, [𝐹𝑌,𝐶]] 𝐺 [[𝐹𝑌, 𝐹𝑋 ⊗ 𝐹𝑌], [𝐹𝑌,𝐶]] 𝐺 [𝐹𝑋 ⊗ 𝐹𝑌,𝐶]

𝐺 〈𝐺 (𝐹𝑋 ⊗ 𝐹𝑌),𝐺𝐶〉

𝐺 [〈𝑇𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉, 〈𝑇𝑌,𝐺𝐶〉]

𝐺 〈𝐺 〈𝑇𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉,𝐺 〈𝑇𝑌,𝐺𝐶〉〉

𝐺 〈𝐺 [𝐹𝑌, 𝐹𝑋 ⊗ 𝐹𝑌],𝐺 [𝐹𝑌,𝐶]〉 𝐺 〈𝐺 [𝐹𝑌, 𝐹𝑋 ⊗ 𝐹𝑌],𝐺 〈𝑇𝑌,𝐺𝐶〉〉

𝐺 〈𝑋,𝐺 [𝐹𝑌,𝐶]〉 𝐺 〈𝑋,𝐺 〈𝑇𝑌,𝐺𝐶〉〉

t𝑋,〈𝐹𝑌,𝐶 〉

𝐺 [𝜉,id]

q[𝐹𝑌,𝐹𝑋⊗𝐹𝑌],[𝐹𝑌,𝐶]

𝐺L𝐹𝑌𝐹𝑋⊗𝐹𝑌,𝐶

q𝐹𝑋⊗𝐹𝑌,𝐶

𝐺L𝑇𝑌𝐺 (𝐹𝑋⊗𝐹𝑌),𝐺𝐶

q〈𝑇𝑌,𝐺 (𝐹𝑋⊗𝐹𝑌) 〉,〈𝑇𝑌,𝐺𝐶 〉

𝐺 〈q𝐹𝑌,𝐹𝑋⊗𝐹𝑌 ,id〉

𝐺 〈id,q𝐹𝑌,𝐶〉

𝐺 〈𝜏𝜉,id〉
𝐺 〈𝜏𝜉,id〉

𝐺 〈𝑋,q𝐹𝑌,𝐶〉

𝑡𝑞𝜏 3⃝

332 appendices

𝐺 [𝐹𝑋 ⊗ 𝐹𝑌,𝐶] 𝐺 [𝐹 (𝐹𝑋 �𝑌),𝐶]

𝐺 〈𝐺 (𝐹𝑋 ⊗ 𝐹𝑌),𝐺𝐶〉 𝐺 〈𝐹𝑋 �𝑌,𝐺𝐶〉

𝐺 [〈𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉, 〈𝑌,𝐺𝐶〉] 𝐺 [〈𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉, 〈𝑌,𝐺𝐶〉] 𝐺 〈𝐹𝑋, 〈𝑌,𝐺𝐶〉〉

𝐺 [〈𝑇𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉, 〈𝑇𝑌,𝐺𝐶〉] 𝐺 [〈𝑇𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉, 〈𝑌,𝐺𝐶〉]

𝐺 〈𝐺 〈𝑇𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉,𝐺 〈𝑇𝑌,𝐺𝐶〉〉 𝐺 〈𝐺 〈𝑇𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉,𝐺 〈𝑌,𝐺𝐶〉〉

𝐺 〈𝐺 [𝐹𝑌, 𝐹𝑋 ⊗ 𝐹𝑌],𝐺 〈𝑇𝑌,𝐺𝐶〉〉 𝐺 〈𝐺 [𝐹𝑌, 𝐹𝑋 ⊗ 𝐹𝑌],𝐺 〈𝑌,𝐺𝐶〉〉 𝐺 〈𝐺 〈𝑌,𝐺 (𝐹𝑋 ⊗ 𝐹𝑌)〉,𝐺 〈𝑌,𝐺𝐶〉〉

𝐺 〈𝑋,𝐺 〈𝑇𝑌,𝐺𝐶〉〉 𝐺 〈𝑋,𝐺 〈𝑌,𝐺𝐶〉〉 𝐺 〈𝑋,𝐺 〈𝑌,𝐺𝐶〉〉

𝐺 [p𝑋,𝑌 ,𝐶]

q𝐹𝑋⊗𝐹𝑌,𝐶 t𝐹𝑋 �𝑌,𝐶

𝐺 〈𝜏 (p𝑋,𝑌),id〉

𝐺L𝑌𝐺 (𝐹𝑋⊗𝐹𝑌),𝐺𝐶

𝐺L𝑇𝑌𝐺 (𝐹𝑋⊗𝐹𝑌),𝐺𝐶

𝐺c �𝐹𝑋,𝑌,𝐺𝐶

𝐺 [〈𝜏,id〉,id]

