
C������� S������ T����� – P��� III

Semantics of temporal type systems

Dmitrij Szamozvancev
Downing College

A dissertation submitted to the University of Cambridge
in partial ful�lment of the requirements for

Computer Science Tripos, Part III

University of Cambridge
Department of Computer Science and Technology

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
U����� K������

Email: ds709@cam.ac.uk

May 31, 2018

Declaration

I, Dmitrij Szamozvancev of Downing College, being a candidate for Computer Science Tripos,
Part III, hereby declare that this report and the work described in it are my own work, unaided
except as may be speci�ed below, and that the report does not contain material that has already
been used to any substantial extent for a comparable purpose.

Total word count: 11,874

Signed:

Date:

This dissertation is copyright ©2018 Dmitrij Szamozvancev.
All trademarks used in this dissertation are hereby acknowledged.

Abstract

Writing interactive programs is challenging for two main reasons: one needs
to think about the state of the system over a long period of time, and the
source code has to be structured around event-handling constructs instead
of the natural �ow of the program. Functional reactive programming (FRP)
is a declarative paradigm that aims to overcome these problems: the purely
functional setting simpli�es reasoning about system state, and programs can
be composed from time-varying values and events in an intuitive manner.
Unfortunately, the elegant semantics of pure FRP do not translate into an
e�cient implementation, so most practical systems have to �nd a compromise
between ease of use and performance. Moreover, crucial temporal properties
such as causality are not enforced by the basic FRP formulation.

We present a functional reactive programming framework with static
guarantees of temporal properties and a sound denotational semantics that
can be implemented in an e�cient way. It combines ideas from recent research
into the theoretical basis of FRP such as reactive types, temporal categories
and delay operators. We eliminate the need for polling – usually required
with an inductive implementation of FRP types – by expressing events as
a “value with some delay” packaged into an existential type. Our surface
language abstracts away the granular notion of time and lets users handle
events and behaviours in a high-level, statically correct way. The system is
formalised in Agda, including the typed abstract syntax, equational theory
and full categorical semantics.

This work sets the basis for further research that would culminate in an
reactive programming framework that retains both the intuitive semantics of
pure FRP and the e�ciency of continuation passing style implementations.

Acknowledgements

I would like to thank my supervisor, Neel Krishnaswami, for his guidance
of my work throughout the duration of this project. He helped me get up to
speed with Agda and the practical aspects of language formalisation, which
gave me a taste of programming language research. I always left our weekly
meetings with a whole host of new ideas and suggestions on how to solve
a di�culty I encountered or how to proceed with the implementation. Of
course, I have Neel to thank for the project idea as well – it has been really
rewarding to work in and contribute to his exciting and active �eld of research.

I am also grateful tomy friends and family for their continuing support and
encouragement. Michael Gale was always on handwhen I wanted to complain
about a particularly ugly Agda error message or express my excitement upon
discovering a nice theoretical property of something I’ve been using for
months. My parents provided some much needed emotional support in my
moments of frustration – “Muuum, I’m stuck on a proof again” is something
they must have become used to hearing by now. I am lucky to be surrounded
by a great bunch of people at Downing College, who made my undergraduate
years really enjoyable. Finally, I would like to take this opportunity to thank
the Cambridge Bursary Scheme and Dr Jan Hruska for supporting my studies
during my four years at Cambridge, which would not have been possible
without their generosity.

Contents

1 Introduction 11
1.1 Project description . 12

2 Background 13
2.1 Modal and temporal logics . 13
2.2 Functional reactive programming . 14

2.2.1 Main principles . 14
2.2.2 Implementations . 15

2.3 Temporal Curry–Howard correspondence . 15
2.4 Agda formalisation . 16

3 Syntax 17
3.1 Types and terms . 17

3.1.1 Types and contexts . 17
3.1.2 Terms and typing rules . 18
3.1.3 Agda formalisation . 22
3.1.4 Substitution . 24

3.2 Term equality . 25
3.2.1 Reduction rules . 25
3.2.2 Expansion rules . 27
3.2.3 Equality relation . 27
3.2.4 Agda implementation . 28

4 Categorical foundations 29
4.1 Modalities in category theory . 29

4.1.1 The Curry–Howard–Lambek correspondence for modal logic 29
4.1.2 Monads as modalities? . 30
4.1.3 More general notion of strength . 32
4.1.4 Temporal categories . 32

4.2 The category of reactive types . 34
4.2.1 The base category . 35
4.2.2 Modalities . 35

5 Semantics 43
5.1 Semantics of types and terms . 43

10

5.1.1 Types and contexts . 43
5.1.2 Terms . 44
5.1.3 Substitutions . 45

5.2 Soundness of term equality . 46

6 Conclusions 49
6.1 Related work . 49
6.2 Future work . 50

Appendices 55
A Category theory . 55
B Substitution . 61
C Proofs . 71

������� 1

Introduction

Most programs we encounter in our day-to-day lives are interactive: they are in constant
communication with the environment, receiving input and producing output. One of the main
challenges in developing such systems is that di�erent components will be executed at di�erent
times: we need to reason about the state of our program over a long series of state changes.
Moreover, in imperative languages, complex interactive program �ow often requires a fragile
network of interconnected event producers, callback functions and sequential code.

Functional reactive programming (FRP) is a paradigm which enables writing interactive
programs in a high-level, declarative manner (Elliott and Hudak, 1997). Instead of having
callbacks and an event loop, we manipulate time-varying values directly, either as continuous
signals (behaviours) or discrete occurrences (events). Combinators for switching, sampling,
etc. are used to write reactive programs in a natural, intuitive manner, explicitly indicating
their dependence on time. The pure nature of the paradigm also means that we do not have to
worry about mutable system state over time, and the concurrency model remains simple.

However, FRP is not the perfect solution: the improvement in �exibility and ease of pro-
gramming is sometimes counteracted by performance issues. The elegant, high-level semantics
translate into a suboptimal implementation which su�ers from problems such as memory
leaks, high latency and unpredictable resource use. Pure FRP also allows programs which
violate causality, a basic principle of reactive programming: we can describe systems whose
output depends on future input. Alternative formulations of FRP may change the underlying
implementation or constrain the kinds of programs that can be written to ensure performance
and correctness.

One of the main lines of FRP research is developing specialised type systems that statically
enforce causality and e�cient resource usage. Je�rey (2012) and Jeltsch (2012) independently
discovered a formal connection between linear temporal logic (LTL) and type systems for
FRP: LTL propositions can be interpreted as types for FRP programs, with the modalities
corresponding to the event and behaviour types. This eliminates non-causal programs – whose
types would correspond to invalid temporal propositions – but ignores matters of performance.
Speci�cally, the usual inductive-coinductive de�nition of possibility corresponds to a rather
ine�cient event type: handling an event would require constant polling, which is wasteful for
most interactive applications.

12 ������������

1.1 P������ �����������

This project aims to develop a type system based on temporal logic, along with a denotational
semantics that allows for an e�cient implementation of a reactive programming language. The
type system is based on the judgemental modal logic of Pfenning and Davies (2001) and higher-
order FRP language of Krishnaswami (2013): its types and constructs enforce the correctness
properties of temporal logic such as causality and inaccessibility of non-persistent values. The
language is interpreted in the category of time-dependent types utilising a novel de�nition
of the event modality which uses Krishnaswami’s delay operator. This formulation of events
avoids any induction or recursion which would have to be handled by constant polling. In the
future, we plan to show that the de�nition can be translated to continuation passing style as
suggested by Paykin, Krishnaswami, and Zdancewic (2016), thereby combining the intuitive
semantics of FRP with an e�cient implementation.

Our main contributions are the following:

• An Agda formalisation of Pfenning and Davies’ judgemental modal logic with proof
terms, explicit substitutions and equational theory.

• A concrete model of LTL in the category of reactive types with an adjunction-induced
comonad ⇤ and non-inductive ⇤-strong monad ^.

• Machine-checked, sound categorical semantics of the syntax in our reactive category.

������� 2

Background

This section introduces the context of our research: the relationship of temporal logic and
functional reactive programming.

2.1 M���� ��� �������� ������

Modal logic is an extension of classical propositional and predicate logic with truth quali�ers
called modalities: operators that can be applied to a logical statement in order to change its
mode of truth. The two basic modalities are necessity and possibility: for example, for any logical
statement S , ⇤S means “S is necessarily true”, and ^S means “S is possibly true”. These general
modalities can be specialised to concrete �elds of study, such as time (always, eventually), duty
(obligatory, permissible) and provability (provable).

Despite the di�erent linguistic interpretations, most subtypes of modal logic can be given a
general semantics based on possible worlds and a transition relation (Kripke semantics), or
described in an axiomatic framework. In the latter case, we extend the Hilbert-style proof
system for propositional logic with a dual pair of (interderivable) modal operators and two
axioms:

• ¬^A = ⇤¬A, ¬⇤A = ^¬A
• N (necessity): if P is a theorem, then so is ⇤P

• K (distribution): ⇤(P ! Q)! (⇤P ! ⇤Q)
This is the most basic type of modal logic, known as K – we get other types by adding new
axioms expressing the desired properties of our domain. For example, axiom T = ⇤P ! P
(re�exivity) states that if P is necessarily true then P is also the case; axiom 4 = ⇤P ! ⇤⇤P
(transitivity) states that necessity of P implies the necessity that P always holds. Adding these
axioms to K brings us to S4 modal logic, which can be interpreted as a model of time.

Temporal logic is the logic of time-dependent propositions, and its basic modalities are
always (⇤) and eventually (^). The classic example of a time-dependent statement is P = “It is
raining.” – clearly, this is not universally true, but it can change from time to time. ⇤P then
means “It is always raining”, while ^P asserts that “It will eventually rain.” Modalities can be
iterated and sequenced, as they are part of the syntax; for example, ^⇤P states that “It will
always be the case that it will eventually rain” (i.e. it will rain in�nitely often). A more general
modality is until (U): PUQ holds if Q eventually holds and P holds at least until then. Both

14 ����������

necessity and possibility can be derived from U: ^P = >UP and ⇤P = PU?.
Temporal logic is widely employed in the �eld of formal speci�cation, where it is used to

express the requirements of a system in a rigorous and veri�able way (Pnueli, 1977). Anytime
we want to state a property of a system that involves time (either implicitly or explicitly),
we may express it as a temporal statement. For example, “The payment confirmation screen
must only be shown a�er the transaction has been completed” or “Once the transaction is
completed, a confirmation email should be sent to the user’s account.” Verifying that a system
�ts a given speci�cation is the task of model checking, which is an important �eld of research
in diverse �elds such as formal systems, hardware design and security protocols.

2.2 F��������� �������� �����������

2.2.1 Main principles

Functional reactive programming (FRP) is a paradigm for asynchronous data�ow programming,
centred around the manipulation of time-dependent values such as signals and events. It was
introduced by Elliott and Hudak (1997) for the purpose of describing animations in a high-level,
declarative way, specifying what the animation should look like instead of how it must be
implemented. Elliott and Hudak encompass the core ideas of FRP in the following principles:

Temporal modelling The main primitives of FRP are time-dependent values called behaviours
or signals. The value of behaviours varies continuously with time, so they can naturally
represent things like velocity, mouse position, value streams, etc.

Event modelling FRP events mark the occurrence of something that should change the
behaviour of a program. Examples of events are mouse clicks, collisions, temporal predicates
(such as “every 5 seconds”), etc.

Declarative reactivity Reactivity of FRP programs comes from changing some behaviour in
response to an event occurring. This should be expressed declaratively, in terms of temporal
composition instead of state changes.

Denotational design (Elliott, 2009a) The emphasis should be put on the meaning of a pro-
gram instead of its implementation, and the meaning of a program should derive from the
meaning of its components.

Since Elliot and Hudak introduced these ideas, the functional reactive paradigm has been
applied to many other domains including music (Quick and Hudak, 2013), robotics (Hudak,
Courtney, et al., 2002) and graphical user interfaces (Czaplicki and Chong, 2013). However,
the various implementations (usually as libraries) often deviate from the original principles of
FRP (Elliott, 2015). The reason for the di�erences is that mathematical elegance does not imply
e�cient implementation, and this is a compromise that has long plagued the FRP community.
The next section explores this tension and some proposed solutions.

�������� �����–������ �������������� 15

2.2.2 Implementations

Functional reactive programming systems have two main implementations (Jeltsch, 2011):
pull-based or demand-driven, and push-based or data-driven.

Pull-based implementations treat behaviours as streams of values, usually expressed as
functions of time. The primary advantage of this approach is that it is corresponds well to
the denotational semantics of time-dependent behaviours: for example, the “meaning” of an
animation is a time-dependent image, and it is implemented as a function of type Time! Image.
This makes it easy to de�ne various FRP combinators, and simpli�es the development of even
large reactive systems.

However, pull-based FRP su�ers from signi�cant performance issues. The consumers must
regularly poll the streams to react to changes; while this is e�ective for continuously changing
values (such as mouse position), it is very wasteful for infrequent events (such as a button
press). At the same time, the size of the polling interval imposes latency on the system: it
cannot react to events instantaneously, only within one half of the polling interval on average.

Push-based implementations are at the opposite end of the spectrum: they are e�cient,
but sacri�ce a lot of the denotational elegance and ease of use that pull-based FRP provides.
Instead of composing continuously varying behaviours and reacting to events, we use callback
functions to handle events as soon as they happen, without needing to sample the value streams.
For large systems, this can easily result in the notorious “callback hell”, a common issue in
asynchronous reactive programming.

There have been several attempts to address these issues. Push-pull FRP (Elliott, 2009b)
combines the advantages of both methods by treating discrete and continuous behaviours
separately. Real-time and event-driven FRP (Wan, Taha, and Hudak, 2002) is based on an
operational semantics for a standalone FRP language which has explicit time- and space
guarantees – this makes the implementation suitable for real-time and embedded systems.
Arrowised FRP (Nilsson, Courtney, and Peterson, 2002) tackles space leaks, which occur when
signals accumulate all past values unnecessarily. In AFRP, programs are composed from signal
functions instead of signals, which also �t the arrow abstraction of Hughes (2000) and therefore
bene�t from generic combinators and a special syntactic treatment in Haskell (Paterson, 2001).

A considerable part of current FRP research is on developing new libraries or improving
existing FRP implementations. However, a lot of work is done on exploring the logical and type-
theoretic foundations of FRP: what theoretical features correspond to what desired properties of
the implementation (e.g. avoiding spacetime leaks, fairness, causality, type safety, etc.). Again,
we encounter the tension between theoretical models and practical implementations: many
formal languages developed in FRP research propose or rely on features which are hard to
implement e�ciently.

2.3 T������� C����–H����� ��������������

There is a common thread in the �elds of temporal logic and functional reactive programming:
manipulating or reasoning about time. The two modalities of temporal logic (always and
eventually), and the two �rst-class primitives of FRP (behaviours and events) also exhibit a
clear connection: behaviours always have values, while events eventually have a value. These

16 ����������

parallels suggest a clear connection between the two concepts, and in the �eld of type theory
this really hints at a Curry–Howard correspondence between temporal logic and FRP. Indeed,
as discovered independently by Je�rey (2012) and Jeltsch (2012), linear temporal logic can be
developed into a type system for discrete-time functional reactive programming: ⇤ becomes
the behaviour type constructor, while ^ can be used to construct events.

Je�rey and Jeltsch propose the same basic idea: using not only reactive values, but reactive
types as well, i.e. type families indexed by discrete set of times. Je�rey uses this foundation to
build a dependently typed FRP framework where various temporal properties (such as causality
or decoupling) are enforced in the types. Jeltsch develops a common categorical semantics for
LTL and FRP, extending it with other features such as the Umodality or processes.

2.4 A��� �������������

All developments in this dissertation have been formalised in Agda (Norell, 2008), a dependently
typed programming language and proof assistant. We do not have space to describe the
implementation in great detail here; however, we do mention interesting aspects of the code
occasionally. One convenient feature of the language is its �exible Haskell-like syntax that
supports Unicode characters – this way, a lot of Agda code looks just like the mathematics it
describes. We take advantage of this syntactic freedom and use “pseudo-Agda” throughout the
dissertation, avoiding distracting implementation details like implicit arguments and function
extensionality, and formatting categorical expressions as normal mathematics instead of Agda
code. We believe this is su�cient to convey the main idea of the implementation without
getting bogged down in the details.

All code for this project was written by hand1, including a custom formalisation of basic
category theory which provided the basis of our semantics. The only external library used
(apart from the standard one) was Holes2 by Bradley Hardy (2017), which simpli�es applying
congruence rules in equational proofs.

In the next section, we start the discussion of our reactive language.