𝐺 [𝜅𝜏 (p𝑋,𝑌),id]

q〈𝑌,𝐺 (𝐹𝑋⊗𝐹𝑌) 〉,〈𝑌,𝐺𝐶 〉

t𝑋,〈𝑌,𝐺𝐶 〉𝐺 [id,〈𝜏,id〉]
q〈𝑇𝑌,𝐺 (𝐹𝑋⊗𝐹𝑌) 〉,〈𝑇𝑌,𝐺𝐶 〉 q〈𝑇𝑌,𝐺 (𝐹𝑋⊗𝐹𝑌) 〉,〈𝑌,𝐺𝐶 〉

𝐺 〈id,𝐺 〈𝜏,id〉〉

𝐺 〈q𝐹𝑌,𝐹𝑋⊗𝐹𝑌 ,id〉 𝐺 〈q𝐹𝑌,𝐹𝑋⊗𝐹𝑌 ,id〉

𝐺 〈id,𝐺 〈𝜏,id〉〉

𝐺 〈𝜏𝜉,id〉 𝐺 〈𝜏𝜉,id〉

𝐺 〈𝐺 〈𝜏,id〉,id〉

𝐺 〈t𝑌,𝐹𝑋⊗𝐹𝑌 ,id〉

𝐺 〈𝜏𝜅𝜏 (p𝑋,𝑌),id〉

𝐺 〈𝑋,𝐺 〈𝜏,id〉〉

𝑡𝑞𝜏

𝑡𝑞𝜏

𝑞 2

𝐿 1

𝑐𝐿𝜅

𝑞 1

𝑡 a𝑞

𝑝 a𝑡

□

§ Proof of Theorem 7.1.4 on page 142

Theorem 7.1.4
For an adjoint triple 𝐹 a 𝐺 a 𝐻 : C→ V, if𝐺 : V→ C is a strong V �-module functor, then 𝐹
and 𝐺 form adjoint warpings.

PRoof Let 𝜏 : 𝐹 a 𝐺 : V → C and 𝜋 : 𝐺 a 𝐻 : C → V be the two adjunctions, and suppose
𝐺 is a strong V �-module functor from (V, ⊗) to (C, �), with strength 𝐴 �𝐺𝐵 � 𝐺 (𝐴 ⊗ 𝐵).
From Lemma 5.1.2, we have induced and compatible natural transformations s𝐴,𝐵 : [𝐴, 𝐵] →
〈𝐺𝐴,𝐺𝐵〉 and t𝐴,𝑋 : 〈𝐺𝐴,𝑋 〉 → [𝐴,𝐻𝑋]. With these, we construct a skew-closed warping
structure on 𝐺 : V → C, which, by the previous theorem, equivalently induces a warping on
𝐹 .

• The warping functor and object are𝐺 : V→ C and 𝐺𝐼 : C;

• The morphism 𝑢 : 𝐺𝐼 → 𝐺𝐼 ∈ C is the identity;

• the natural transformation l𝑋 : 𝐺 〈𝐽 , 𝑋 〉 → 𝑋 is the transpose of

〈𝐺𝐼, 𝑋 〉 t𝐼 ,𝑋 [𝐼 , 𝐻𝑋] i[]𝑋 𝐻𝑋

• the natural transformation q𝐴,𝐵 : 𝐺 [𝐴, 𝐵] → 𝐺 〈𝐺𝐴,𝐺𝐵〉 is

𝐺 [𝐴, 𝐵] 𝐺s𝐴,𝐵
𝐺 〈𝐺𝐴,𝐺𝐵〉

detailed pRoofs 333

The warping axioms are as follows. Diagram (𝑖𝑞) 𝜋-transposes to

[𝐼 , 𝐵] 𝐵

〈𝐺𝐼,𝐺𝐵〉 [𝐼 , 𝐻𝐺𝐵] 𝐻𝐺𝐵
i𝐻𝐺𝐵

𝜋𝐵

i[]𝐵

[𝐼 ,𝜋𝐵]
s𝐼 ,𝐵

t𝐼 ,𝐵

𝜏𝑡𝑠
𝑖

Diagram (𝑗𝑞) is the strength law Diagram (𝑠 𝑗 〈〉). The axiom (𝑗𝑢) 𝜋-transposes to:

𝐼 〈𝐺𝐼,𝐺𝐼 〉

𝐼 [𝐼 , 𝐼]

𝐻𝐺𝐼 [𝐼 , 𝐻𝐺𝐼]

j 〈〉𝐺𝐼

t𝐼 ,𝐺𝐼

i[]𝐻𝐺𝐼

j []𝐼

[𝐼 ,𝜋𝐼]
𝜋𝐼

i[]𝐼

ij

𝑖

𝑡 𝑗

Diagram (𝐿𝑙) is the 𝐺-application of:

〈𝑌, 𝑍 〉 [〈𝐺𝐼,𝑌 〉, 〈𝐺𝐼, 𝑍 〉] 〈𝐺 〈𝐺𝐼,𝑌 〉,𝐺 〈𝐺𝐼, 𝑍 〉〉

[𝐻𝑌,𝐻𝑍] [〈𝐺𝐼,𝑌 〉, [𝐼 , 𝐻𝑍]] 〈𝐺 〈𝐺𝐼,𝑌 〉,𝐺 [𝐼 , 𝐻𝑍]〉

〈𝐺𝐻𝑌,𝑍 〉 [[𝐼 , 𝐻𝑌], [𝐼 , 𝐻𝑍]]

[[𝐼 , 𝐻𝑌], 𝐻𝑍] [〈𝐺𝐼,𝑌 〉, 𝐻𝑍] 〈𝐺 〈𝐺𝐼,𝑌 〉,𝐺𝐻𝑍 〉

〈𝐺 [𝐼 , 𝐻𝑌], 𝑍 〉 〈𝐺 〈𝐺𝐼,𝑌 〉, 𝑍 〉 〈𝐺 〈𝐺𝐼,𝑌 〉, 𝑍 〉

〈𝜋𝑌 ,𝑍 〉

〈𝐺 i[]𝐻𝑌 ,𝑍 〉

〈𝐺t𝐼 ,𝑌 ,𝑍 〉

L〈〉𝐺𝐼𝑌,𝑍
s𝐺〈𝐺𝐼,𝑌 〉,〈𝐺𝐼,𝑍 〉

〈id,𝐺t𝐼 ,𝑍 〉

〈id,𝐺 i[]𝐻𝑍 〉

〈id,t𝐼 ,𝑍 〉
s𝐺〈𝐺𝐼,𝑌 〉,〈𝐼 ,𝐻𝑍 〉

[id,i[]𝐻𝑍]

t〈𝐺𝐼,𝑌 〉,𝑍

s𝐺〈𝐺𝐼,𝑌 〉,𝐻𝑍

〈id,𝜋𝑍 〉

t𝐻𝑌,𝑍

s𝐻𝑌,𝑍

L[]𝐼𝐻𝑌,𝐻𝑍 [t𝐼 ,𝑌 ,id]

[t𝐼 ,𝑌 ,id]

[id,i[]𝐻𝑍]

[i[]𝐻𝑌 ,id]

t[𝐼 ,𝐻𝑌],𝑍

𝑡 1

Lj

𝑡𝐿

𝑡 1

𝑠 2

𝑠 2

𝜏𝑡𝑠

Finally, Diagram (𝐿𝑞) is simply the 𝐺-application of:

[𝐵,𝐶] 〈𝐺𝐵,𝐺𝐶〉 [〈𝐺𝐴,𝐺𝐵〉, 〈𝐺𝐴,𝐺𝐶〉]

[[𝐴, 𝐵], [𝐴,𝐶]] [[𝐴, 𝐵], 〈𝐺𝐴,𝐺𝐶〉]

〈𝐺 [𝐴, 𝐵],𝐺 [𝐴,𝐶]〉 〈𝐺 [𝐴, 𝐵],𝐺 〈𝐺𝐴,𝐺𝐶〉〉 〈𝐺 〈𝐺𝐴,𝐺𝐵〉,𝐺 〈𝐺𝐴,𝐺𝐶〉〉[id,𝐺s𝐴,𝐶]

s𝐵,𝐶 L〈〉𝐺𝐴𝐺𝐵,𝐺𝐶

s〈𝐺𝐴,𝐺𝐵〉,〈𝐺𝐴,𝐺𝐶 〉

〈𝐺s𝐴,𝐵,id〉

L[]𝐴𝐵,𝐶

s[𝐴,𝐵],[𝐴,𝐶]

[id,s𝐴,𝐶]

[s𝐴,𝐵,id]

s[𝐴,𝐵],〈𝐺𝐴,𝐺𝐶 〉

𝑠𝐿〈〉

𝑠 1

𝑠 2

□

334 appendices

§ Proof of Theorem 7.2.1 on page 146

Theorem 7.2.1
If two unital endofunctors (Σ : C → C, 𝜂Σ : Id =⇒ Σ) and (Ω : V → V, 𝜂Ω : Id =⇒ Ω) form
1-cells and 2-cells in SynMod

(id, 𝜂Σ) : (Id, Id) =⇒ (Id, Σ) : (C𝑻
|C, C|C) → (C𝑻

|C, C|C)
(id, 𝜂Ω) : (Id, Id) =⇒ (Id,Ω) : (V|V,V|V) → (V|V,V|V)

(𝑲 ,𝐺) : (V|V,V|V) → (C𝑻
|C, C|C) is a strong elevator between them, and 𝑳 : C𝑻

|C → V|V is
synthetic monoidal, then the categories of Ω-monoids in V and Σ-monoids in C are equiva-
lent.

PRoof We first expand the assumptions. The 2-cells between synthetic module functors are
natural transformations satisfying

𝑋 	 𝒀 𝑍

Σ𝑋 	 𝒀 Σ𝑍

𝑔

𝜂Σ
𝑋	𝒀 𝜂Σ

𝑍

sΣ [𝑔]

𝐴 � 𝑩 𝐶

Ω𝐴 � 𝑩 Ω𝐶

ℎ

𝜂Ω
𝐴�𝑩 𝜂Ω

𝐶

sΩ [ℎ]

The 1-cell (𝑲 ,𝐺) : (V|V,V|V) → (C𝑻
|C, C|C) comes with a natural transformation of hom-sets

C(𝑋 	 𝒀 , 𝑍) → V(𝐺𝑋 � 𝑲𝒀 ,𝐺𝑍) which, as 𝑲𝒀
C
= 𝐺𝑌 ∈ C, has components derived from the

monoidal functor multiplication m𝐺
𝐴,𝐵 : 𝐺𝐴 ⊕ 𝐺𝐵 → 𝐺 (𝐴 ⊗ 𝐵). It is an elevator between the

endofunctors, so satisfies the equivalent diagrams below for all 𝑓 : 𝐴 � 𝑩 → 𝐶:

Σ𝐺𝐴 	 𝑲𝑩 Σ𝐺𝐶

𝐺Ω𝐴 	 𝑲𝑩 𝐺Ω𝐶

sΣ [s𝐺,𝑲 [𝑓]]

s𝐺,𝑲 [sΣ [𝑓]]

=
Σ𝐺𝐴 ⊕ 𝐺𝐵 Σ𝐺𝐶

𝐺Ω𝐴 ⊕ 𝐺𝐵 𝐺Ω𝐶

sΣ [m𝐺 [𝑓]]

m𝐺 [sΣ [𝑓]]

Furthermore, as 𝐺 is monoidal and 𝑲𝐴
C

= 𝐺𝐴
V
, Proposition 6.1.1 applies to show that

𝑲 : V|V → C𝑻
|C is a synthetic monoidal functor, so the diagrams are further equivalent to:

𝑲𝛀𝑨
C
	 𝑲𝑩 𝑲𝛀𝑪

C

𝚺𝑲𝑨
C
	 𝑲𝑩 𝚺𝑮𝑪

C

m𝑲 [s𝛀 [𝑓]]

s𝚺 [m𝑲 [𝑓]]

(†)

Ω-monoid to Σ-monoid Instantiating Corollary 6.3.2 with 𝚺, 𝛀 and 𝑲 defined above, we
get that a synthetic 𝛀-monoid 𝑴 in V|V maps to a synthetic 𝚺-monoid 𝑲𝑴 in C𝑻

|C. The
underlying object 𝑴

V
= 𝑀 is a Ω-monoid in V, and so is 𝑲𝑴

V
= 𝐺𝑀 a Σ-monoid in C.

Σ-monoid to Ω-monoid By assumption, 𝑳 is a synthetic monoidal functor, so the monoid
structure of the algebraic monoids is transformed as in Proposition 7.2.3. To apply Corol-
lary 6.3.2, we need to furthermore show that 𝑳 : C𝑻

|C → V|V lifts the synthetic module endo-

detailed pRoofs 335

functor 𝚺 : C𝑻
|C → C𝑻

|C to 𝛀 : V|V → V|V in SynMod. For this, we need to define an elevator
𝝍 : 𝛀𝑳 =⇒ 𝑳𝚺 that satisfies, for all pointed multilinear maps 𝑔 ∈ PMLin(𝑿 , 𝒀 ;𝒁),

𝛀𝑳𝑿
V
� 𝑳𝒀 𝛀𝑳𝑿

V

𝑳𝚺𝑿
V
� 𝑳𝒀 𝑳𝚺𝑿

V

s𝛀 [m𝑳 [𝑔]]

𝝍𝑋�id 𝝍𝑍

m𝑳 [s𝚺 [𝑔]]

(‡)

To define 𝝍 : 𝛀𝑳 =⇒ 𝑳𝚺, we first construct an elevator 𝝋 : 𝑲𝛀 =⇒ 𝚺𝑲 : C𝑻 → V with
components:

𝑲𝛀𝑨
C
= 𝐺Ω𝐴 � Σ𝐺𝐴 = 𝚺𝑲𝑨

C

and strength-preservation given by the same property of the isomorphism Σ𝐺 � 𝐺Ω. From
this, 𝝍 : 𝛀𝑳 =⇒ 𝑳𝚺 is given by:

𝛀𝑳 � 𝑳𝑲𝛀𝑳
𝑳𝝋𝑳

𝑳𝚺𝑲𝑳 � 𝑳𝚺

We can now instantiate (†) with 𝑓 ≜ m𝑳 [𝑔] : 𝑳𝑿
V
� 𝑳𝒀 → 𝑳𝒁

V
for 𝑔 ∈ PMLin(𝑿 , 𝒀 ;𝒁):

𝑲𝛀𝑳𝑿
C
	 𝑲𝑳𝒀 𝑲𝛀𝑳𝒁

C

𝚺𝑲𝑳𝑿
C
	 𝑲𝑳𝒀 𝚺𝑲𝑳𝒁

C

m𝑲 [s𝛀 [m𝑳 [𝑔]]]

𝝋𝑳𝒁𝝋𝑳𝑿	id

s𝚺 [m𝑲 [m𝑳 [𝑔]]]

Applying the operator m𝑳 [−] to the diagram, and extracting 𝝋 via naturality, we get:

𝑳𝑲𝛀𝑳𝑿
V
� 𝑳𝑲𝑳𝒀 𝑳𝑲𝛀𝑳𝒁

V

𝑳𝚺𝑲𝑳𝑿
V
� 𝑳𝑲𝑳𝒀 𝑳𝚺𝑲𝑳𝒁

V

m𝑳 [m𝑲 [s𝛀 [m𝑳 [𝑔]]]]

𝑳𝝋𝑳𝒁𝑳𝝋𝑳𝑿�id

m𝑳 [s𝚺 [m𝑲 [m𝑳 [𝑔]]]]

As 𝑳𝑲 and 𝑲𝑳 are naturally monoidally isomorphic to the identity, and 𝑳𝝋𝑳𝑿 = 𝝍𝑿 by defini-
tion, the diagram simplifies to