1https://bit.ly/�JgEaH�
2https://github.com/bch��/agda-holes

https://bit.ly/2JgEaH9
https://github.com/bch29/agda-holes

������� 3

Syntax

We begin our investigation of the semantics of temporal type systems by introducing a simple
language for reactive programming. This chapter presents the syntactic aspects of the language:
the type system, term grammar, substitution lemmas and term equality.

3.1 T���� ��� �����

The core of our language is the simply typed lambda calculus extended with with products,
sums, and additional types and constructs which support reactive programming. Importantly,
the notion of time is exposed in a limited way: every type is annotated with a temporal quali�er,
which denotes whether the expression of a reactive type is always well-typed, or just at
the current time step. This high-level treatment of time means that the temporal semantics
involving discrete time steps and delays are kept abstract. It also gives us static guarantees that
values are only used when they are available: for example, when handling future events, we
cannot refer to variables only accessible in the present. Hence, the temporal properties of our
domain are encoded in the type system, resulting in language for safe reactive programming.

This language is mainly based on the constructive modal logic of Pfenning and Davies
(2001), who describe a type theory based on a system of modal judgements in the style of Per
Martin-Löf (1998). In particular, we retain the distinction between true and valid judgements
(which translate into the now and always temporal quali�ers), and proof terms and proof
expressions (which become terms and computations). The temporal quali�ers were inspired by
Krishnaswami (2013), who also used a later quali�er for values available on the next time step.
As our aim is to hide the “granularity” of time, neither this quali�er, nor the one-step delay
term � appears in our syntax.

3.1.1 Types and contexts

Types The types of our language (Fig. 3.1) are standard unit, product, sum and function types.
In addition, we have two top-level types for events and stable types: these will correspond to
the temporal modalities in our denotational semantics. Stable types are inhabited by values
which do not change over time and are always available – these are the non-reactive entities
of our language. Events correspond to the usual event type constructor in FRP and represent
values that become available at some future time.

18 ������

Quali�ers The type language is supplemented by two temporal quali�ers (Fig. 3.2), which
denote the time when a term of a given type is available. Following Martin-Löf’s terminology,
a type with a temporal quali�er forms a judgement, which in a constructive setting is called a
typing judgement. A term of reactive type A now can be used as a term of type A at the present,
but it may not be available in the future; in particular, a variable available now is inaccessible
when an event happens. On the other hand, a term of persistent type A always will remain
available for all future times.

It is worth comparing this formulation the one described by Krishnaswami (2013). The ⇤
type constructor and stable quali�er are analogous to our persistent types. However, we replace
the discrete next-step operator • with a more abstract Event type which does not explicitly
mention time steps and delays. This lets us talk about future occurrences in the most general
way possible: an event happens at some time in the future, and a stable type is guaranteed
to be available at that time. As an important extension, we plan to adapt Krishnaswami’s
guarded temporal recursive type µ̂� .A in our syntax, using Event as the guarding operator
instead of •. This will allow us to de�ne more complex FRP constructs such as streams,
processes and resumptions ensuring that they are temporally well-founded. For example,
streams (time-dependent values) can be encoded as Stream A = µ̂� .A ⇥ � , which expands to
A ⇥ Event (A ⇥ Event (A ⇥ . . .)), expressing that a stream is a sequence of values separated
by some delays. As events are primitives in our language, we do not need to de�ne them
coinductively – this avoids the main source of ine�ciency of Krishnaswami’s system, the need
for recursive polling to react to events. As an alternative, we will also consider the fair reactive
programming system of Cave et al. (2014), who adopt separate least and greatest �xed points
which can express liveness properties of programs statically (such as distinguishing normal
and weak eventuality).

Contexts As is common in type theory and logic, we give the types of free variables in
open terms in a typing environment or context: for example, � ` M : A now means that in the
context �, the termM has type A at the current time. Environments are implemented as a list
of judgements, so each free variable has a temporally quali�ed type – this is crucial in the
de�nition of the typing rules, as it lets us restrict the availability of variables in subterms. An
important operation on contexts is stabilisation: removing all variables with the now quali�er,
leaving only ones that are always available. For instance, the term x : A⇥B now ` fst x : A now
is well-typed, but (x : A ⇥ B now) s ` fst x : A now is not, as the stabilisation discards the
reactive variable x from the context.

3.1.2 Terms and typing rules

The terms of our system also derive from the simply typed lambda calculus, extended with
the modal proof terms and expressions of Pfenning and Davies (Fig. 3.1). These entities are
translated into two mutually de�ned syntactic constructs called terms and computations: terms
are used to write programs for the current time step, while computations represent code that
runs when some future event is encountered. Every construct has an accompanying typing
rule, shown on Figs. 3.3 and 3.4.

����� ��� ����� 19

Basic terms The lambda calculus, product and sum terms are all standard so we will not
detail them here – more interesting are the terms dealing with reactivity. The extractM term
expresses the intuitive fact that if a type is always available, its value can be extracted at any
particular time. On the other hand, a term of persistent type can only be constructed from a
term which does not depend on reactive variables – thus, the term persistM has typeA always
only ifM has type A now in the stabilised context.

Stable types The stable type introduction and elimination terms express the inherent similar-
ity between the Stable type constructor and the always quali�er: both involve reasoning about
global time instead of just the present. The stable term turns any persistent type A always into
a reactive type Stable A now, and the stable binding let stable s = M in N lets us use a stable
termM : Stable A now in a body N as a persistent type variable s . Note that we cannot simply
convert Stable A now to A always, as that would not result in a sound and complete system
(see Pfenning and Davies, 2001, Section 4).

Events While stable types correspond to the always temporal quali�er, events are externalised
as a new kind of expression called a computation. The reason for this asymmetry is that necessity
(stable types) is more useful as an assumption, while possibility (events) usually appears as a
consequent. The judgement � ` C ÷ A now states that C is a computation that will produce
a term of type A now in the future. All such computations C ÷A now can be converted into
normal terms of type Event A now using the event constructor, and every normal termM : A q
can be turned into the trivial computation pureM ÷A q which returnsM immediately. These
two constructs let us move between the “realms” of terms and computations, but not without
explicitly enforcing that we cannot look into the future: a computation C ÷ A now (which
might only return a term tomorrow) can never be used as a term available today.

Given a termM : EventA now, we have no way of extracting its value directly, as it may not
be available in the present. But we are allowed to assume that the event will occur at some future
time and handle its returned value of type A now at that point. The binding let evt x = M inC
lets us use this future value in a computation C ÷ B now – however, the handler is going to
be run in the future, so it may not have access to the reactive variables present now. Thus,
we may only use persistent variables in the handler, i.e. it must be well-typed in the stabilised
context. Computations and events prevent us from looking into the future, while stabilisation
forces us to forget about the past.

We need to consider how computations interact with stable types: they should be available
at all times, yet our current stable binding only allows us to use them in the present. We
therefore add a version of destructor let stable s = M in C that binds a stable type in the
computation C .

The last expression in our grammar allow us to “race” two events and run di�erent code
based which one happens �rst. Whereas in nested event handlers, stabilisation removes the
outer event from the context of the inner handler, the select term makes both the value of
the occurred event and the “remainder” of the second event available. With the computation
selectM as x 7! C1 k N as � 7! C2 k both as x ,� 7! C3, we specify three di�erent handlers:
C1 runs ifM happens �rst, C2 runs if N happens �rst, and C3 runs if both events occur at the
same time.

20 ������

Types

A, B ::= Unit | A ⇥ B | A + B | A! B | Stable A | Event A

Terms

M, N ::= x | �x .M | M N
| fstM | sndM | [M,N]
| inlM | inrM | caseM of inl x 7! N1 k inr � 7! N2
| extractM | persistM | stableM
| let stable s = M in N | event C

Computations

C, D ::= pureM | let stable x = M in C | let evt x = M in C
| selectM as x 7! C1 k N as � 7! C2 k both as x ,� 7! C3

Figure 3.1 – Syntax of types, terms and computations.

Quali�ers

q ::= now | always

Contexts

�, � ::= · | �, x : A q

Context stabilisation

(·) s = ·
(�,x : A now) s = � s

(�,x : A always) s = � s,x : A always

Figure 3.2 – Judgements, contexts and stabilisation.

Term typing rules

x : A 2 �
(var)

� ` x : A

�,x : A now ` M : B now
(lam)

� ` �x .M : A! B now

� ` M : A! B now
� ` N : A now

(app)
� ` M N : B now

� ` M : A ⇥ B now
(fst)

� ` fstM : A now

� ` M : A ⇥ B now
(snd)

� ` sndM : B now

� ` M : A now � ` N : B now
(pair)

� ` [M,N] : A ⇥ B now

� ` M : A now
(inl)

� ` inlM : A + B now

� ` M : B now
(inr)

� ` inrM : A + B now

� ` M : A + B now
�,x : A ` N1 : C now
�,� : B ` N2 : C now

(case)
caseM of inl x 7! N1 k inr � 7! N2

� ` M : A always
(extract)

� ` extractM : A now

� s ` M : A now
(persist)

� ` persistM : A always

Figure 3.3 – Term typing rules.

����� ��� ����� 21

Term typing rules (continued)

� ` M : A always
(stable)

� ` stableM : Stable A now

� ` M ÷A now
(evt)

� ` eventM : Event A now

� ` M : Stable A now �, s : A always ` N : B now
(letsta)

� ` let stable s = M in N : B now

Computation typing rules

� ` M : A q
(pure)

� ` pureM ÷A q

� ` M : Stable A now �, s : A always ` C ÷ B now
(letsta’)

� ` let stable s = M in C ÷ B now

� ` M : Event A now � s,x : A now ` C ÷ B now
(letevt)

� ` let evt x = M in C ÷ B now

� ` M1 : Event A now � s,x : A now,� : Event B now ` C1 ÷C now
� ` M2 : Event B now � s,x : Event A now,� : B now ` C2 ÷C now

� s,x : A now,� : B now ` C3 ÷C now
(select)

� ` selectM as x 7! C1 k N as � 7! C2 k both as x ,� 7! C3 ÷C now

Figure 3.4 – Term and computation typing rules.

For example, we can race the events E1 = “A browser download finishes” and E2 = “The user
closes the browser”. If E2 happens �rst, we might want to display a con�rmation window, but
keep waiting for E2 and close the browser automatically as soon as it happens. If E1 happens
�rst, we might discard the pending event E2 and close the browser ourselves.

Examples We now give some example terms of our language, using the syntax de�ned above.
They mainly demonstrate the use of the temporal operators and binding constructs; by adding
other types and operations (such as Booleans and conditionals), we can imagine using these in
practical reactive programs as well.

current : Stable A! A now

current = �x . let stable s = x in (extract s)

joinEvts : Event (Event A)! Event A now

joinEvts = �x . event (let evt ee = x in (let evt e = ee in pure e))

22 ������

handleEvt : Event A! Stable (A! Event B)! Event B now

handleEvt = �x . ��. let stable fs = � in

event (let evt e = x in (let evt e0 = extract fs e in pure e0))

sampleAt : Stable A! Event B! Event (Stable A ⇥ B) now
sampleAt = �x . ��. event (let stable s = x in let evt e = � in (pure [s, e]))

Below are two incorrect speci�cations for event handling: thanks to the typing rules, there is
no term that can inhabit these types.

wrong1 : Event A! (A! Event B)! Event B now

wrong1 = �x . ��. event (let evt e = x in ???) (context is stabilised so � is not in scope)

wrong2 : Event A! Stable (A! Event B)! B now

wrong2 = �x . ��. (let stable s = � in ???) (cannot bind the event x in the present)

3.1.3 Agda formalisation

Describing formal calculi and programming languages is often quite cumbersome with standard
functional languages such as Haskell, especially when it comes to the treatment of variables
and binding. However, dependently typed languages with inductive families (Dybjer, 1994)
make it possible to encode terms and type systems in a very idiomatic, type- and scope-safe
way, eliminating the issues of naming and �-conversion via a typed de Bruijn representation
of variables (de Bruijn, 1972). Here we give a brief overview of the approach commonly used
in Agda, which stems from the developments of Bird and Paterson (1999), Bellegarde and Hook
(1994), and Altenkirch and Reus (1999).

Types and contexts The type and judgement representations are standard algebraic datatypes,
following the formal grammar of Fig. 3.1. Agda’s �exible mix�x operator declarations allow us
to very closely model the syntax of the language: for example, judgements are post�x operators
acting on a whole type:

data Judgement : Set where
_now : Type -� Judgement
_always : Type -� Judgement

Contexts are simple snoc-lists of judgements: as we are working with de Bruijn indices, we do
not need explicit (variable, type) pairs.

data Context : Set where
· : Context
, : Context -� Judgement -� Context

����� ��� ����� 23

Variables We can de�ne an inductive type for context membership: the typeA 2 � is inhabited
by a proof that the judgement A appears in the context �. We can have two cases: either A is
the top (last) element of the context, or it is somewhere in the tail.

data _2_ : Judgement -� Context -� Set where
top : 8{� A} -� A 2 �, A
pop : 8{� A B} -� A 2 � -� A 2 �, B

In fact, this is exactly what we need to represent variables. The proof of context membership
is an index into the typing environment, and the environment gets extended in every term
involving a binder, so this proof will be the de Bruijn index of the variable. Moreover, the
indexed representation means that (1) the index can never point out of the context, and (2) the
variable is statically typed.

Context operations Context operations are implemented as normal list transformations.
Stabilisation is simply a �ltering based on the quali�er of the top judgement:

_ s : Context -� Context
· s � ·
(�, A now) s � � s

(�, A always) s � � s, A always

An important predicate on contexts is the subcontext relation, � ✓ �. This predicate can be
de�ned as an order-preserving embedding (Chapman, 2009, Section 4.2), an inductive imple-
mentation of the category of weakenings described by Altenkirch, Hofmann, and Streicher
(1995). The embedding can be seen as a proof that � can be transformed into � by dropping
some elements and keeping others, without changing the order.

data _✓_ : Context -� Context -� Set where
refl : 8{�} -� � ✓ �
keep : 8{� �0 A} -� � ✓ �0 -� �, A ✓ �0, A
drop : 8{� �0 A} -� � ✓ �0 -� � ✓ �0, A

There are several lemmas we can prove about the subcontext predicate: for example, that the
element predicate is “monotone” and a stabilised context can be embedded into the full context.

2 - ✓-mono : 8{� �0 A} -� � ✓ �0 -� A 2 � -� A 2 �0

�s✓ � : 8 � -� � s ✓ �

Terms The implementation of formal languages often follows their grammar de�nition: we
de�ne a datatype for types, a datatype for (untyped) terms, then some sort of (value-level)
predicate or relation to determine which terms are well-typed. In languages with inductive
families, we instead identify terms with the typing rules, thereby enforcing that any term that
we construct is guaranteed to be well-typed.

Terms are therefore implemented as constructors of the “well-typed term” predicate `,
and “well-typed computation” predicate ✏ (which is used instead of the ÷ judgement). Agda’s

24 ������

syntactic �exibility actually allows us to translate the typing rules almost directly, with the
type of each constructor being the associated natural deduction rule (formatted with some line
breaks and comments). Below we show a few examples.

data _`_ : Context -� Judgement -� Set where

var : 8{� A} -� A 2 �

-� � ` A

lam : 8{� A B} -� � , A now ` B now

-� � ` A �� B now

� : 8{� A B} -� � ` A �� B now -� � ` A now

-� � ` B now

persist : 8{� A} -� � s ` A now

-� � ` A always

event : 8{� A} -� � ✏ A now

-� � ` Event A now

data _✏_ : Context -� Judgement -� Set where

letEvt_In_ : 8{� A B} -� � ` Event A now -� � s , A now ✏ B now
--

-� � ✏ B now

3.1.4 Substitution

An important metatheoretic operation in any language formalism involving binders is sub-
stitution, which forms the basis of �-reduction and universal instantiation. It is usually an
operation of type � ` M : A! �,x : A ` N : B ! � ` [M/x]N : B, expressing the substitution
of the term M for every free occurrence of the variable x in N . Though it is easy enough to
describe informally, formalising the process is quite tricky, as we need to check for variable
equality, handle renaming, avoid variable capture, and do everything as e�ciently as possible.
Fortunately, our formalisation lets us implement explicit substitutions (Abadi et al., 1991), which
turn substitution into a new syntactic entity � : Subst � � representing arbitrary context
transformations � ! �, instead of an ad-hoc operation de�ned on terms. The main advantage
of this approach is that the context transformations can be de�ned via combinators such as
weakening (+ : Subst � � ! Subst � (�,A)), lifting (⇥ : Subst � � ! Subst (�,A) (�,A)),
stabilisation (⇤s : Subst � � ! Subst (� s) (� s)), identity and composition of substitutions;
moreover, this can be done without referring to the term language at all.