𝛀𝑳𝑿
V
� 𝑳𝒀 𝛀𝑳𝒁

V

𝑳𝚺𝑿
V
� 𝑳𝒀 𝑳𝚺𝒁

V

s𝛀 [m𝑳 [𝑔]]

𝝍𝑍𝝍𝑋�id

m𝑳 [s𝚺 [𝑔]]

which is exactly the strength-preservation (‡) we sought. The functor 𝑳 with natural transfor-
mation 𝝍 is thus a lifting of 𝚺 to 𝛀 in the category SynMod, so Corollary 6.3.2 can be applied to
deduce the corresponding mapping of synthetic 𝚺-monoids 𝑵 in C𝑻

|C to synthetic 𝛀-monoids

𝑳𝑵 inV|V. The underlying Σ-monoid 𝑁 ∈ C is mapped to 𝐿(𝑁,𝑛 : 𝑁 ⊕ 𝐽 𝑁⊕𝜂
𝑁 ⊕𝑁 𝜇

𝑁),

336 appendices

an Ω-monoid in V, with unit, multiplication, and Ω-algebra structure

𝑢 [𝜂] : 𝐼 → 𝐿(𝑁,𝑛) m𝑳 [𝜇]
V
: 𝐿(𝑁,𝑛) ⊗ 𝐿(𝑁,𝑛) → 𝐿(𝑁,𝑛)

Ω(𝐿(𝑁,𝑛)) = 𝛀𝑳𝑵
V
→ 𝑳𝚺𝑵

V
→ 𝑳𝑵

V
= 𝐿(𝑁,𝑛)

Invertibility Since the underlying functors of the mappings are the monoidally inverse func-
tors 𝑲 and 𝑳, the round trips on objects are isomorphic. Similarly, the multiplication opera-
tions m𝑳 [−] and m𝑲 [−] compose to the isomorphism of sets C𝑻 (𝑱 ,𝒁) � C𝑻 (𝑱 ,𝑲𝑳𝒁) and
PMLin(𝑿 , 𝒀 ;𝒁) � PRLin(𝑲𝑳𝑿 ,𝑲𝑳𝒀 ;𝑲𝑳𝒁), and similarly for the other direction. Thus, the
equivalence of categories Σ-Mon(C) ' Ω-Mon(V) is established.

□

§ Proof of Theorem 10.3.1 on page 201

Theorem 10.3.1
For all𝑊 ∈ Fam, the lifted functor (−)𝑊 : I/Mod𝑆 → I/Mod𝑆 is a synthetic monoidal
endofunctor on I/Mod𝑆 .

PRoof The unit transformation𝑢 : I→ I𝑊 is the component𝜅𝑊
I
. Themultiplication operator

is defined as:

𝑚[−] : PMLin(X, Y;Z) → PMLin(X𝑊 , Y𝑊 ;Z𝑊)
𝑚[𝑓 : X ⊕ Y→ Z] (Γ, 𝑙 ∈ X𝑊 (Γ), 𝜔 : (Y𝑊)Γ

Δ)Θ (𝑤 ∈𝑊 (Θ)) ≜ 𝑓
(
Γ + Θ, 𝑙 𝑤, 𝜔 b𝑤c ⋊ 𝜄Δ,Θ1

)
Explicitly, 𝑙 𝑥 ∈ X(Γ +Θ) has to be associated with a substitution rule YΓ+Θ

Δ+Θ, constructed as
the right widening of the substitution and renaming rules:

I𝛼Γ
𝜔 (Y𝑊)𝛼 (Δ) −𝑤

Y𝛼 (Δ + Θ) I𝛼Θ
𝜄Δ,Θ1

I𝛼 (Δ + Θ)

With the notational conventions for partially applied parametrised maps, the definition is:

𝑚[𝑓]{𝜔}b𝑤c (𝑙) ≜ 𝑓 {𝜔 b𝑤c ⋊ inr}(𝑙 𝑤)

We next show the synthetic monoidal axioms.

• For all pointedmultilinearmaps𝑔 : X⊕Y→ Z and pointedmodule homomorphismsℎ : Z→
Y, if the diagram on the left commutes, so must the diagram on the right:

I ⊕ Y X ⊕ Y

Y Z

𝜂X⊕Y

𝜆Y 𝑔

ℎ

I ⊕ Y𝑊 X ⊕ Y𝑊 X𝑊 ⊕ Y𝑊

Y𝑊 Z𝑊

𝜂X⊕id

𝜆
Y𝑊

𝜅𝑊
X
⊕id

𝑚[𝑔]

ℎ𝑊

detailed pRoofs 337

Assume that for all 𝑣 ∈ I𝛼Γ, 𝜎 ∈ YΓ Δ, 1⃝ ℎ(𝑔{𝜎}(𝜂 𝑣)) = 𝜎 𝑣 . Then, for all 𝑢 ∈ I𝛼Γ, 𝜔 ∈
(Y𝑊)Γ

Δ and𝑤 ∈𝑊 (Θ), we have:

ℎ𝑊 b𝑤c
(
𝑚[𝑔] ((𝜅 ⊕ id) (𝜂 𝑢,𝜔))

)
= ℎ

(
𝑚[𝑔]{𝜔}b𝑤c (𝜅 (𝜂 𝑢))