���� ������� 25

We combine explicit substitutions with the type-preserving traversal idea of McBride (2005).
It is based on the observation that variable renaming and substitution can be expressed as
instances of a single term traversal operation, which applies a given function to every free
variable of a term. Depending on the return type of this function (either variables or terms),
we get generic type-preserving renaming or substitution operations. De�ning the traversal
function is possible only if the return type supports a set of operations such as mapping to terms
and weakening – these are collected into a syntactic kit. We adapted the Agda implementation
described by Keller (2008) to work with our reactive language; surprisingly, this only required
adding one extra kit property that is used to de�ne the ⇤s combinator for context stabilisation.

Using this syntactic framework we give a generic term and computation traversal function
which applies an explicit substitution to every variable of a term. Then, by de�ning custom
context transformations for weakening or substitution, we can specialise the traversal function
to any structural or substitution lemma. Below are two examples, given for demonstration
purposes – the details of the implementation are outside the main theme of this dissertation,
but given that they were a considerable part of the practical work done, we decided to include
a more comprehensive discussion in Appendix B for completeness.

substitute : 8{� � A} -� Subst � � -� � ` A -� � ` A
ex-tops : 8{� A B} -� Subst (�, A, B) (�, B, A)
sub-tops : 8{� A} -� � ` A -� Subst (�, A) �

exchange : 8{� A B C} -� �, A, B ` C

-� �, B, A ` C
exchange � substitute ex-tops

[_/] : 8{� A B} -� � ` A -� �, A ` B

-� � ` B
[M /] � substitute (sub-tops M)

3.2 T��� ��������

One characteristic feature of lambda calculi and other computational systems is term equality,
a relation expressing when two terms of the same type are equal. It is closely related to the
property of soundness (see Section 5.2): if two terms are equal in the syntax, they must have
equal interpretations. This ensures that whenever we establish the equality of two terms, they
really do have the same meaning. In this section we present the equational system of our
language, combining the usual ��-equality rules of the �-calculus with the modal reduction
and expansion properties of the Pfenning and Davies system.

3.2.1 Reduction rules

Reduction rules are responsible for simplifying the syntax tree of an expression (but they do
not necessarily make the expression smaller). They usually involve a pair of introduction-

26 ������

� ` M : A (re�)
� ` M ⌘ M : A

� ` M ⌘ N : A
(sym)

� ` N ⌘ M : A

� ` M ⌘ N : A � ` N ⌘ P : A
(trans)

� ` M ⌘ P : A

� ` M !� N : A
(�-equiv)

� ` M ⌘ N : A

� ` M !� N : A
(�-equiv)

� ` M ⌘ N : A

� ` M1 ⌘ M2 : A � ` N1 ⌘ N2 : B (cong-pair)
� ` [M1,N1] ⌘ [M2,N2] : A ⇥ B

� ` M ⌘ N : A always
(cong-extract)

� ` extractM ⌘ extract N : A now

� ` C ÷A
(re�’)

� ` C ⌘ C ÷A

� ` C ⌘ D ÷A
(sym’)

� ` D ⌘ C ÷A

� ` C ⌘ D ÷A � ` D ⌘ E ÷A
(trans’)

� ` C ⌘ E ÷A

� ` C !� 0 D ÷A
(� ’-equiv)

� ` C ⌘ D ÷A

� ` C !�0 D ÷A
(�’-equiv)

� ` C ⌘ D ÷A

� ` C1 ⌘ C2 : A (cong’-pure)
� ` pure C1 ⌘ pure C2 ÷A

� ` E1 ⌘ E2 : Event A now
� s,A now ` C ÷ B now

(cong’-letEvt)
� ` let evt x = E1 in C
⌘ let evt x = E2 in C ÷ B now

Figure 3.5 – Term equality rules.

elimination rules which can be “cancelled out” in some way. The classic example is the
�-reduction of the �-calculus:

(�x .M)N ��!� [M/x]N

Note that this rule (and the rules for sums) involves substitution, so the resulting term is not
equal to any of the ones that appear in the original expression. This is not the case for other
rules, such as the reduction of products:

fst [M,N] fst��!� M snd [M,N] snd��!� N

Our language has two additional constructor-destructor term pairs for stable types and events.
The reduction rules for these follow the ones proposed by Pfenning and Davies (2001). First,
constructing a stable type and then binding it in a term or computation can be replaced by

���� ������� 27

substitution:

let stable x = (stableM) inN sta��!� [M/x]N let stable x = (stableM) inC sta0��!� 0 [M/0x]C

As events can only be destructed in computations, they have only one reduction rule:

let evt x = (event C) in D
evt��!� 0 hC/xiD

At the moment, the only reduction rule we can add for select is handling two pure events. For
more complex interactions, we need to add a new term for explicit waiting or a more re�ned
notion of substitution – our attempts show that neither of these is straightforward. This will
be one of the main directions for future work.

select (event (pureM1)) as x 7! C1 k (event (pureM2)) as � 7! C2 k both as x ,� 7! C3

select3�����!� 0 [M1/0x][M2/0�]C3

These temporal rules use three di�erent types of substitution to account for the two kinds of
expressions we use: term-into-term ([M/x]), term-into-computation ([M/0x]) and computation-
into-computation (hC/xi). Substituting computations into terms would not be possible, as it
would allow us to access future events in the present.

3.2.2 Expansion rules

Expansion rules express a form of “extensional equality”: two terms are the same if they have
the same behaviour. Given a term of some type, we can construct a compound expression
of the same type by applying its introduction and elimination rules. Common examples are
�-expansion for functions and pairs:

M : A! B
���!� �x .M x (x < fv(M))

M : A ⇥ B pair���!� [fstM, sndM]

The �-rules for stable types bind the term to x , then returns the term stable x :

M : Stable A
sta��!� let stable x = M in (stable x)

pureM ÷ Stable A
sta0��!�0 let stable x = M in (pure (stable x))

The rule for events is unusual due to the two representations of events as terms of type EventA
and computations of type A.

M : Event A
evt��!� event (let evt x = M in (pure x))

3.2.3 Equality relation

To express the reduction and expansion rules in an equational manner, we introduce the
judgement � ` M ⌘ N : A and � ` C ⌘ D ÷ A for the equality of terms and computations.
We want term equality to be an equivalence relation and congruence, and to be closed under

28 ������

�-reduction and �-expansion. We show the relevant inference rules in Fig. 3.5. � ` M !x N : A
is a shorthand for the two typing judgements forM and N and the assumption thatM !x N .
We show only two congruence rules as an example, the others are all standard.

3.2.4 Agda implementation

As most inductively de�ned relations, term equality in Agda is expressed as a datatype with
one constructor for each inference rule. It has the following signature:

data Eq (� : Context) : (A : Judgement) -� � ` A -� � ` A -� Set

For clarity, we de�ne custom syntax for these judgements using Agda’s syntax declaration:

syntax Eq � A M N � � ` M ⌘ N :: A

The equality judgements can now be expressed in a very natural way, for example:

data Eq � where
sym : 8{A}{M N : � ` A} -� � ` M ⌘ N :: A

-� � ` N ⌘ M :: A

�-lam : 8{A B} -� (N : �, A now ` B now) (M : � ` A now)

-� � ` (lam N) � M ⌘ [M /] N :: B now

�-evt : 8{A} -� (M : � ` Event A now)
--

-� � ` M ⌘ event (letEvt M In pure (var top))
:: Event A now

cong-stable : 8{A}{M N : � s ` A now}
-� � s ` M ⌘ N :: A now

-� � ` stable M ⌘ stable N :: A always

The syntax and rules are similar for computation equality.

In this chapter we described the syntax of our language and showcased the main aspects of the
Agda implementation. Next, we turn to category theory and give a sound categorical semantics
for the language.

������� 4

Categorical foundations

This chapter introduces the background required to interpret modal logic in a categorical
setting, and sets the foundations for our discussion of denotational semantics in the next
chapter. We begin with a brief literature review and describe how the ideas of modal and
temporal logic can be translated into the language of category theory. Then, we present the
concrete category that we will be working in. A summary of the relevant parts of category
theory, and the terminology and notation we use in the rest of this dissertation can be found in
Appendix A.

4.1 M��������� �� �������� ������

4.1.1 The Curry–Howard–Lambek correspondence for modal logic

The Curry–Howard correspondence (Howard, 1980) is a well-known connection between con-
structive logic and type theory. It states that a proposition in logic can be interpreted as the
type of an expression (in a typed �-calculus), and the expression is a constructive proof term
for this proposition. We saw this in the last chapter: our language is essentially a system of
proof terms for temporal logic.

In the 1970s, Joachim Lambek (1980) extended this connection to category theory, discover-
ing that the simply typed lambda calculus corresponds to Cartesian closed categories (Lawvere,
1964), i.e. it can be interpreted in any category which has �nite products and exponentials.
This observation advanced the �elds of categorical semantics and categorical logic, which aim
to generalise the study of formal languages and logics by �nding exactly the properties that a
category needs to be a model of the formal system.

Given these deep parallels between the three subjects (which Harper (2011) calls computa-
tional trinitarianism), we might wonder if extensions to logic (e.g. modalities) translate to useful
properties of type systems and categories. A full account might be elusive, purely because
modal logic represents many di�erent systems and has no universal de�nition. However,
considering speci�c modal logics such as temporal logic seems to be more fruitful, and this
project aims to make a contribution to this research.

As discussed in Section 2.3, there is a strong connection between (linear) temporal logic
and type systems for functional reactive programming. Je�rey (2012, 2014) formalises this
connection in Agda as a dependent type system for future and past time LTL. There has also

30 ����������� �����������

been a long line of work on connecting (constructive) temporal logics such as S4 (Prawitz,
1965) with category theory, which – curiously enough – was motivated by the practical need
to model computations:

• Moggi’s (1991) in�uential paper introduced the computational lambda calculus (CLC),
and its denotational semantics in a CCC with a strong monad to model computations.

• Fairtlough and Mendler (1994) develop a intuitionistic modal logic called propositional
lax logic with a single modality that obeys both possibility- and necessity-like axioms.
They state that its categorical semantics correspond to the CLC, but mainly examine the
Kripke semantics.

• Kobayashi (1997) adapts Moggi’s semantics to a model of S4 modal logic by introducing
the more general notion of anU -strong monad.

• Benton, Bierman, and de Paiva (1998) establish a logic based on CLC called CL-logic,
with a modality for possibility that can be modelled by a strong monad.

• Bierman and de Paiva (2000) develop an intuitionistic version of the S4 along with a
categorical model based on Kobayashi’s modalities.

• Alechina et al. (2001) take a similar route, comparing the algebraic, Kripke and categorical
semantics of constructive S4 logic and propositional lax logic.

• Bellin, de Paiva, and Ritter (2001) formulate an intuitionistic version of the K modal logic
with a non-monadic categorical semantics.

• Jeltsch (2012) explores a common categorical semantics for linear temporal logic and
functional reactive programming, introducing the notion of a temporal category. In
further research (Jeltsch, 2013, 2014a,b) he extends temporal categories to abstract process
categories which can model FRP processes and the U-modality.

• de Paiva and Ritter (2016) extend a ⇤-only intuitionistic S4 to a dependently typed modal
logic and interpret it in a �bred categorical semantics.

• de Paiva and Eades (2017) describe a past- and future-time tense logic with a double
intertwined adjoint categorical model of modalities.

In the rest of this section we will look at some of these developments in turn, giving a foundation
to the concrete category we consider in the next section.

4.1.2 Monads as modalities?

The fact that we should suspect a connection between monads and modalities in a constructive
modal logic becomes quite apparent when we look at the Hilbert-style axiomatisation of S41:

K-⇤ : ⇤(A! B)! (⇤A! ⇤B) K-^ : ⇤(A! B)! (^A! ^B)
T-⇤ : ⇤A! A T-^ : A! ^A
4-⇤ : ⇤A! ⇤⇤A 4-^ : ^^A! ^A

1In general, the possibility and necessity modalities in a non-classical modal logic are not interderivable.

���������� �� �������� ������ 31

The K axioms represent some sort of distributivity over implication, while the T and 4 axioms
look suspiciously like the comonad and monad natural transformations. As we will see, these
similarities are not accidental.

One of the �rst attempts to establish a connection between computer science and category
theory was Moggi’s seminal work on the computational lambda calculus (Moggi, 1991). He
proposed modelling impure computations f : A { B as Kleisli morphisms f : A! TB for a
monad T . The monad operations � and µ, and in particular the derived extension operator
_? : (A) TB)! (TA) TB) can express the sequencing of computations. Monads have be-
come a staple concept of practical functional programming ever since Wadler (1995) introduced
them to Haskell (Hudak, Hughes, et al., 2007).

While the Curry–Howard correspondence usually translates logical concepts to type theory,
Benton, Bierman, and de Paiva (1998) went the other direction and developed a logical analogue
of Moggi’s CLC. The resulting CL-logic is an intuitionistic logic with a “curious” possibility-like
modality ^ modelled by the same categorical structure as the computation type constructor T .
Around the same time, Fairtlough and Mendler (1994) introduced the propositional lax logic,
an intuitionistic logic with a “peculiar” modality � – though their motivation was di�erent
(hardware veri�cation), they arrived to the same CL-logic as Benton, Bierman, and de Paiva.

The denotational semantics of the CLC, CLL and PLL requiresT to be not just a monad, but a
strong monad, as otherwise the modality elimination term would not have a suitable denotation
(Moggi, 1991, Remark 3.1). Strong monads were introduced by Kock (1972) as a specialisation
of strong endofunctors in a Cartesian (or monoidal) category. In a closed category with a
strong endofunctor T , the existence of the natural transformation (A) B)! (TA) TB) is
equivalent to the existence of a tensorial strength for T .

De�nition. A strong monad T on a Cartesian category C is a monad together with a natural
transformation st (tensorial strength) with components

stA,B : A ⇥TB ! T (A ⇥ B)

such that some unit, associativity and strong naturality conditions hold.

We will not detail the coherence conditions here – as it turns out, strong monads are precisely
what we do not want for a model of temporal logic.

The reason why Benton, Bierman, and de Paiva, and Fairtlough and Mendler consider their
modalities2 odd is that they do not conform to any commonly used modal logic: the modalities
^ and � have the characteristics of necessity and possibility, i.e. axioms that are associated with
both modalities. While for the intended purposes – computations and hardware veri�cation –
these make sense, they are not suitable for temporal reasoning.

Kobayashi (1997) points out that since these logics are modelled by CCCs with strong
monads,A^^B =) ^(A^B) should be provable in them. In a temporal logic such as S4, this
is certainly not the case: if we know that it’s raining now and it will eventually stop raining,
we cannot conclude that eventually it will be both raining and not raining. What this means
is that the usual interpretation of computational calculi and logics as a category with strong
monads is not sound for temporal logic.

2Benton, Bierman, and de Paiva point out that a similar constructive modal logic was considered even by
Curry (1952), but he found it too unusual to explore further.

32 ����������� �����������

4.1.3 More general notion of strength

To resolve this, Kobayashi introduces a more general notion of strength called U -strength,
which corresponds to the logical expression ⇤A ^ ^B =) ^(⇤A ^ B). Fortunately, this is
derivable in S4 in an intuitive way: the truth ofAwill persist for any eventual future. Kobayashi
requires the new modality ⇤ to be interpreted as a Cartesian comonad, which also follows from
the axioms of ⇤ in S4. We now give the full de�nition of both terms; the exact coherence laws
will be given later, specialised to our modalities.

De�nition. A Cartesian endofunctor F on a Cartesian category C is a functor which preserves
�nite products, that is, there exists:

• a morphism u: > ! F>
• a natural transformation with components mA,B : FA ⇥ FB) F (A ⇥ B)

such that F respects the unit and associativity laws of C.

De�nition. ACartesian comonadU on a Cartesian categoryC is a comonad for which there exist
maps u andm to make (U , u,m) a Cartesian functor, and the comonadic natural transformations
interact with the Cartesian structure in a sound way.

De�nition. Let C be a Cartesian category with a Cartesian comonadU . For an endofunctor F
on C, we de�ne theU -tensorial strength as the natural transformation stU with components

stUA,B : UA ⇥ FB ! F (UA ⇥ B)

which respects the Cartesian structure of C.

De�nition. Let C be a Cartesian category with a Cartesian comonadU . AU -strong monad T
on C is a monad with aU -tensorial strength stU consistent with the monadic structure of T .

Kobayashi then shows that constructive S4 modal logic has a sound interpretation in a CCCwith
a Cartesian comonad ⇤ and a ⇤-strong monad ^. On Figs. 4.1 to 4.4 we give the coherence laws
in such a model, specifying the interactions between the Cartesian, monadic and comonadic
structure.

4.1.4 Temporal categories

Treating ⇤ as a Cartesian comonad and ^ as a ⇤-strong monad has been the primary way of
modelling S4 and temporal logic in subsequent research. Alechina et al. (2001) compare the
algebraic, Kripke, and categorical semantics of PLL and CS4, using Moggi-style strong monads
and Kobayashi-style ⇤-strong monads respectively. Bierman and de Paiva (2000) also describe
an intuitionistic S4 modal logic using the same formulation. Jeltsch (2012), in developing a
correspondence between FRP and linear temporal logic, also arrives to the same model, albeit
extending it to ideal monads (Aczel et al., 2003) to account for future-only modalities. His work
also has other relevant aspects which are used in our denotational semantics.

���������� �� �������� ������ 33

Figure 4.1 – Cartesian endofunctor laws

⇤A ⇥ > ⇤A

⇤A ⇥ ⇤> ⇤(A ⇥ >)

�

id⇤A⇥u

mA,>

⇤�

(a) Right unit

⇤> ⇥A ⇤A

⇤> ⇥ ⇤A ⇤(> ⇥A)

�

u⇥id⇤A

m>,A

⇤�

(b) Left unit

(⇤A ⇥ ⇤B) ⇥ ⇤C ⇤A ⇥ (⇤B ⇥ ⇤C)

⇤(A ⇥ B) ⇥ ⇤C ⇤A ⇥ ⇤(B ⇥C)

⇤((A ⇥ B) ⇥C) ⇤(A ⇥ (B ⇥C))

mA,B⇥id⇤C

�

id⇤A⇥mB,C

mA⇥B,C mA,B⇥C

⇤�

(c) Associativity

Figure 4.2 – Cartesian comonad laws

>

⇤> >
�>

id>

u
(a) Unit map and extract

> ⇤>

⇤> ⇤⇤>
u

u

�>

⇤u
(b) Unit map and duplicate

⇤A ⇥ ⇤B ⇤(A ⇥ B)

A ⇥ B
�A⇥�B

mA,B

�A⇥B

(c)Multiplication map and unit

⇤A ⇥ ⇤B ⇤⇤A ⇥ ⇤⇤B

⇤(A ⇥ B) ⇤(⇤A ⇥ ⇤B)

⇤⇤(A ⇥ B)

m⇤A,⇤B

�A⇥�B

m⇤A,⇤B

�A⇥B ⇤mA,B

(d) Multiplication map and duplicate

Figure 4.3 – ⇤-tensorial strength laws

⇤> ⇥ ^A

^(⇤> ⇥A) ^A

st⇤>,A �⇤^A

^�⇤A
(a) Left unit and strength

⇤(A ⇥ B) ⇥ ^C ⇤A ⇥ (⇤B ⇥ ^C)

^(⇤(A ⇥ B) ⇥C) ⇤A ⇥ ^(⇤B ⇥C)

^(⇤A ⇥ (⇤B ⇥C))

st⇤A⇥B,C

�⇤A,B,^C

id⇤A⇥st⇤B,C

^�⇤A,B,C st⇤A,⇤B⇥C

(b) Associativity and strength

34 ����������� �����������

Figure 4.4 – ⇤-strong monad law

⇤A ⇥ B

⇤A ⇥ ^B ^(⇤A ⇥ B)

⇤A ⇥ ^^B ^(⇤A ⇥ ^B) ^^(⇤A ⇥ B)

id⇤A⇥�B
�⇤A⇥B

st⇤A,B

id⇤A⇥µB

st⇤A,^B ^st⇤A,B

µ⇤A⇥B

Reactive types One common aspect of the work of Je�rey (2012) and Jeltsch (2012) is their
use of time-indexed or reactive types. Intuitively, the truth value of LTL propositions depends
on time, so an LTL type system would have types with time-dependent inhabitance. Je�rey
expresses this as a dependent Agda type, while Jeltsch uses the product category CT for a totally
ordered set T representing times, and a BCCC C. He de�nes fan categories as such a category
with extra conditions allowing for bounded products and coproducts (which he uses in the
de�nition of the ⇤ and ^ modalities). These fan categories are shown to have the required
structure to model CS4.

Linearity As Jeltsch points out, categorical models for S4 logics do not capture the linearity of
time: while logically there is nothing wrong with branching time (it is the basis of Computation
Tree Logic (Clarke and Emerson, 1981), for example), it is not an intuitive model of FRP. To
remedy this, he introduces temporal categories which, in addition to the usual CS4 structure,
have a way to model the proposition

^A ^ ^B =) ^((A ^ ^B) _ (^A ^ B) _ (A ^ B))

In contrast to the proposition ^A^ ^B =) ^(A^ B) (which is a theorem in CL and PLL, but
not in S4), this states that if we know that A and B will eventually hold, then at some point one
of three possibilities will be true: both A and B hold, or A holds and B holds later, or B holds
and A holds later. In branching-time logics, this proposition would not necessarily be true:
there may be di�erent futures where the events happen at di�erent times. In LTL, it expresses
the fact that the time ordering relation is trichotomous, i.e. if ^A occurs at time tA and ^B at
time tB , then either tA < tB , tA > tB or tA = tB . This makes the indexing order a strict total order,
which is a suitable abstraction for time.

Now we have the necessary theoretical background to de�ne the concrete category that we
will be working in.

4.2 T�� �������� �� �������� �����

In this section we introduce the concrete category that we will interpret our syntax in. The
main features of this category – which we call Reactive – are:

��� �������� �� �������� ����� 35

• bicartesian closed structure;

• a naturally arising monoidal comonad as the ⇤ modality;

• an e�ciently implementable ⇤-strong monad as the ^ modality;

• weak temporal linearity.

4.2.1 The base category

We follow Je�rey and Jeltsch in our de�nition of the base types. Given our Agda implementation,
we will treat sets and types somewhat interchangeably: a type Nat is treated as the set N, while
Set, the type of all types, can be seen as the category Set.

De�nition. A reactive type A is a map from natural numbers to sets, i.e. an element of SetN.
The kind of reactive types is denoted as � ··= N! Set. Indexing (function application) will be
written as An or A|n.

The indexing set the set of (unordered) natural numbers: while this can only support discrete-
time FRP, it is essential for our de�nition of the next and delay modalities.

De�nition. The Reactive category is de�ned as:
• objects: reactive types � ··= N! Set;

• arrows: dependent types A _ B ··=
Œ

n2N(An ! Bn)
• identities: idA|n ··= idA

• composition: � � f |n ··= �n � fn
All category laws follow from the laws for Set, via pointwise application.

“Pointwise application” simply means that properties and laws hold at every time step, i.e. every
index n 2 N. This lets us make use of a lot of the underlying structure of Set – in particular,
that it is bicartesian closed.

Theorem. Reactive is bicartesian closed.

Proof. We de�ne Reactive products, coproducts and exponentials by pointwise indexing. For
example,

A ⌦ B |n ··= An ⇥ Bn A � B |n ··= An] Bn
Again, all laws transfer directly from the BCCC nature of Set. ⇤

4.2.2 Modalities

The two modalities ⇤ and ^ are usually de�ned via two dual concepts, mirroring the “for
all” and “exists” duality of their logical de�nitions. For example, Jeltsch (2012) uses in�nite
products and coproducts in a fan category; Je�rey (2012) de�nes them with dependent product
and sum types; Cave et al. (2014) employs dual coinductive-inductive types utilising the �

modality and greatest-least �xed points; and Krishnaswami (2013) de�nes streams and events
via a temporal recursive type on products and coproducts in the style of Nakano (2000). While

36 ����������� �����������

elegant and easy to analyise theoretically, such representations make e�cient implementations
quite di�cult. Going back to our discussion of push- and pull-based FRP, the issue is with
event handling: we either have to keep polling (which would be required for an inductive
coproduct-like de�nition of ^), or resort to callbacks (making reasoning about the system
really complicated).

Our main goal with the denotational semantics of the language was a de�nition of ^ which
would translate well to an e�cient, push-based representation. Instead of saying that ^E
represents an event that “can happen now, or on the next tick, or the next, etc.”, we want to say
the event “happens after some delay”. Ultimately, we hope to show that such a representation
translates into an implementation via callbacks or continuation-passing style, which would
allow us to reason about events in an abstract way but still implement them e�ciently.

Box modality

Our boxmodality deviates slightly from the usual de�nition of⇤ in temporal logic or LTL. There,
⇤Ameans “henceforth, A holds”, with the Kripke semantics of “A holds in all worlds accessible
from the current one”. Both notions are indexed by the current time, making ⇤ unsuitable
for expressing globality over all times, past, present and future. We want the denotation of
A always to express that the type A will always be inhabited, not just henceforth. That is, the
box modality should correspond to some notion of constancy at all times.

We can arrive at a suitable de�nition by considering the relationship of normal types (Set)
and reactive types (Reactive). The �rst models standard functional programming, while the
second allows us to write time-dependent reactive programs. We should be able to turn every
normal type T into a Reactive type, just by returning T at all time steps. However, we can also
go from any reactive type B : � to a normal type, by expressing B as a dependent function from
time n to Bn. In fact, these two transformations can be de�ned as functors:

K : Set! Reactive
G : Reactive! Set

K(T : Set)n = T

K(f : T ! S)n(a : T) = f (a)

G(A : �) =
Œ

n:NAn

G(f : A _ B)(a : A) = �n : N. fn(an)

Set Reactive

K

G

a

With these de�nitions, it is easy to prove that K and G are adjoint: K a G with unit �T : T !
GKT = T ! Œ

n:NT and counit �A : KGA _ A = (�n : N.
Œ

k :NAk) _ A. The unit is not
particularly interesting: it turns a type into a constant dependent type. The counit, however, is
more promising: its argument is the constant reactive type

Œ
k :NAk . Reading the dependent

product as universal quanti�cation, this says “for all times k , Ak is inhabited” – this lines up
exactly with what we want our box type to represent. Indeed, we can extract this modality as
the comonad of the adjunction:

��� �������� �� �������� ����� 37

⇤ = KG : Reactive! Reactive

⇤A|n =
Œ

k :NAk

�A |n (a : ⇤A|n) = a(n)
�A |n (a : ⇤A|n) = �k : N. a

It is also straightforward to show that this comonad is Cartesian, with unit map un(t : >n) =
�k : N. t and multiplication mA,B |n (a : ⇤A|n,b : ⇤B |n) = �k : N. (ak ,bk). Thus, we arrive at one
of our modalities: a Cartesian comonad ⇤.

Diamond modality

To reiterate, we aim to de�ne ^E to mean “event E happens with some delay”. Hence, we need
to state what is a “delay” and what is the interpretation of “some”. To do this, we expand on
the work of Krishnaswami (2013) and his use of the next-step modality as a primitive temporal
operation.

Next-step modality Krishnaswami de�nes the •Amodality for expressing that a value of type
Awill be available on the next time step (Krishnaswami and Benton (2011a,b) and Krishnaswami,
Benton, and Ho�mann (2012) also use a similar modality, with di�erent ways of representing
time steps). However, the modality appears as an explicit type constructor in the syntax, with
term-level introduction and elimination forms. Since we want to abstract away the individual
time steps from the syntax, this modality only appears in our semantics. Speci�cally, it is an
endofunctor on Reactive:

• : Reactive! Reactive

•A|0 = >0 • f |0 (a : >0) = a

•A|n+1 = An • f |n+1 (a : An) = fn(a)

It represents “shifting” a reactive type by one step into the future. At time 0, we cannot produce
any meaningful value other than >, as the type only “starts” on the next time step. At a time
n+1, we return the value the type would have had on the previous step. Note that this de�nition
di�ers from the usual speci�cation of the � modality in LTL, which would not work in our case:
we would need to return a value now which is only available on the next step. This violates
causality, as we would need to look into the future.

The • modality can be iterated any number of times to push a type further into the future.
This de�nes a family of functors we call k-step delays, for any k 2 N:

•� : N! Reactive! Reactive

•0 A = A •0 f = f

•k+1 A = •(•kA) •k+1 f = •(•k f)

Both • and •k are Cartesian functors.

38 ����������� �����������

Diamond modality Now we are ready to give our de�nition of ^, using the functors we
introduced above. ^A represents a reactive type Awith a k-step delay, for some k . Interpreting
“for some k” as “exists a k 2 N” and translating into the language of dependent existential types,
we get the following de�nition of the ^ functor:

^ : Reactive! Reactive

^A|n =
Õ

k :N •kA|n ^ f |n (k : N,a : •kA|n) = (k, •k f |n (a))

Recall that the dependent sum type
Õ

x :A B(x) is inhabited by a pair consisting of a value x : A
and value of type B(x). In our case, the type ^A is inhabited by a number k (indicating the
amount of delay) and a value of the k-delayed reactive type •kA. That is, instead of representing
possibility by an in�nite disjunction over all time steps (where we can only handle the event by
continuous polling), it is encoded as a constructive existential type which is inhabited by the
exact time step the event occurs at. This avoids having to loop or recursively check whether
and when the event �res, because the occurrence time is available directly. However, the sigma
type lets us hide that from the types, and only say that “the event happens at some future time”
– exactly what our intuition would suggest for the meaning of “eventually”.

Monadicity Our de�nition for ^ is only useful for our purposes if it is a monad. This is
not immediately obvious, and in fact, we were sceptical of this initially, suspecting that some
changes are required to the de�nition to prove the monad laws. However, our “fears” turned
out to be unfounded. First, we describe the monad operations, then sketch the proofs of the
monad laws.

The unit �A : A _ ^A is straightforward: it turns a value of type A into an event that
happens with no delay:

�A |n (a : An) = (0,a)

Multiplication µA : ^^A _ ^A is trickier. Logically, a type delayed by k and l is the same as
one delayed by k + l , but we also need to take into account the current time, and whether one
of the events has already happened. Suppose we are at time n and the argument of µ is the pair
(k,a : •k^A|n). We need to compare whether the current time is before or after the occurrence
of the outer event. If before, then the inner event a is delayed by more than the current time,
so its type •k^A|n cannot be anything other than >. If we are after the occurrence of the outer
event (i.e. k n), then the type •k^A|n is equal to the type ^A|n�k , and unwrapping a gives the
pair (l ,b : •lA|n�k). Now, the type of b can be rewritten to •k+lA|n, and hence (k + l ,b : •k+lA|n)
is the return value of the correct type ^A|n.

µA |n (k,a : •k^A|n)) =
(
let (l ,b : •lA|n�k) = (a k ^A|n�k) in (k + l ,b k •k+l A|n), if k n

let ⇤ = (a k >0) in (k, ⇤ k •k A|n), if k > n

Here, (a k B) marks a coercion of a value a : A to a : B assuming A ⌘ B. All equality proofs are
instances of the following lemma:

��� �������� �� �������� ����� 39

Lemma (Cancellation of delays). For any n,k, l 2 N and type A : � , we have

•l+kA|l+n= •kA|n

Proof. By induction on k 2 N. ⇤

The lemma says that extra delay and extra waiting can be cancelled out. In particular, if k = 0,
then we have a shifted type without a delay: •lA|l+n= An. If n = 0, we have •l+kA|l= •kA|0: this
is equal either to A0 (if k = 0) or >0 (if k > 0). A corollary of the latter is that the value ⇤ (the
inhabitant of >n) can have any delayed type, as long as the delay is longer than the elapsed
time:

Corollary. For any n,k 2 N and type A : � , we have

>n = •n+(k+1)A|n

This raises a question: in the k > n case of the de�nition of µ, we return (k, ⇤ k •k A |n), but
couldn’t we just as well return (k + 1, ⇤ k •k+1 A |n) or (k +m, ⇤ k •k+m A |n) for anym? We
anticipated this to be a source of ambiguity when proving the monad laws, and prepared a
“plan B” of quotienting the de�nition of ^ by an equivalence relation which would identify
such terms. However, there was no need for this, as the Agda formalisation only accepted the
de�nition given above (in fact, it automatically deduced that the delay must be k). It is not
entirely clear to us why that is the case, but it certainly saved us a lot of work and made the
model a lot simpler than it could have been.

Theorem. ^, together with � and µ satis�es the monad laws.