)
= ℎ

(
𝑔{𝜔 b𝑤c ⋊ inr}(𝜅 (𝜂 𝑢)𝑤)

)
(𝑚[𝑔]≜)

= ℎ
(
𝑔{𝜔 b𝑤c ⋊ inr}(X〈inl〉(𝜂 𝑢))

)
(𝜅≜)

= ℎ
(
𝑔{(𝜔 b𝑤c ⋊ inr) ◦ inl}(𝜂 𝑢)

)
(𝑔 right linear)

= ℎ
(
𝑔{𝜔 b𝑤c}(𝜂 𝑢)

)
(widening property)

= 𝜔 b𝑤c𝑢 (1⃝ with 𝜎 ≜ 𝜔 b𝑤c)

• For all pointedmultilinearmaps𝑔 : X⊕Y→ Z and pointedmodule homomorphismsℎ : X→
Z, if the diagram on the left commutes, so must the diagram on the right:

X Z

X ⊕ I X ⊕ Y

ℎ

𝜌X

X⊕𝜂Y

𝑔

X𝑊 Z𝑊

X𝑊 ⊕ I X𝑊 ⊕ Y X𝑊 ⊕ Y𝑊

ℎ𝑊

𝜌
X𝑊

id⊕𝜂Y id⊕𝜅𝑊
Y

𝑚[𝑔]

Assume that for all 𝑡 ∈ X𝛼Γ, 𝑔((X ⊕ 𝜂Y)(𝜌X
𝑡)) = ℎ 𝑡 , or equivalently, 2⃝ 𝑔{𝜂} 𝑡 = ℎ 𝑡 . Then,

for all 𝑙 ∈ (X𝑊)𝛼Γ and𝑤 ∈𝑊 (Θ), we have:

𝑚[𝑔]{𝜅 ◦ 𝜂}b𝑤c (𝑙)
= 𝑔{(𝜅 ◦ 𝜂) b𝑤c ⋊ inr}(𝑙 𝑤) (𝑚[𝑔]≜)

= 𝑔{(X〈inl〉 ◦ 𝜂) ⋊ inr}(𝑙 𝑤) (𝜅≜)

= 𝑔{(𝜂 ◦ inl) ⋊ inr}(𝑙 𝑤) (𝜂 naturality)

= 𝑔{𝜂}(𝑙 𝑤) (widening property)

= ℎ(𝑙 𝑤) (2⃝ with 𝑡 ≜ 𝑙 𝑤)

= ℎ𝑊 b𝑤c𝑙

• For all pointedmultilinear maps 𝑒 : U⊕V→ X, 𝑓 : V⊕W→ Y,𝑔 : X⊕W→ Z,ℎ : U⊕Y→ Z,
if the diagram on the top commutes, so must the diagram on the bottom:

(U ⊕ V) ⊕W U ⊕ (V ⊕W)

X ⊕W Z U ⊕ Y

𝛼U,V,W

𝑒⊕W U⊕𝑓

𝑔 ℎ

(U𝑊 ⊕ V𝑊) ⊕W𝑊 U𝑊 ⊕ (V𝑊 ⊕W𝑊)

X𝑊 ⊕W𝑊 Z𝑊 U𝑊 ⊕ Y𝑊

𝛼
U𝑊 ,V𝑊 ,W𝑊

𝑚[𝑒]⊕id id⊕𝑚[𝑓]

𝑚[𝑔] 𝑚[ℎ]

338 appendices

Assume that for all 𝑡 ∈ U𝛼Γ and substitution rules 𝜎 ∈ VΓ Δ,𝜍 ∈ WΔ Θ, we have the
top diagram identity 𝑔(𝑒 ⊕ V)((𝑡, 𝜎), 𝜍) = ℎ((U ⊕ 𝑓) (𝛼 ((𝑡, 𝜎), 𝜍))) or equivalently, 3⃝
𝑔{𝜍}(𝑒{𝜎}𝑡) = ℎ{𝑓 {𝜍} ◦𝜎}𝑡 . We show that for all 𝑙 ∈ (U𝑊)𝛼 (Γ), 𝜔 ∈ (V𝑊)Γ

Δ , 𝜛 ∈ (W𝑊)Δ
Θ

and𝑤 ∈𝑊 (Ξ), we have:

𝑚[𝑔]{𝜛}b𝑤c
(
𝑚[𝑒]{𝜔} 𝑙

)
= 𝑔{𝜛b𝑤c ⋊ inr}(𝑚[𝑒]{𝜔}b𝑤c 𝑙) (𝑚[𝑔]≜)

= 𝑔{𝜛b𝑤c ⋊ inr}(𝑒{𝜔 b𝑤c ⋊ inr}(𝑙 𝑤)) (𝑚[𝑒]≜)

= ℎ{𝑓 {𝜛b𝑤c ⋊ inr} ◦ (𝜔 b𝑤c ⋊ inr)}(𝑙 𝑤) (3⃝)

= ℎ{(𝑓 {𝜛b𝑤c ⋊ inr} ◦ 𝜔 b𝑤c) ⋊ inr}(𝑙 𝑤) (Lem. 10.3.2)

= ℎ{(𝑚[𝑓]{𝜛} ◦ 𝜔) b𝑤c ⋊ inr}(𝑙 𝑤) (𝑚[𝑓]≜)

=𝑚[ℎ]{𝑚[𝑓]{𝜛} ◦ 𝜔}b𝑤c 𝑙 (𝑚[ℎ]≜)

where the application of Lemma 10.3.2 is preconditioned on (𝜛b𝑤c ⋊ 𝜄Θ,Ξ1) ◦ 𝜄
Δ,Ξ

1 = 𝜂W ◦ 𝜄Θ,Ξ1 ,
which follows by a reduction axiom of widening.