Proof. We give a sketch of the proof, specifying the main lemmas that it uses. For simplicity,
we extract the �rst case of the de�nition of µ into a general operation (.kn)A : ^A|n! ^A|k+n
for shifting an event at time n to one at time k + n:

(.kn)A(a : ^A|n) = let (l ,b : •lA|n) = a in (k + l ,b k •k+l A|k+n)

Thus, the de�nition of µ becomes

µA |n (k,a : •k^A|n)) =
(
(.kn�k)A(a k ^A|n�k), if k n

(k, ⇤ k •k A|n), if k > n

In fact, we can show that .kn : (^� |n) =) (^� |n+k) is a natural transformation between the
functors ^� |n,^� |n+k : Reactive ! Set. Below is the naturality condition which is used to
prove the naturality of µ:

A ^A|n ^A|k+n

B ^B |n ^B |k+n

f

(.kn)A

^ f |n ^ f |k+n

(.kn)B

40 ����������� �����������

We also have the following lemma, which replaces two successive event shifts with one.

Lemma (Composition of event shifting). For all n,k, l 2 N,

.lk+n � .kn = .l+kn

This is used in the proof of the following interchange theorem between µ and .kn :

Lemma (Interchange of shifting and multiplication). The order of shifting and multiplication
can be swapped.

µA |n+k �(.kn)^A = (.kn)A � µA |n

^^A|n ^^A|k+n

^A|n ^A|k+n

(.kn)^A

µA |n µA |k+n

(.kn)A

Now we are ready to prove the monad laws. The Agda formalisation is quite complicated due
to the need for explicit coercions of terms and congruences, but equational reasoning and
heterogeneous equalities help out signi�cantly. The full proof can be found in Appendix C;
below we show one of the cases of the associativity law as an example.

Lemma (Associativity law). µA � µ^A = µA � ^µA
Proof. In Reactive, this equation expands to the following, for k : N and a : •k^^A|n:

µA |n (µ^A |n (k,a)) = µA |n (^µA |n (k,a))

We consider one of the cases:

Case k n:

µA |n (µ^A |n (k,a)) = µA |n ((.kn�k)^A(a k ^^A|n�k)) (def. of µ (case k n))
= (.kn�k)A(µA |n�k (a k ^^A|n�k)) (interchange of µ and .kn�k)
= (.kn�k)A(•kµA |n (a) k ^A|n�k)) (delay lemma)
= µA |n (k, •kµA |n (a)) (def. of .kn�k)
= µA |n (^µA |n (k,a)) (^ map on morphisms)

⌅

By proving the other case and the unit laws, we conclude that ^ is a monad. ⇤

Further properties

Relationship of the modalities Above we described four modality-like operators: ^, ⇤, •
and •k . Though we do not have the duality of ^ and ⇤ taken as an axiom in classical modal
logic, we can consider the logical implications between them. As the modalities are functors,
these implications can be translated into natural transformations.

��� �������� �� �������� ����� 41

• If A always holds, it will hold after a delay by k .

• If A holds after a delay by k , it holds after an unknown delay.

• A holds after a delay by 1 if and only if it holds on the next time step.

⇤
⇤-•k
====) •k •k -^

====) ^ •1 �
==) •

⇤-tensorial strength Our de�nition of ^ is not a strong monad: we cannot de�ne a function
A⌦ (^B) _ ^(A⌦B) as we cannot guarantee thatA is inhabited when the event ^B �res. This
is exactly the di�culty that Kobayashi anticipated and which can be resolved by only requiring
^ to be a ⇤-strong monad. Establishing this amounts to de�ning a natural transformation st⇤

and proving that it is consistent with the Cartesian comonad structure of ⇤.

st⇤A,B : ⇤A ⌦ ^B _ ^(⇤A ⌦ B)

st⇤A,B |n (a, (k,b)) = (k,m•k
⇤A,B |n (⇤-•k⇤A |n (�A |n a),b))

Given a signal a : ⇤A and event (k,b) : ^B, we construct a new event with the same occurrence
time k . We get its value by applying the multiplication of the Cartesian functor •k to b : •kA
and ⇤-•k⇤A |n (�A |k a) : •k⇤A which uses the ⇤-•k natural transformation we presented above
to delay ⇤A by k extra steps. To prove that this is the right de�nition of ⇤-tensorial strength,
we need to show that the diagrams in Figs. 4.3 and 4.4 commute. The proofs are quite lengthy
but mostly rely on naturality conditions and Cartesian functor laws.

Linearity The temporal linearity property would allow us to interpret the select operation in
our semantics. In Jeltsch’s de�nition, linearity means the existence of a morphism

^A ⌦ ^B ! ^((A ⌦ ^B) � (^A ⌦ B) � (A ⌦ B))

for all A and B. Jeltsch recognises this as being equivalent to requiring that

A ~ B ··= (A ⌦ ^B) � (^A ⌦ B) � (A ⌦ B)

is the product of A and B in the Kleisli category of ^, with the linear-time product of the
morphisms f : C ! ^A and � : C ! ^B denoted as hhf ,�ii : C ! ^(A ~ B). We can de�ne
this operation in Reactive as follows: given two events (k,a) and (k + l + 1,b), we combine
their values with a function of type •kA ⌦ •k+l+1B _ •k(A ⌦ ^B) (which uses the fact that • is
Cartesian) and return a new event at time k with the value injected into the appropriate “slot”
of the product. Specifying this operation is su�cient for our semantics, so we leave verifying
that ~ is a product in Reactive^ as future work.

������� 5

Semantics

This chapter combines the developments of the previous two and describes the denotational
semantics of our language. First, we de�ne the interpretation of types, terms and contexts in
the Reactive category, and describe the approach for proving the soundness of substitution.
Then, we prove the soundness of term equality and hence the soundness of our categorical
semantics.

5.1 S�������� �� ����� ��� �����

First, we present the interpretation of the syntactic constructs in the language. Most of the
developments come from the standard categorical semantics of the �-calculus (e.g. Crole, 1993),
augmented with the temporal operators and quali�ers which translate naturally into our
Reactive category.

5.1.1 Types and contexts

The “motto” of categorical semantics is types are objects, terms are morphisms. Our ba-
sic types are readily interpreted as objects in a BCCC, and the additional event and sta-
ble types map to the temporal modalities we described in the previous section. The tem-
poral quali�ers a�ect the modality of the underlying type: persistent types are inter-
preted as types under the ⇤ modality, expressing that they are always available. Finally,
contexts are interpreted as the product of the denotation of judgements in the context.

n Unit ot = >
n A ⇥ B ot = nAot ⌦ nBot
n A + B ot = nAot � nBot
n A! B ot = nAot) nBot
nStable Aot = ⇤nAot
nEvent Aot = ^nAot

n A now oj = nAot
nA always oj = ⇤nAot

n · ox = >
n�,Aox = n�ox ⌦ nAoj

Context stabilisation was an important operation in our syntax – what would it correspond to
in the semantics? It could be a natural transformation with components nso� : n�ox _ n� sox
between the functors n�ox and n� sox from the category of contexts to Reactive. However,
any order-preserving embedding � ✓ � induces a morphism n�ox _ n�ox, so � s ✓ � is just

44 ���������

an instance of that standard construction. Instead, we make use of the fact that all types in
� s are persistent and therefore interpreted as boxed reactive types. Recall that ⇤ is monoidal,
so a product of boxed types can be transformed into a boxed product – moreover, as ⇤ is a
comonad, we can duplicate the boxes �rst and then factor one out:

x : A always,� : B now, z : C always
n�ox���! ⇤A ⌦ ⇤C ��! ⇤⇤A ⌦ ⇤⇤C m�! ⇤(⇤A ⌦ ⇤C)

Thus, we de�ne context stabilisation as a natural transformation between n�ox and ⇤n� sox:

nso⇤ : n�ox =) ⇤n� sox

nso⇤(·) = u
nso⇤(�,A now) = nso⇤� � �1
nso⇤(�,A always) = mn�ox,⇤nAot � (nso⇤� ⇥ �nAot)

This de�nition can be used to derive the more general transformation nso:

nso = � � nso⇤

Next, we give the interpretations of terms.

5.1.2 Terms

In categorical semantics, terms of a language are interpreted as morphisms from the denotation
of the context to the denotation of the type. Again, the non-reactive terms of our language are
interpreted as BCCC morphisms in the standard way. Terms involving events and stable types
use the additional monad and comonad properties of Reactive.

n_om : 8{� A} -� � ` A -� (n�ox _ nAoj)
n var top om � �2
n var (pop x) om � nvar xom � �1
n lam M om � �nMom
n F � M om � ev � hnFom, nMomi
n unit om � !
n fst M om � �1 � nMom
n extract {A} M om � �nAot � nMom
n persist {�} M om � ⇤nMom � nso⇤�
n stable M om � nMom
n letSta S In M om � nMom � hidn�ox, nSomi
n event C om � nCoc

As usual in the categorical semantics of the �-calculus, variables, abstraction, application, prod-
ucts and sums are interpreted as the projection, injection, currying and evaluation morphisms
of a BCCC. Applying extract to a persistent term amounts to extracting the value of the
boxed denotation of the term. For persist M we use the nso⇤ transformation to interpret
M in the stabilised context. The term stable M is interpreted as nMom, as both stable types
and the always quali�er are translated into ⇤. Stable binding �rst extends the context by the

��������� �� ����� ��� ����� 45

bound term, then interprets the body in this extended context. Finally, nevent Com calls the
denotation of computations on C, shown below.

n_oc : 8{� A} -� � ✏ A -� (n�ox _ ^nAoj)
n pure A M oc � �nAot � nMom
n letEvt E In C oc � bindEvent � nEom nCoc
n select E1 7! C1 | E2 7! C3 | both 7! C3 oc �

bindEvent � hhnE1om, nE2omii (handle nC1oc nC2oc nC2oc)

Computations � ` C ÷A are interpreted as Kleisli arrows n�ox _ ^nAoj, as we alluded to in
Section 4.1.2. Pure computations use � to wrap the inner term into a ^. The letSta case is
similar to the semantics of stable binding in terms. The denotation of events and selection both
use a helper function bindEvent: it takes an event and an event handler and interprets them
as a Kleisli arrow from the context to the return type of the body.

bindEvent : 8 � {A B}
-� (n�ox _ ^A) -� (n� sox ⌦ A _ ^B) -� (n�ox _ ^B)

bindEvent � {A}{B} E C � µB � ^(C � �n�ox ⇥ idA) � st⇤n�ox,A � hn
so⇤�, Ei

The function �rst extends the stabilised context with the denotation of the event, then applies
⇤-tensorial strength to move the ^ from the event type to the whole context. Then, under
the ^, we apply extraction to ⇤n� sox and interpret C in this context. Finally, we join the two
diamonds with µ.

h = ⇤n� sox ⌦ A
�n�ox⇥idA�������! n� sox ⌦ A

nCoc���! ^B

n�ox
hnso⇤� ,nEomi����������! ⇤n� sox ⌦ ^A

st⇤n�ox,A�����! ^(⇤n� sox ⌦ A)
^h��! ^^B

µB��! ^B

The interpretation of selection binds the linear-time product morphism of the two events in
a body which selects the correct continuation. As linear-time products are sums of the three
ordering possibilities, handle can case-split on the sum and return the suitable computation.

Note that bindEvent bears some resemblance to the monadic bind operator ��� – indeed,
this is howwe interpreted events originally. The semantics were revised in an attempt to provide
a fully compositional interpretation of the language to highlight the categorical properties of
Reactive required for a sound semantics. We conjecture the two approaches to be equivalent,
though more work is needed to prove this formally.

5.1.3 Substitutions

In order to prove the soundness of our language, we need to establish that our substitution
operators preserve the meaning of the terms. Expressed formally, soundness of substitution
states that the denotation of a term M with an explicit substitution � applied (which can
encompass any context transformation we require) is the same as the denotation of � followed
by the denotation ofM :

n[�]Mom = nMom � n�os
As explicit substitutions are context transformations, their denotation should be a morphism
between the interpretation of the contexts. This is a standard approach in categorical semantics

46 ���������

(Pitts, 2016), however, we are not aware of any previous attempts to integrate it with McBride’s
traversal framework, which we found to be a really useful syntactic formulation of term
substitution. Therefore, we developed a categorical semantic analogue to syntactic kits in
which every kit operation and substitution combinator is associated with a simple soundness
lemma, and the soundness of the generic term travesal operation is established using these
“proof combinators”. Then, as with syntactic kits, the soundness of substitution, weakening,
exchange, etc. are instances of the traversal soundness proof, specialised to an appropriate
explicit substitution. As an example, below is the categorical proof that substitution for the top
variable of the context is sound; again, the implementation details are left to the Appendix B.

nsub-topso : 8{� A} -� (M : � ` A) -� nsub-tops Mos � hid�, nMomi
nsub-topso M rewrite nidsos � refl

subst-sound : 8{� A B} (M : � ` A) (N : �, A ` B)
-� n[M /] Nom � nNom � hid�, nMomi

subst-sound M N rewrite sym (nsub-topso M) �
substitute-sound (sub-tops M) N

We �rst prove that the denotation of explicit substitution for the top of the context is equal
to the product morphism hid�, nMomi (using the proof that the interpretation of the identity
substitution is the identity morphism), then use this to invoke the generic soundness lemma
substitute-sound on top substitutions. We have similar lemmas for the two other kinds
of substitution we de�ned. These are essential in proving the soundness of our categorical
semantics, as demonstrated in the next section.

5.2 S�������� �� ���� ��������

We now have everything to prove that our categorical semantics is sound with respect to the
term equality judgements introduced in Section 3.2. We can state this formally as:

Theorem (Soundness). Let � ` M,N : A be two terms of our language.
If � ` M ⌘ N : A, then nMom, nNom are equal morphisms in the hom-set Reactive(n�ox, nAoj).

A similar soundness theorem can be stated for computations.

Proof. The proof is, for the most part, quite simple:

• The equivalence relation rules for term equality translate into the re�exive, symmetric
and transitive properties of morphism equality.

• �-equality for pairs translates into de�nitionally equal morphisms; for reductions involv-
ing bound variables, we prove equality of morphisms using the soundness of substitution
lemmas from the previous section.

• Soundness for �-expansion either holds de�nitionally (for units and stable types), by
BCCC laws (pairs and sums), or monad laws (events).

• Soundness for congruences holds by recursively establishing the soundness of the as-
sumption equality.

��������� �� ���� ������� 47

Below we show some cases of the proof.

sound : 8{� A} {M N : � ` A} -� � ` M ⌘ N :: A -� nMom � nNom
sound (Eq.refl M) � refl
sound (Eq.sym p) � sym (sound p)
sound (Eq.trans p q) � trans (sound p) (sound q)

sound (�-lam N M) rewrite subst-sound M N � refl
sound (�-fst M N) � refl
sound (�-inl M N _) rewrite subst-sound M N � refl
sound (�-sta N M) rewrite subst-sound M N � refl

sound (�-lam M) rewrite nwo M � refl
sound (�-pair M) � ⌦-�-exp nMom -- A CCC lemma
sound (�-sta M) � refl

sound (cong-fst p) rewrite sound p � refl
sound (cong-app p q) rewrite sound p | sound q � refl
sound (cong-letSta p N) rewrite sound p � refl
sound (cong-event p) rewrite sound' p � refl

sound' : 8{� A} {C D : � ✏ A} -� � ✏ C ⌘ D :: A -� nCoc � nDoc
sound' (Eq'.trans p q) � trans (sound' p) (sound' q)
sound' (�-evt' C D) rewrite subst''-sound D C � refl
sound' (�-sta' M) � refl
sound' (cong-pure' p) rewrite sound p � refl

Thus, we conclude that our categorical semantics is sound with respect to term equality. ⇤

������� 6

Conclusions

In this dissertation we described a small language for reactive programming, together with
a sound denotational semantics in the category of reactive types. The syntax and semantics
integrate previous approaches to strongly typed, e�cient FRP, notably Je�rey’s and Jeltsch’s
linear temporal type systems and Krishnaswami’s delay operator. The syntax – based on
Pfenning and Davies’ judgemental modal logic – was formalised in Agda, together with a
syntactic framework for explicit substitutions and a ��-equational theory. We de�ned a concrete
categorical model of linear temporal logic which would give a basis for an implementation that
avoids resource waste due to polling. The syntax was given a categorical semantics in this
model, with soundness proofs for explicit substitutions and term equality.

6.1 R������ ����

Most of the relevant research and historical developments were cited throughout the disser-
tation, notably in Chapter 2 and Section 4.1. Here we mention interesting lines of work that
outline possible extensions to our system.

• Sculthorpe and Nilsson (2009) formalise the signal functions of Yampa (Hudak, Court-
ney, et al., 2002) in a dependently typed setting, extending it to address its safety and
performance limitations.

• Je�rey (2013) shows how his Agda implementation of reactive types can be compiled to
JavaScript to enable dependently typed development of reactive web applications.