Thus, we conclude that (−)𝑊 is a synthetic monoidal functor on I/Mod𝑆 . □

§ Proof of Proposition 10.3.10 on page 205

Proposition 10.3.10 For 𝑈 ,𝑊 ∈ Fam, there is an elevator in SynMod from the (𝑈 −•)-relative
I/Mod𝑆-module endofunctor (𝑈 ⊸) : Fam → Fam to the (𝑊 −•)-relative I/Mod𝑆-module end-
ofunctor (𝑊 ⊸) : Fam→ Fam.

PRoof The underlying elevator from ((𝑈 ⊸), (𝑈 −•)) to ((𝑊 ⊸), (𝑊 −•)) consists of a syn-
thetic monoidal transformation e𝑈 −•

𝑊 : 𝑈 −• (𝑊 −• (−)) =⇒𝑊 −• (𝑈 −• (−)) and a synthetic
module transformation e𝑈 ⊸

𝑊 : 𝑈 ⊸(𝑊 ⊸ (−)) =⇒ 𝑊 ⊸ (𝑈 ⊸(−)). The multiplication-
preservation of the former implies that of the latter, similarly to how the strength laws of
Proposition 10.3.8 derive from the monoidal laws of Theorem 10.3.1.

We therefore show that the exchange preserves the unit and multiplication operators as-
sociated with the composite near-genuine functors 𝑈 −• (𝑊 −• (−)) and𝑊 −• (𝑈 −• (−)).
For clarity we will write 𝜅 and𝑚[−] for the unit and multiplication of (𝑊 −•), and 𝜘 and 𝑛[−]
for those of (𝑈 −•), using exponentiation notation with the hom direction implicit. The laws
instantiate to the following, with 𝑓 : X ⊕ Y→ Z a pointed multilinear map:

I I𝑈 (I𝑊)𝑈

I𝑊 (I𝑈)𝑊

𝜘I

𝜅I

(𝜅I)𝑈

e𝑈 ,𝑊
I

(𝜘I)𝑊

(X𝑊)𝑈 ⊕ (Y𝑊)𝑈 (Z𝑊)𝑈

(X𝑈)𝑊 ⊕ (Y𝑈)𝑊 (Z𝑈)𝑊

𝑛[𝑚[𝑓]]

e𝑈 ,𝑊
X
⊕e𝑈 ,𝑊

Y
e𝑈 ,𝑊
Z

𝑚[𝑛[𝑓]]

Taking 𝑣 ∈ I𝛼Γ,𝑤 :𝑊 (Δ) and 𝑢 : 𝑈 (Θ), the unit law reduces as follows:

𝑒 (𝜅𝑈 (𝜘 𝑣))𝑤 𝑢
= 𝛼Θ,Γ,Δ((𝜅𝑈 (𝜘 𝑣)) 𝑢𝑤) (𝑒≜)

bibl iogRaphy 339

= 𝛼Θ,Γ,Δ(𝜅 (𝜘 𝑣 𝑢)𝑤)
= 𝛼Θ,Γ,Δ(𝜄Θ+Γ,Δ2 (𝜄Θ,Γ1 𝑣)) (𝜅, 𝜘≜)

= 𝜄Θ,Γ+Δ1 (𝜄Γ,Δ2 𝑣) (monoidal coherence)

= 𝜘(𝜅 𝑣 𝑤) 𝑢 (𝜅, 𝜘≜)

= 𝜘𝑊 (𝜅 𝑣)𝑤 𝑢

For the multiplication, we take 𝑙 ∈ ((X𝑊)𝑈)𝛼Γ, 𝜔 ∈
(
(Y𝑊)𝑈

)Γ
Δ, 𝑤 : 𝑊 (Θ), 𝑢 : 𝑈 (Ξ), and a

pointed multilinear map 𝑓 : X Y Z:

𝑒 (𝑛[𝑚[𝑓]]{𝜔} 𝑙)𝑤 𝑢
= Z〈𝛼Ξ,Δ,Θ〉

(
𝑛[𝑚[𝑓]]{𝜔}b𝑢c 𝑙 𝑤

)
(𝑒≜)

= Z〈𝛼Ξ,Δ,Θ〉
(
𝑚[𝑓]{𝜄Ξ,Δ2 ⋉ 𝜔 b𝑢c}b𝑤c (𝑙 𝑢)

)
(𝑛[𝑚[𝑓]]≜)

= Z〈𝛼Ξ,Δ,Θ〉
(
𝑓 {(𝜄Ξ,Δ2 ⋉ 𝜔 b𝑢c) b𝑤c ⋊ 𝜄Ξ+Δ,Θ1 }(𝑙 𝑢 𝑤)

)
(𝑚[𝑓]≜)