• Jeltsch (2014b) extends the notion of temporal categories to recursive abstract process
categories that can handle FRP processes (corresponding to the Umodality) with recur-
sion.

• Paykin, Krishnaswami, and Zdancewic (2016) establish a connection between event-
driven programming and temporal logic with linear extensions, and propose using
callbacks to model logical negation. That way, the classical duality ^A = ¬⇤¬A expresses
the type ⇤(A ! ?) ! ? which bears close resemblance to the type of continuation-
passing style functions.

50 �����������

6.2 F����� ����

In this project, we hope to set the foundation for a future line of FRP research – as such, there
are some speci�c developments and improvements that we would like to add to the system.

• The semantics was made more abstract relatively late into the project, so some of the
metatheory – notably the soundness proof of computation substitution – needs to be
changed accordingly. While we believe that the two semantics are equivalent, this has
not been formally proved yet.

• We need to revisit the syntax and semantics of select: as of now, it only has a single
reduction rule instead of the expected three. We suspect that this will require adding a
new explicit delay term to the syntax, but due to the nuances of computation substitution
our initial attempt at this was unsuccessful.

• Krishnaswami (2013) showed how Nakano-style guarded recursion can encode various
temporal types in a system similar to ours. We intend to add a similar temporal recursive
type to our syntax, but use Event as the guard instead of •.

• The next big step is proving that our de�nition of ^ is implementable via continuation-
passing style as ^A ⇡ ¬⇤¬A ⇡ ⇤(A ! IO ()) ! IO (): this is likely to require an
operational semantics which can be developed from our equational theory.

• There are many other aspects that we could extend the system with: processes and the
Umodality, signal functions, linear types, etc.

• Ultimately, we hope to implement our language as a framework for e�cient, statically
correct functional reactive programming.

Bibliography

A����, Martin, Luca C�������, Pierre Louis C�����, and Jean Jacques L��� (1991).
Explicit substitutions. In: Journal of Functional Programming 1.4, pp. 375–416.

A����, Peter, Jiří A�����, StefanM�����, and Jiří V������ (2003).
In�nite trees and completely iterative theories: a coalgebraic view. In: Theoretical Computer Sci-
ence 300.1-3, pp. 1–45.

A�������, Natasha, Michael M������, Valeria �� P����, and Eike R����� (2001).
Categorical and Kripke Semantics for Constructive S4 Modal Logic. In: Proceedings of the 15th
International Workshop on Computer Science Logic. Springer-Verlag, pp. 292–307.

A���������, Thorsten, Martin H������, and Thomas S�������� (1995).
Categorical reconstruction of a reduction free normalization proof. In: Proceedings of the Interna-
tional Conference on Category Theory and Computer Science, pp. 182–199.

A���������, Thorsten and Bernhard R��� (1999).
Monadic Presentations of Lambda Terms Using Generalized Inductive Types. In: Proceedings of
the 13th International Workshop and 8th Annual Conference of the EACSL on Computer Science Logic.
Springer-Verlag, pp. 453–468.

A�����, Steve (2010).
Category theory. Oxford University Press.

B���������, Françoise and James H��� (1994).
Substitution: A formal methods case study using monads and transformations. In: Science of
Computer Programming 23.2-3, pp. 287–311.

B�����, Gianluigi, Valeria �� P����, and Eike R����� (2001).
Extended Curry-Howard correspondence for a basic constructive modal logic. In: In Proceedings
of Methods for Modalities.

B�����, Nick, Gavin M. B������, and Valeria �� P���� (1998).
Computational types from a logical perspective. In: Journal of Functional Programming 8.2, pp. 177–
193.

B������, Gavin M. and Valeria �� P���� (2000).
On an Intuitionistic Modal Logic. In: Studia Logica 65.3, pp. 383–416.

B���, Richard S. and Ross P������� (1999).
De Bruijn notation as a nested datatype. In: Journal of Functional Programming 9.1, pp. 77–91.

C���, Andrew, Francisco F�������, Prakash P���������, and Brigitte P������ (2014).
Fair reactive programming. In: ACM SIGPLAN Notices. Vol. 49. 1, pp. 361–372.

C������, James Maitland (2009).
Type checking and normalisation. PhD thesis. University of Nottingham.

C�����, Edmund M. and E. Allen E������ (1981).
Design and synthesis of synchronization skeletons using branching time temporal logic. In: Pro-
ceedings of the Workshop on Logic of Programs, pp. 52–71.

C����, Roy L. (1993).
Categories for types. Cambridge University Press.

C����, Haskell B. (1952).
The elimination theorem when modality is present. In: Journal of Symbolic Logic 17.4, pp. 249–265.

52 ������������

C��������, Evan and Stephen C���� (2013).
Asynchronous Functional Reactive Programming for GUIs. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pp. 411–422.

�� B�����, Nicolaas Govert (1972).
Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the Church-Rosser theorem. In: Indagationes Mathematicae (Proceedings).
Vol. 75. 5, pp. 381–392.

�� P����, Valeria and Harley E���� III (2017).
Constructive Temporal Logic, Categorically. In: Journal of Logic and its Applications 4.4. Special
Issue Dedicated to the Memory of Grigori Mints.

�� P����, Valeria and Eike R����� (2016).
Fibrational Modal Type Theory. In: Electronic Notes in Theoretical Computer Science 323, pp. 143–
161.

D�����, Peter (1994).
Inductive families. In: Formal Aspects of Computing 6.4, pp. 440–465.

E������, Conal (2009a).
Denotational design with type class morphisms (extended version). Tech. rep. 2009-01. Lamb-
daPix.

E������, Conal (2009b).
Push-pull functional reactive programming. In: Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell, pp. 25–36.

E������, Conal (2015).
The essence and origins of FRP. http://conal.net/talks/essence-and-origins-of-frp-
bayhac-����.pdf.

E������, Conal and Paul H���� (1997).
Functional reactive animation. In: ACM SIGPLAN Notices. Vol. 32. 8, pp. 263–273.

F���������, Matt and MichaelM������ (1994).
An intuitionistic modal logic with applications to the formal veri�cation of hardware. In: Pro-
ceedings of the International Workshop on Computer Science Logic, pp. 354–368.

G�����, Healfdene and JamesM�K���� (1997).
Candidates for substitution. In: Laboratory for Foundations of Computer Science – Report Series.

H����, Bradley (2017).
Better Equational Reasoning for Agda. Undergraduate dissertation. University of Cambridge.

H�����, Robert (2011).
The Holy Trinity. https://existentialtype.wordpress.com/����/��/��/the- holy-
trinity/. Post in the Existential Type blog.

H�����, William A. (1980).
The formulae-as-types notion of construction. In: To H.B.Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism 44, pp. 479–490.

H����, Paul, Antony C�������, Henrik N������, and John P������� (2002).
Arrows, robots, and functional reactive programming. In: International School on Advanced Func-
tional Programming, pp. 159–187.

H����, Paul, John H�����, Simon P����� J����, and PhilipW����� (2007).
A history of Haskell: being lazy with class. In: Proceedings of the 3rd ACM SIGPLAN Conference on
History of Programming Languages, pp. 12–1.

H�����, John (2000).
Generalising monads to arrows. In: Science of Computer Programming 37.1-3, pp. 67–111.

J������, Alan (2012).
LTL types FRP: linear-time temporal logic propositions as types, proofs as functional reactive
programs. In: Proceedings of the 6th Workshop on Programming Languages meets Program Veri�cation,
pp. 49–60.

http://conal.net/talks/essence-and-origins-of-frp-bayhac-2015.pdf
http://conal.net/talks/essence-and-origins-of-frp-bayhac-2015.pdf
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/

������������ 53

J������, Alan (2013).
Dependently Typed Web Client Applications. In: Proceedings of the 15th International Symposium
on Practical Aspects of Declarative Languages, pp. 228–243.

J������, Alan (2014).
Functional reactive types. In: Proceedings of the Joint Meeting of the 23rd Conference on Computer
Science Logic and the 29th Symposium on Logic in Computer Science, p. 54.

J������, Wolfgang (2011).
Strongly typed and e�cient functional reactive programming. PhD thesis. Brandenburg Univer-
sity of Technology Cottbus-Senftenberg.

J������, Wolfgang (2012).
Towards a Common Categorical Semantics for Linear-Time Temporal Logic and Functional Re-
active Programming. In: Electronic Notes in Theoretical Computer Science 286, pp. 229–242.

J������, Wolfgang (2013).
Temporal logic with “Until”, functional reactive programming with processes, and concrete pro-
cess categories. In: Proceedings of the 7th Workshop on Programming Languages meets Program
Veri�cation, pp. 69–78.

J������, Wolfgang (2014a).
An abstract categorical semantics for functional reactive programming with processes. In: Pro-
ceedings of the 8th Workshop on Programming Languages meets Program Veri�cation, pp. 47–58.

J������, Wolfgang (2014b).
Categorical Semantics for Functional Reactive Programmingwith Temporal Recursion andCore-
cursion. In: arXiv.org, pp. 127–142. arXiv: ����.����v�.

K�����, Chantal (2008).
The category of simply typed �-terms in Agda. Available at https://www.lri.fr/�keller/
Documents-recherche/Stage��/Parallel-substitution/report.pdf.

K��������, Satoshi (1997).
Monad as modality. In: Theoretical Computer Science 175.1, pp. 29–74.

K���, Anders (1972).
Strong functors and monoidal monads. In: Archiv der Mathematik 23.1, pp. 113–120.

K�����������, Neelakantan R. (2013).
Higher-order Functional Reactive Programming Without Spacetime Leaks. In: Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming. ACM, pp. 221–232.

K�����������, Neelakantan R. and Nick B����� (2011a).
A semantic model for graphical user interfaces. In: ACM SIGPLAN Notices. Vol. 46. 9, pp. 45–57.

K�����������, Neelakantan R. and Nick B����� (2011b).
Ultrametric semantics of reactive programs. In: Proceedings of the 26th Annual IEEE Symposium on
Logic in Computer Science, pp. 257–266.

K�����������, Neelakantan R., Nick B�����, and Jan H������� (2012).
Higher-order functional reactive programming in bounded space. In: ACM SIGPLAN Notices.
Vol. 47. 1, pp. 45–58.

L�����, Joachim (1980).
From lambda-calculus to cartesian closed categories. In: To H.B.Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pp. 375–402.

L������, F. William (1964).
An elementary theory of the category of sets. In: Proceedings of the National Academy of Sciences
52.6, pp. 1506–1511.

M�� L���, Saunders (1978).
Categories for the Working Mathematician. Springer New York.

M������L��, Per (1998).
An intuitionistic theory of types. In: Twenty-�ve years of constructive type theory 36, pp. 127–172.

http://arxiv.org/abs/1406.2062v1
https://www.lri.fr/~keller/Documents-recherche/Stage08/Parallel-substitution/report.pdf
https://www.lri.fr/~keller/Documents-recherche/Stage08/Parallel-substitution/report.pdf

54 ������������

M�B����, Conor (2004).
Epigram: Practical programming with dependent types. In: Proceedings of the International School
on Advanced Functional Programming, pp. 130–170.

M�B����, Conor (2005).
Type-preserving renaming and substitution. Available at http://strictlypositive.org/ren-
sub.pdf.

M����, Eugenio (1991).
Notions of computation and monads. In: Information and Computation 93.1, pp. 55–92.

N�����, Hiroshi (2000).
A modality for recursion. In: Proceedings of the 15th Symposium on Logic in Computer Science,
pp. 255–266.

N������, Henrik, Antony C�������, and John P������� (2002).
Functional reactive programming, continued. In: Proceedings of the 2002 ACM SIGPLAN Workshop
on Haskell, pp. 51–64.

N�����, Ulf (2008).
Dependently typed programming in Agda. In: Proceedings of the International School on Advanced
Functional Programming, pp. 230–266.

P�������, Ross (2001).
A New Notation for Arrows. In: Proceedings of the 6th ACM SIGPLAN International Conference on
Functional Programming. ACM, pp. 229–240.

P�����, Jennifer, Neelakantan R. K�����������, and Steve Z�������� (2016).
The Essence of Event-Driven Programming. Available at https://www.cl.cam.ac.uk/�nk���/
essence-of-events.pdf. Draft.

P�������, Frank and Rowan D����� (2001).
A judgmental reconstruction of modal logic. In: Mathematical Structures in Computer Science 11.4.

P�����, Benjamin C (2005).
Advanced topics in types and programming languages. MIT Press.

P����, Andrew (2016).
Brief Notes on the Category Theoretic Semantics of Simply Typed Lambda Calculus. https:
//www.cl.cam.ac.uk/teaching/����/L���/catl-notes.pdf.

P�����, Amir (1977).
The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of
Computer Science, pp. 46–57.

P������, Dag (1965).
Natural deduction: a proof-theoretical study. PhD thesis. Almqvist & Wiksell.

����, Donya and Paul H���� (2013).
Grammar-based automated music composition in Haskell. In: Proceedings of the 1st ACM SIGPLAN
workshop on Functional Art, Music, Modeling & Design, pp. 59–70.

S���������, Neil and Henrik N������ (2009).
Safe Functional Reactive Programming Through Dependent Types. In: Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming. ACM, pp. 23–34.

W�����, Philip (1995).
Monads for functional programming. In: Proceedings of the International School on Advanced Func-
tional Programming, pp. 24–52.

W��, Zhanyong, Walid T���, and Paul H���� (2002).
Event-driven FRP. In: Proceedings of the International Symposium on Practical Aspects of Declarative
Languages, pp. 155–172.

http://strictlypositive.org/ren-sub.pdf
http://strictlypositive.org/ren-sub.pdf
https://www.cl.cam.ac.uk/~nk480/essence-of-events.pdf
https://www.cl.cam.ac.uk/~nk480/essence-of-events.pdf
https://www.cl.cam.ac.uk/teaching/1617/L108/catl-notes.pdf
https://www.cl.cam.ac.uk/teaching/1617/L108/catl-notes.pdf

�������� �

Category theory

This section presents a brief overview of the core concepts of category theory. It is intended as
a place to establish the terminology and notation used in the dissertation, not as an exhaustive
account of the topic – for the details, there are many great textbooks to refer to, such as the
classic foundational text of Mac Lane (1978) or the more contemporary introduction by Awodey
(2010).

B���������� ������ ����������

In this section, we de�ne the basic notions of categories, products, coproducts, exponentials
and bicartesian closed categories.

De�nition (Category). A category C consists of:
• a collection of objects Ob(C);
• for each pair of objectsA,B 2 Ob(C), a collection ofmorphisms C(A,B) called the hom-set
of A and B;

• for every object A, a (unique) identity morphism idA : A! A;

• for every pair of morphisms f : A ! B and � : B ! C , a composition � � f : A ! C
obeying the following laws:

– the identity morphism is a right and left identity for composition: f � idA = f =
idB � f ;

– composition is associative: for all other h : C ! D, h � (�� f) = (h ��)� f = h ��� f .

One of the core ideas of category theory is universal constructions: de�ning concepts by giving
the properties it must obey, alongside with a way to select the “best” construction from all the
ones which obey these properties. Examples of universal constructions are limits and colimits,
and below we de�ne some special cases.

De�nition (Terminal object). An object > in a category C is a terminal object if for all A 2 C
there exists a unique morphism !A : A! >.

De�nition (Product object). For two objectsA,B 2 C, the product A⇥B (if it exists) is an object
with two projections �1 : A⇥B ! A and �2 : A⇥B ! B such that for any other candidate product

56 ����������

P with morphisms p1 : P ! A and p2 : P ! B there exists a unique mediator m : P ! A ⇥ B
such that p1 = �1 �m and p2 = �2 �m.

The usual way to summarise these de�nitions graphically is via a commutative diagram:

P

A ⇥ B

A B

p1 p2
m

�1 �2

Products also have associated morphism operations:

De�nition. Given two morphisms f : P ! A and � : P ! B with the same source, we can
form the product morphism hf ,�i : P ! A ⇥ B, de�ned as the unique mediator between the
candidate product P and A ⇥ B.
For morphisms f : P ! A and � : Q ! B, their parallel product f ⇥� : P ⇥Q ! A⇥B is de�ned
as f ⇥ � = hf � �1,� � �2i.

Next, we de�ne the duals of terminal and product objects, i.e. terminal objects and products in
the category Cop with all arrows reversed.

De�nition (Initial object). An object ? in a category C is an initial object if for all A 2 C there
exists a unique morphism ¡A : ? ! A.

De�nition (Sum object). For two objects A,B 2 C, the sum (or coproduct) A + B (if it exists) is
an object with two injections �1 : A! A+B and �2 : B ! A+B such that for any other candidate
sum S with morphisms i1 : A! S and i2 : B ! S there exists a unique mediator m : A + B ! S
such that s1 =m � �1 and s2 =m � �2.