= 𝑓 {Y〈𝛼Ξ,Δ,Θ〉 ◦ ((𝜄Ξ,Δ2 ⋉ 𝜔 b𝑢c) b𝑤c ⋊ 𝜄Ξ+Δ,Θ1)}(𝑙 𝑢 𝑤) (𝑓 multilinear)

= 𝑓 {
(
𝜄Ξ,Δ+Θ2 ⋉ ((𝑒 ◦ 𝜔) b𝑤c ⋊ 𝜄Δ,Θ1) b𝑢c

)
◦ 𝛼Ξ,Γ,Θ}(𝑙 𝑢 𝑤) (†)

= 𝑓 {𝜄Ξ,Δ+Θ2 ⋉ ((𝑒 ◦ 𝜔) b𝑤c ⋊ 𝜄Δ,Θ1) b𝑢c}(X〈𝛼Ξ,Γ,Θ〉(𝑙 𝑢 𝑤)) (𝑓 multilinear)

= 𝑓 {𝜄Ξ,Δ+Θ2 ⋉ ((𝑒 ◦ 𝜔) b𝑤c ⋊ 𝜄Δ,Θ1) b𝑢c}(𝑒 𝑙 𝑤 𝑢) (𝑒≜)

= 𝑛[𝑓]{(𝑒 ◦ 𝜔) b𝑤c ⋊ 𝜄Δ,Θ1 }(𝑒 𝑙 𝑤) 𝑢 (𝑛[𝑓]≜)

=𝑚[𝑛[𝑓]]{𝑒 ◦ 𝜔}b𝑤c (𝑒 𝑙) 𝑢 (𝑚[𝑛[𝑓]]≜)

where the inner equality of widenings at † computes as follows:

Y〈𝛼Ξ,Δ,Θ〉 ◦ ((𝜄Ξ,Δ2 ⋉ 𝜔 b𝑢c) b𝑤c ⋊ 𝜄Ξ+Δ,Θ1)
= Y〈𝛼Ξ,Δ,Θ〉 ◦ (((𝜄Ξ+Δ,Θ2 ◦ 𝜄Ξ,Δ2) ⋉ 𝜔 b𝑢c b𝑤c) ⋊ 𝜄

Ξ+Δ,Θ
1) (Lem. 10.3.1)

= ((𝛼Ξ,Δ,Θ ◦ 𝜄Ξ+Δ,Θ2 ◦ 𝜄Ξ,Δ2) ⋉ (Y〈𝛼Ξ,Δ,Θ〉 ◦ 𝜔 b𝑢c b𝑤c)) ⋊ (𝛼Ξ,Δ,Θ ◦ 𝜄Ξ+Δ,Θ1) (widening lemma)

= ((𝜄Ξ,Δ+Θ2 ⋉ (Y〈𝛼Ξ,Δ,Θ〉 ◦ 𝜔 b𝑢c b𝑤c)) ⋊ (𝜄Ξ,Δ+Θ1 ◦ 𝜄Δ,Θ1)) (cocartesian coherence)

=
(
𝜄Ξ,Δ+Θ2 ⋉ ((Y〈𝛼Ξ,Δ,Θ〉 ◦ 𝜔 b𝑢c b𝑤c) ⋊ (𝜄Ξ,Δ+Θ1 ◦ 𝜄Δ,Θ1))

)
◦ 𝛼Ξ,Γ,Θ (reassociation)

=
(
𝜄Ξ,Δ+Θ2 ⋉ ((𝑒 ◦ 𝜔) b𝑤c b𝑢c ⋊ 𝜄Ξ,Δ+Θ1 ◦ 𝜄Δ,Θ1)

)
◦ 𝛼Ξ,Γ,Θ (𝑒≜)

=
(
𝜄Ξ,Δ+Θ2 ⋉ ((𝑒 ◦ 𝜔) b𝑤c ⋊ 𝜄Δ,Θ1) b𝑢c

)
◦ 𝛼Ξ,Γ,Θ (Lem. 10.3.1)

□

	thesis_final copy
	Introduction
	The challenge
	Our solution
	Outline

	Background
	Intrinsic syntax
	The presheaf model
	Related work

	I Mathematical foundations
	Lifting of algebras
	Distributive laws and liftings
	Adjunctions
	Initial algebras
	Free distributive laws

	Powering and enrichment
	Biclosed modular categories
	Powered clone monad
	Powered monad morphisms

	II Skew constructions
	Skew-monoidal closed structure
	Skew categories
	Monoids and modules

	Synthetic constructions
	Synthetic monoidal categories
	Synthetic modular categories
	Synthetic liftings

	Warped constructions
	Skew warpings
	Warped adjoint triples

	III The familial model
	Presheaves
	Calculus of categories
	Categorical structures
	Nerves and realisations

	Substitution
	Substitution through universality
	Substitution from first principles
	Substitution through warping

	Discrete families
	Families as a model of syntax
	Skew parametrisation
	Convolutional structure

	Abstract syntax
	Second-order abstract syntax and its models
	Metatheory by initiality
	Second-order syntax

	IV Applications
	Computer formalisation
	Familial model
	Initial algebra semantics
	Generic signatures

	Examples
	Formal systems and second-order calculi
	Generic operations

	Conclusions
	Summary of contributions
	Future directions
	Final remarks

	Appendices
	Detailed proofs