A B

A + B

S

�1

i1

�2

i2

m

De�nition. Given two morphisms f : A! S and � : B ! S with the same target, we can form
the sum morphism [f ,�] : A + B ! P , de�ned as the unique mediator between A ⇥ B and the
candidate sum P .
For morphisms f : P ! A and � : Q ! B, their parallel sum f + � : P +Q ! A + B is de�ned
as f + � = [�1 � f , �2 � �].

As expected, products and sums generalise the set-theoretic Cartesian product and disjoint
union operations, which are the products and coproducts in the category Set of sets. We can
also introduce a third kind of object which internalises morphisms – this is analogous to how
the functions between two sets (i.e. the hom-sets in Set) are themselves sets.

�������� ������ 57

De�nition (Exponential object). For two objects A,B in a category C with all binary products,
their exponential A) B or BA (if it exists) is an object with a morphism ev : (A) B) ⇥A! B
such that for any other candidate exponential E with morphism e : E ⇥A! B there exists a
unique mediatorm : E ! (A) B) such that the following diagram commutes:

E E ⇥A

A) B (A) B) ⇥A B

m m⇥idA e

ev

De�nition. Given a morphism f : E ⇥A! B, its currying or transpose �f : E ! (A) B) is
de�ned as the unique mediator between the candidate exponential E and A) B.

We are now ready to give the de�nition of an important class of categories which can be used
to model various computational calculi, including our language.

De�nition. A Cartesian closed category (CCC) is a category C which is:
• Cartesian, i.e. has all �nite products (or equivalently, has a terminal object and a product
A ⇥ B for every pair of objects A,B 2 C);

• closed, i.e. has an exponential A) B for every pair of objects A,B 2 C.
A bicartesian closed category (BCCC) is a cartesian closed category with all �nite sums.

F������� ��� ������� ���������������

Informally, functors are maps between categories, and natural transformations are maps
between functors.

De�nition (Functors). A functor F between two categories C and D consists of:
• an object map Fo : Ob(C)! Ob(D);
• for every object A,B 2 C, a morphism map Fm : C(A,B)! D(Fo(A), Fo(B)) which obeys
the following properties:

– it preserves identities: for all A 2 C, Fm(idCA) = idDFo(A);
– it preserves composition: for all objects A,B,C 2 C and morphisms f : A ! B,
� : B ! C , Fm(� �C f) = Fo(�) �D Fo(f).

Usually both Fo and Fm are denoted by F : as they act on di�erent entities (objects FA or
morphisms F f), there is rarely any ambiguity. As functors are a kind of mapping, we might
wonder if they are the morphisms in any category – sure enough, they are morphisms in the
category of categories, Cat, whose objects are (small) categories and morphisms are functors.
While we will not need this category explicitly, we will use the characteristic identity functors
IdC and functor composition GF : C! E for F : C! D and G : D! E.

Functors can be used to compare or transform categories, but we are often interested in
comparing ways to transform categories. This is where natural transformations come into play.

58 ����������

De�nition (Natural transformation). A natural transformation � : F =) G between two func-
tors F ,G : C! D is a collection of morphisms in D indexed by objects in C. A component of �
at A 2 C, denoted �A, is a morphism from FA to GA, i.e. an element of D(FA,GA). The natural
transformation must obey the naturality condition for every morphism f : A! B:

Gf � �A = �B � F f

This can also be expressed as a naturality square. Natural transformations then map objects in
C to morphisms in D, and morphisms in C to naturality squares in D.

A FA GA

B FB GB

8f

�A

F f G f

�B

As before, it can be shown that functors between two categories C and D themselves form a
category called a functor category DC: its objects are functors F ,G : C ! D and morphisms
are natural transformations F =) G. We can de�ne the identity natural transformation idF
and (vertical) composition of natural transformations� � � componentwise, and prove their
coherence properties.

The last three concepts relate functors and natural transformations, and they will be very
important for our discussion of modal logic in category theory.

A����������, ������ ��� ��������

An adjunction is a very general connection between two functors, expressing a weak form
of an inverse relationship. Adjoint functors appear very frequently throughout mathematics,
which makes them one of the most powerful tools in a mathematician’s arsenal. They are also
closely related to monads and comonads which have been embraced by computer science to
formalise the notion of a computation and contexts.

De�nition (Adjunction). Let F : D ! C and G : C ! D be two functors between categories
C and D. The functor F is left adjoint to G (equivalently, G is right-adjoint to F), denoted as
F a G, if:

• there exists a natural transformation � : IdD =) GF called the unit;

• there exists a natural transformation � : FG =) IdC called the counit;

• the unit and counit satisfy the triangle identities:

�F � F� = idF G� � �G = idG

F G

FGF F GFG G

F�
idF �G

idG

�F G�

�������� ������ 59

The above equalities and diagrams are given from the “point of view” of functor categories –
they are actually shorthands for the component-wise equations (for A 2 C and B 2 D)

�FB � F (�B) = idFB G(�A) � �GA = idGA

The �rst notation is preferred, as it lets us manipulate functors and natural transformations in
an intuitive “algebraic” manner.

There are mahy examples for adjunctions, and their utility will become even more apparent
when we relate them with monads and comonads.

De�nition (Monad). Given a category C, an endofunctor T : C! C is a monad if:
• there exists a natural transformation � : IdC =) T called unit;

• there exists a natural transformation µ : T 2 =) T called multiplication;

• unit and multiplication satisfy the following monad laws:

– left and right unit: µ �T� = µ � �T = idT
– associativity: µ �T µ = µ � µT

T T 2 T T 3 T 2

T T 2 T

T�

idT
µ

�T

idT
µT

T µ

µ

µ

De�nition (Comonad). Given a category C, an endofunctorU : C! C is a comonad if:
• there exists a natural transformation � : U =) IdC called counit or extraction;

• there exists a natural transformation � : U =) U 2 called comultiplication or duplication;

• counit and comultiplication satisfy the following comonad laws:

– left and right counit: U � � � = �U � � = idU
– coassociativity: U� � � = �U � �

U U U 2

U U 2 U U 2 U 3

�
idU idU

�

�

U�

U � �U �U

As it turns out, every adjunction induces amonad-comonad pair (and everymonad and comonad
can be derived from an adjunction).

Theorem. Let F : D! C andG : C! D be two adjoint functors F a G , with unit � and counit � .
Then:

• the functor T = GF : D! D is a monad, with unit � and multiplication G�F ;

• the functorU = FG : C! D is a comonad, with counit � and comultiplication F�G.

Proof. The monad and comonad laws follow directly from the triangle identities of F ` G and
naturality of � and �. ⇤

�������� �

Substitution

Term substitution (e.g. an operation of type � ` M : A! �,x : A ` N : B ! � ` [M/x]N : B)
is easy to describe informally (“substitute the term M for every occurrence of x in N ”), but
actually de�ning it is remarkably complicated. We need to check for variable equality, handle
renaming, avoid variable capture, and do everything as e�ciently as possible. The de Bruijn
indexing solves the �rst two issues but requires manipulating the indices to avoid capture,
which can get quite cumbersome. Moreover, it is awkward to de�ne substitution in our Agda
formalisation “from �rst principles”: we either get hopelessly lost trying to derive the variable
and stabilisation cases, or terms involving bound variables.

In this section we present two approaches to solving these issues, which combine to create
a general, intuitive and e�cient framework for managing substitution and other syntactic
meta-operations. In fact, we show that any context lemma – such as weakening, exchange or
substitution – can be expressed as a term traversal operation with an appropriate substitution.
We then develop a semantic version of this framework, which allows us to prove the soundness
of these operations in a similarly generic way.

S�������� ����

One half of our syntactic framework was �rst described by McBride (2005) in an unpublished
Functional Pearl. It starts with the observation that in the Altenkirch and Reus style of term
encoding, the terms and variables are both indexed by the same entities: a context and a
judgement. In addition, the operations of variable renaming and term substitution can both be
formulated as term traversals, mapping the free variables of a term either to another variable,
or a term.

�, z: A ` � f . ��. f z � z rename x to z ���������� �,x : A ` � f . ��. f x � x substituteM for x�������������! � ` � f . ��. f M �M

rename : (A 2 � ! A 2 �)! (� ` A! � ` A)
substitute : (A 2 � ! � ` A)! (� ` A! � ` A)

In fact, it is possible to de�ne a generic term traversal operation which takes a map from
variables to “stu�” (McBride’s terminology) and applies this map to each free variable of the
term. This “stu�” – indexed by a context and a judgement – can be instantiated with a variable

62 ����������

or a term, and the resulting traversal will either act as a renaming or a substitution.

traverse : (A 2 � ! S� A)! (� ` A! � ` A)

Here we will call this “stu�” Sa schema, and instances of a particular schema (i.e. variables or
terms) S-instances. McBride identi�es three conditions that S-instances must satisfy in order
to allow us to de�ne this generic traversal function. We should be able to turn variables into
the schema, and the schema into a term. In addition, the schema should have a weakening
map, i.e. a way to extend the context by a new type. These conditions can be collected into a
so-called syntactic kit, which is a fairly vague name for a fairly vague – but nevertheless very
powerful – concept.

Though McBride’s paper used Epigram (McBride, 2004), the idea can be readily translated
into Agda, as shown by Keller (2008). The original formulation was tailored to the �-calculus,
but – somewhat surprisingly – there is only one operation that we need to add to the kit to
make it work with our system: mapping a schema S � (A always) to S � s (A always). This
makes intuitive sense: if something has a static type, its context can be stabilised. We now give
the full speci�cation of syntactic kits as an Agda record:

Schema : Set1
Schema � Context -� Judgement -� Set
Var : Schema
Var � flip _2_
Term : Schema
Term � _`_

record Kit (S : Schema) : Set where
field

v : 8{� A} -� A 2 � -� S � A
t : 8{� A} -� S � A -� � ` A
w : 8{� A B} -� S � A -� S (� , B) A
a : 8{� A} -� S � (A always) -� S (� s) (A always)

E������� �������������

The main idea behind explicit substitutions (Abadi et al., 1991) is treating substitutions not as a
term operation, but as explicit transformations between contexts (which Goguen and McKinna
(1997) call context morphisms): a substitution � ` � . � changes the context of a schema (term
or variable)T : S� A to [�]T : S� A. By making substitutions a �rst-class syntactic entity (like
in the �� -calculi originated by Abadi et al.), we can de�ne new substitutions via combinators,
without having to deal with the intricacies of the de Bruijn indexing. This also improves the
e�ciency of implementations, as substitutions can be “batched” and applied at the same time,
potentially avoiding a term size explosion. Explicit substitutions can be nicely expressed in
Agda and integrate well with syntactic kits.

In essence, a substitution is just a list of (variable, term) pairs alongside some well-
formedness rules, and applying a substitution amounts to replacing the free variables in

������������ 63

the argument with the corresponding term. Formally, we inductively de�ne � ` �S . � to
represent a valid substitution of S-instances in context � for the free variables of an S-instance
in context �. In the base case, we can substitute anything into a term with no free variables. In
the inductive case, given a substitution � ` �S . � and a S-instance T : S� A, we can extend �
by a new free variable for which we substitute T .

� ` • . ·
� ` �S . � T : S� A

� ` �S I T . �,A

In Agda, this can be de�ned as an inductive family Subst, which guarantees that all substitutions
are well-formed1:

data Subst (S : Schema) : Context -� Context -� Set where
• : 8{�} -� Subst S · �
I : 8{A � �} -� Subst S � � -� S � A -� Subst S (� , A) �

We now extend syntactic kits by adding the fundamental substitution property (as we will see
later, it cannot be added to the Kit record directly):

record SubstKit (S : Schema) : Set where
field

k : Kit S
s : 8{� � A} -� Subst S � � -� S � A -� S � A

Next, we de�ne the substitution combinators for weakening, lifting and stabilisation, which
are parameterised by a kit and use its w, v and a operations respectively.

+ : 8{S � � A} -� Subst S � � -� Kit S -� Subst S � (�, A)
⇥ : 8{S � � A} -� Subst S � � -� Kit S -� Subst S (�, A) (�, A)
⇤s : 8{S � �} -� Subst S � � -� Kit S -� Subst S (� s) (� s)

As it turns out, explicit substitutions form the morphisms in the category of contexts (Keller,
2008), so we also provide identity and composition combinators – note that composition
requires the substitution property of SubstKit:

ids : 8{S �} -� Kit S -� Subst S � �
�[]s_ : 8{S � � �} -� Subst S � � -� SubstKit S

-� Subst S � � -� Subst S � �

S��������� ����������

The real pay-o� when using explicit substitutions is that they can express any context trans-
formation property in a very high-level way. Examples are not only substitutions, but a more

1Note that the order of contexts in the Agda de�nition may seem a bit backwards: while the formal de�nition
of substitutions is consistent with the judgemental model (with the judgement �S . � expressing that “�S has the
environment �”), it seemed sensible to notate a transformation from S � A to S � A as Subst S � �.

64 ����������

general class of properties called structural rules (Pierce, 2005, Section 1.1) such as weakening,
exchange and contraction:

�,� ` A
(weaken)

�,B,� ` A
�,A,�,B,� ` C

(exchange)
�,B,�,A,� ` C

�,A,A,� ` B
(contract)

�,A,� ` B
Our framework lets us express these lemmas as explicit substitutions, without ever referring to
the actual term syntax of the language. Instead of having to de�ne every lemma case-by-case
(which gets even more problematic if we add a new term to the syntax), we declare them as
context transformations which can then be applied in a term traversal. Below are the simplest
versions of the lemmas, specialised to the top of the context; note how we are only using our
syntactic kit functions and substitution combinators.

weak-tops : 8{S � A} -� SubstKit S -� Subst S � (�, A)
weak-tops k � ids k + k

ex-tops : 8{S � A B} -� SubstKit S -� Subst S (�, A, B) (�, B, A)
ex-tops k � (ids k + k ⇥ k) I (v k (pop top))

contr-tops : 8{S � A} -� SubstKit S -� Subst S (�, A, A) (�, A)
contr-tops k � (ids k) I (v k top)

sub-tops : 8{S � A} -� SubstKit S -� S � A -� Subst S (�, A) �
sub-tops k T � ids k I T

We are now ready to de�ne generic term traversals, provide SubstKit instances for variables
and terms, and derive the structural and substitution lemmas we need.

G������ ���� ���������

Let us restate our main goal: de�ning a function that can apply an explicit substitution to a
term.

substitute : 8{� � A} -� Subst Term � � -� � ` A -� � ` A

This is actually the s function of the SubstKit instance for Term. Arriving to this instance
requires several steps, of which we highlight the two main ones.

Generic variable substitution map Recall from that McBride used a variable map of type
A 2 � ! S� A as an argument to the traverse function: during a traversal, this map gets
applied to the free variables of the term. We can de�ne a function subst-var to turn any
substitution into a map of this type. This is precisely the bridge between explicit substitutions
and McBride’s syntactic kit traversals.

subst-var : 8{S � � A} -� Subst S � � -� (Var � A -� S � A)
subst-var • () -- Impossible pattern

������������ 65

subst-var (� I T) top � T
subst-var (� I T) (pop v) � subst-var � v

When specialised to variables, this function lets us provide a SubstKit instance Vars for
variables. The other kit operations are also straightforward to de�ne: for example, mapping
from variables is just the identity, and mapping to terms is the var constructor.

Term traversal The generic term traversal applies a substitution (for any schema S) to every
variable of a term or computation. This is the only function in our framework which is de�ned
via structural recursion on the argument, so adding a new term to the syntax requires only one
function to be modi�ed. Below we list some of the interesting cases; the others are either similar,
or the traversal simply distributes over the constructor (e.g. in pairing or injections). It is worth
noting that this de�nition is quite clean and relies only on kit or substitution combinators.

traverse : 8{S � � A} -� Subst S � � -� � ` A -� � ` A
traverse � (var x) � t (subst-var � x)
traverse � (lam M) � lam (traverse (� ⇥ k) M)
traverse � (M � N) � traverse � M � traverse � N
traverse � (persist M) � persist (traverse (� ⇤s k) M)
traverse � (letSta S In M) � letSta traverse � S

In traverse (� ⇥ k) M
traverse � (event E) � event (traverse' � E)

traverse' : 8{S � � A} -� Subst S � � -� � ✏ A -� � ✏ A
traverse' � (pure M) � pure (traverse � M)
traverse' � (letEvt E In C) � letEvt traverse � E

In traverse' (� ⇤s k ⇥ k) C

In the var case, we use our subst-var function from above to apply the substitution to the
variable, then map the resulting schema to a term with t. In the lam case (and every other case
with a binder involved), we recursively traverse the body of the lambda, but lift the substitution
over the bound variable. Traversal distributes over application, and most other non-binding
compound terms. The persist case makes use of our combinator ⇤s to stabilise the context of
M. In event and pure, we make mutually recursive calls to traverse the inner computations or
terms, respectively. Finally, in event binding, we sequence the context stabilisation and lifting
combinators to traverse the body.

As expected, we derive the rename and substitute functions by specialising traverse
to variables and terms, respectively2. At this point, we are ready to construct the concrete
version of any structural lemma or substitution we need, just by applying substitute (or its
computational analogue substitute’) to an explicit substitution we de�ned in the previous
section. For example:

2The implementation is a bit more complicated than that, as we need rename to de�ne term weakening which
is used in the declaration of the Term kit, and we need the Term kit to de�ne substitute which is used in the
declaration of Terms – this is why we couldn’t put the s �eld in the Kit record directly.

66 ����������

exchange : 8{� A B C} -� �, A, B ` C

-� �, B, A ` C
exchange � substitute (ex-tops Terms)

[_/] : 8{� A B} -� � ` A -� �, A ` B

-� � ` B
[M /] � substitute (sub-tops Terms M)

[_/'] : 8{� A B} -� � ` A -� �, A ✏ B

-� � ✏ B
[M /'] � substitute' (sub-tops Terms M)

Despite the relative complexity of our language, we can specify very di�erent metatheoretic
properties as instances of a single term traversal operation. Without syntactic kits and sub-
stitutions, we would need to do repetitive structural induction on terms in every de�nition.
Instead, we abstract out the term analysis into a generic traversal function and describe the
desired properties as explicit substitutions. The added bene�t of this syntactic framework is
that it has a semantic analogue, as demonstrated below; this allows us to prove the soundness
of substitution and other lemmas in a similarly concise, high-level way.

Substitution of computations The syntactic kit framework allows us to substitute terms into
other terms or computations. However, we do not yet have away to substitute computations into
computations, which is required for evaluation of event binding and selection. Unfortunately,
due to the non-standard typing rules and stabilisation, we cannot provide Kit or SubstKit
instances for ✏, so our generic term traversal will not work for this case. It is not surprising that
computations have to be treated separately: as Pfenning and Davies show, this operation has
to be de�ned in a non-standard way, analysing the structure of the substituted computation,
not the host.

h_/i : 8{� A B} -� � ✏ A now -� � s, A now ✏ B now

-� � ✏ B now
h pure M /i D � substitute' (sub-top s

s Terms M) D
h letSig S InC C /i D �

letSig S InC h C /i (substitute' ((ids Term) + Term ⇥ Term) D)
h (letEvt E In C) /i D �

letEvt E In h C /i (substitute' ((� ss
s Term) ⇥ Term) D)

In the pure case, we substitute the term M into the computation D. In the binding terms (and
select, similar to letEvt) we recurse on the body of the term after lifting and weakening or
stabilising its context.

������������ 67

S������� ����

As shown above, syntactic kits are a collection of functions necessary to de�ne a generic term
traversal with an explicit substitution. Any context transformation lemma (e.g. substitution or
weakening) can then be expressed in terms of this traversal.

Semantic kits allow us to prove that this traversal lemma is sound in our categorical
semantics, and ultimately derive the soundness proof of substitution: the denotation of a
term with a substitution is equal to the term interpreted in the context transformed by the
substitution:

n[�]Mom = nMom � n�os
A semantic kit is a collection of lemmas, one for each kit operation, along with a way to
interpret the underlying schema. The lemmas are chosen as the minimal properties required to
derive the soundness of traversal – they might seem oddly speci�c, but they are also much
easier to prove than the full soundness property from �rst principles. We believe that this
technique eliminates a lot of boilerplate that comes with substitution proofs, just like how
syntactic kits simpli�ed the de�nition of these operations.

Below is the record describing syntactic kits. The n_o function interprets the schema as a
Reactive morphism. The laws nvo and nto ensure that v and twork as expected: mapping
the top variable to the schema is interpreted as the second projection, and the interpretation of
the schema coincides with the denotation of the term created from the schema. Interpreting a
weakened schema is the same as its denotation in the tail of the context. Finally, stabilising the
context then interpreting a T is more-or-less the same as interpreting T. This lemma implies
the more intuitive condition na To � nso� = nTo.

record nKito {S : Schema} (k : Kit S) : Set where
field

n_o : 8{� A} -� S � A -� n�ox _ nAoj
nvo : 8{� A} -� nv topo � �2
nto : 8{� A} (T : S � A) -� nt Tom � nTo
nwo : 8{� A} (T : S � A) -� nw To � nTo � �1
nao : 8{� A} (T : S � (A always)) -� ⇤na To � nso⇤� � �nAot � nTo

Along with the semantic kits, we also need to interpret explicit substitutions. A substitution
� ` � . � has the denotation n�ox _ n�ox: it maps the free variables of the substituted term to
the free variables of the “host”. In Agda, this can be expressed as:

n_os : 8{S � �} -� Subst S � � -� n�ox _ n�ox
n • os � !
n� I Tos � hn�os, nToi

We can use these de�nitions to state soundness lemmas for the individual substitution com-
binators, which thus become “proof combinators”. We state the types below for reference,
and one example proof (the others are similar). In all lemmas k : Kit S is a syntactic kit and
� : Subst S � � is a substitution.

68 ����������

n+o : 8{� � A} -� n� + kos � n�os � �1
n⇥o : 8{� � A} -� n� ⇥ kos � n�os ⇥ idA
nidso : 8{�} -� nidsos � id�
n⇤so : 8{� � A} -� ⇤n� ⇤s kos � nso⇤� � nso⇤� � n�os

n⇥o : 8{� � A} -� n� ⇥ kos � n�os ⇥ idA
n⇥o • rewrite nvo � refl
n⇥o (� I T) rewrite n+o � | nwo T | nvo � refl

Note that n⇤so is actually the naturality condition for nso⇤: as substitutions are morphisms in
the category of contexts, applying the n_ox functor to � ` � . � is the same as interpreting it
with n_os.

n�ox ⇤n� sox

n�ox ⇤n� sox

n�os

nso⇤�

n� ⇤s kos

nso⇤�

We have a similar exchange condition for substitution and handle:

handle-comm : handle (nC1oc � � ⇤s k ⇥ k ⇥ k)
(nC2oc � � ⇤s k ⇥ k ⇥ k)
(nC3oc � � ⇤s k ⇥ k ⇥ k)

� handle nC1oc nC2oc nC3oc � ((� ⇤s k) ⇥ idnAot~nBot)

S�������� �� ���������

Semantic kits allow us towrite a general soundness proofs for term traversal and then instantiate
it to various soundness lemmas including weakening and substitution. The theorem says that
the denotation of a term � ` M : A traversed with � ` � . � is equal to the term interpreted in
the context transformed with n�os.

ntraverse � Mom = nMom � n�os
Again, we focus on the interesting cases.

traverse-sound : 8{S � � A} (� : Subst S � �) (M : � ` A)
-� ntraverse � Mom � nMom � n�os

traverse-sound • (var ()) -- Impossible case
traverse-sound (� I T) (var top) � nto T
traverse-sound (� I T) (var (pop x)) � traverse-sound � (var x)
traverse-sound � (lam M) rewrite traverse-sound (� ⇥ k) M | n⇥o � � refl
traverse-sound � (M � N) rewrite traverse-sound � M

| traverse-sound � N � refl
traverse-sound � (extract M) rewrite traverse-sound � M � refl

������������ 69

traverse-sound � (persist M) rewrite traverse-sound (� ⇤s k) M
| n⇤so � � refl

traverse-sound � (letSta M In N) rewrite traverse-sound � M
| traverse-sound (� ⇥ k) N
| n⇥o � � refl

traverse-sound � (event E) � traverse'-sound � E

The structure of the proof follows the de�nition of traversals, by induction on the term M. In
compound terms (pairs, projection, etc.) the traversal distributes over the structure, so it is
su�cient to recursively establish the soundness of the component traversals. In the var case,
we split on the variable index; if it is the top (i.e. we found the variable we want to substitute
for), we prove the equality of denotations with our nto lemma – otherwise, we recurse on the
other indices. In the lam case, we apply the induction hypothesis proving that the traversal of
the body with a lifted substitution is sound, then use n⇥o to show that the lifting is sound. For
application we simply recurse on the subterms.

The cases for extract and stable are also recursive applications of the IH. The persist
case is similar to lam, except we stabilise the substitution instead of lifting it. Signal binding is
also analogous to lam, with an extra recursive call on the bound term. Finally, for events we
call the computational version of the soundness lemma, shown below.

traverse'-sound : 8{S � � A} (� : Subst S � �) (C : � ✏ A)
-� ntraverse’ � Coc � nCoc � n�os

traverse'-sound � (pure M) rewrite traverse-sound � M � refl
traverse'-sound � (letSig M In C) rewrite traverse-sound � M

| traverse'-sound (� ⇥ k) C
| n⇥o � � refl

The lemmas for event binding and selection have longer, but similarly high-level proofs: the
steps involve the IH, functor laws and naturality condition for st⇤. As an example, the full
proof for the event binding can be found in Appendix C.

S�������� �� ������� ������

The soundness of traversal lemma is a general result that can be used with any instance of a
semantic kit. Given the simplicity of the lemmas, it is not di�cult to de�ne semantic kits for
variables (nVaro) and terms (nTermo). Then, the derived soundness of substitution proof is:

substitute-sound : 8{� � A} (� : Subst Term � �) (M : � ` A)
-� nsubstitute � Mom � nMom � n�os

substitute-sound � M � traverse-sound nTermo � M

Given any substitution � , we can derive a soundness proof. The speci�c substitution we need
(used in the equational theory) is replacing the top variable of the context with a term M, which
we de�ned in Appendix B as sub-tops nTermo M. In fact, we can provide a full categorical
proof by establishing that the denotation of this substitution is equal to hid�, nMomi:

70 ����������

nsub-topso : 8{� A} -� (M : � ` A) -� nsub-tops nTermo Mos � hid�, nMomi
nsub-topso M rewrite nidsos � refl

subst-sound : 8{� A B} (M : � ` A) (N : �, A ` B)
-� n[M /] Nom � hid�, nMomi

subst-sound M N rewrite sym (nsub-topso M) �
substitute-sound (sub-tops Terms M) N

This is the standard expression for soundness of substitution in a CCC, which demonstrates
that despite their overall simplicity, syntactic and semantic kits are a very adequate tool for
de�ning syntactic operations and proving the soundness of their denotational semantics.

�������� �

Proofs

Monad laws for ^

Theorem. ^, together with � and µ satis�es the monad laws.

Proof.

Lemma (Left unit law). µA � �^A = idA

Proof. The law holds by the de�nition of µ and �. ⌅

Lemma (Right unit law). µA � ^�A = idA

Proof. In Reactive, this equation expands to the following, for k : N and a : •kA|n:

µA |n (^�A |n (k,a)) = (k,a)

We now consider two cases:

Case k n:

µA |n (^�A |n (k,a)) = µA |n (k, •k�A |n (a)) (^ map on morphisms)
= (.kn�k)A(•k�A |n (a) k ^A|n�k) (def. of µ (case k n))
= (.kn�k)A(�A |n�k (a kA|n�k)) (delay lemma)
= (.kn�k)A(0,a kA|n�k) (def. of �)
= (k,a k •k A|n) (def. of .kn�k)
= (k,a)

Case k > n: As a : (•kA)n and k > n, a = ⇤.

µA |n (^�A |n (k, ⇤)) = µA |n (k, •k�A |n (⇤)) (^ map on morphisms)
= (k, ⇤ k •k A|n) (def. of µ (case k > n))
= (k, ⇤) ⌅

Lemma (Associativity law). µA � µ^A = µA � ^µA

72 ����������

Proof. In Reactive, this equation expands to the following, for k : N and a : (•k^^A)n:

µA |n (µ^A |n (k,a)) = µA |n (^µA |n (k,a))

We now consider two cases:

Case k n:

µA |n (µ^A |n (k,a)) = µA |n ((.kn�k)^A(a k ^^A|n�k)) (def. of µ (case k n))
= (.kn�k)A(µA |n�k (a k ^^A|n�k)) (interchange of µ and .kn�k)
= (.kn�k)A(•kµA |n (a) k ^A|n�k)) (delay lemma)
= µA |n (k, •kµA |n (a)) (def. of .kn�k)
= µA |n (^µA |n (k,a)) (^ map on morphisms)

Case k > n: As a : •k^^A|n and k > n, a = ⇤.

µA |n (µ^A |n (k, ⇤)) = µA |n (k, ⇤ k (•k^A)n) (def. of µ (case k > n))
= (k, ⇤ k •k ^A|n k •k A|n) (def. of µ (case k > n))
= (k, ⇤) ⌅

The monad laws hold, therefore ^ is a monad.
⇤

Soundness of traversal for event binding

Theorem. Traversal of an event binding computation is sound: for all contexts � and �, substi-
tutions � ` � . �, terms � ` E : Event A now and computations � s,x : A now ` C ÷ B now, we
have:

ntraverse0 � (let evt x = E in C)oc = nlet evt x = E in Coc � n�os
Proof. Assume the following induction hypotheses:

ntraverse � Eom = nEom � n�os

ntraverse0 (� ⇤s k ⇥ k) Coc = nCoc � n� ⇤s k ⇥ kos
We have the following equational proof:

ntraverse0 � (let evt x = E in C)oc
= nlet evt x = traverse � E in traverse0 (� ⇤s k ⇥ k) Coc (traversal of events)
= bindEvent � ntraverse � Eom ntraverse0 (� ⇤s k ⇥ k) Coc (denotation of event binding)
= bindEvent � (nEom � n�os) (nCoc � n� ⇤s k ⇥ kos) (induction hypotheses)
= µnBot � ^(nCoc � n� ⇤s k ⇥ kos � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � hn

so⇤�, nEom � n�osi
(de�nition of bindEvent)

= µnBot � ^nCoc � ^(n� ⇤s k ⇥ kos � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � hn
so⇤�, nEom � n�osi

(^ functor law)

������ 73

= µnBot � ^nCoc � ^(n� ⇤s kos ⇥ idnAot � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � hn
so⇤�, nEom � n�osi

(denotation of ⇥)
= µnBot � ^nCoc � ^((n� ⇤s kos � �n� sox) ⇥ idnAot) � st⇤n� sox,nAot � hn

so⇤�, nEom � n�osi
(CCC law)

= µnBot � ^nCoc � ^((�n� sox � ⇤n� ⇤s kos) ⇥ idnAot) � st⇤n� sox,nAot � hn
so⇤�, nEom � n�osi

(naturality of �)
= µnBot � ^nCoc � ^(�n� sox ⇥ idnAot � ⇤n� ⇤s kos ⇥ idnAot) � st⇤n� sox,nAot � hn

so⇤�, nEom � n�osi
(CCC law)

= µnBot � ^nCoc � ^(�n� sox ⇥ idnAot) � ^(⇤n� ⇤s kos ⇥ idnAot) � st⇤n� sox,nAot � hn
so⇤�, nEom � n�osi
(^ functor law)

= µnBot � ^(nCoc � �n� sox ⇥ idnAot) � ^(⇤n� ⇤s kos ⇥ idnAot) � st⇤n� sox,nAot � hn
so⇤�, nEom � n�osi
(^ functor law)

= µnBot � ^(nCoc � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � ⇤n� ⇤s kos ⇥ idnAot � hnso⇤�, nEom � n�osi
(naturality of st⇤)

= µnBot � ^(nCoc � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � h⇤n� ⇤s kos � nso⇤�, nEom � n�osi
(CCC law)

= µnBot � ^(nCoc � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � hn
so⇤� � n�os, nEom � n�osi

(denotation of ⇤s)
= µnBot � ^(nCoc � �n� sox ⇥ idnAot) � st⇤n� sox,nAot � hn

so⇤�, nEomi � n�os (CCC law)
= bindEvent � nEom nCoc � n�os (de�nition of bindEvent)
= nlet evt x = E in Coc � n�os (denotation of event binding)

⇤

	Introduction
	Project description

	Background
	Modal and temporal logics
	Functional reactive programming
	Temporal Curry–Howard correspondence
	Agda formalisation

	Syntax
	Types and terms
	Term equality

	Categorical foundations
	Modalities in category theory
	The category of reactive types

	Semantics
	Semantics of types and terms
	Soundness of term equality

	Conclusions
	Related work
	Future work

	Appendices
	Category theory
	Substitution
	Proofs

