
Dmitrij Szamozvancev

Computer Science Tripos – Part II

Well-typed music does not sound wrong

University of Cambridge
Downing College

May 19, 2017

Proforma

Name Dmitrij Szamozvancev
College Downing College

Project Title Well-typed music does not sound wrong
Examination Computer Science Tripos – Part II, June 2017
Word Count 11,9551

Project Originator D. Szamozvancev
Supervisor M. B. Gale

Original aims of the project
The design and implementation of a Haskell library for music composition which uses a type-
level model of music to statically enforce rules of classical music theory. The library should let
users describe compositions and check their musical correctness, e.g. presence of dissonant
intervals, consecutive �fths, etc., and export compositions as MIDI �les.

Work completed
All project requirements have been successfully completed, including a number of planned and
unplanned extensions. The library was implemented as a dependently-typed, embedded domain-
speci�c language called Mezzo, and includes features such as concise note, chord, melody and
progression input, static enforcement of musical constraints, multiple levels of strictness and
customisable rendering options. The model was evaluated using unit and integration tests, and
several piano compositions have been described to test the library in action.

Special difficulties
None.

1This word count was computed by detex diss.tex | tr -cd ’0-9A-Za-z \n’ | wc -w

Declaration
I, Dmitrij Szamozvancev of Downing College, being a candidate for Part II of the Computer
Science Tripos, hereby declare that this dissertation and the work described in it are my own
work, unaided except as may be speci�ed below, and that the dissertation does not contain
material that has already been used to any substantial extent for a comparable purpose.

[Signature]

May 19, 2017

Contents

1 Introduction 9
1.1 History and background . 9
1.2 Project description . 10
1.3 Related work . 10

2 Preparation 13
2.1 Musical preliminaries . 13

2.1.1 Glossary . 13
2.1.2 Composition rules . 16

2.2 Dependent types in Haskell . 16
2.2.1 Extensions . 16
2.2.2 General approaches . 20

2.3 Software engineering . 22
2.3.1 Starting point and methodologies . 22
2.3.2 Project requirements . 22

3 Implementation 25
3.1 Music model . 26

3.1.1 The pitch matrix . 26
3.1.2 Musical constraints . 29
3.1.3 The central datatype . 31
3.1.4 Harmony model . 33

3.2 Music description language . 35
3.2.1 Literal values . 35
3.2.2 Flat builders . 36
3.2.3 Melody and harmony . 37

3.3 Music rendering . 40
3.3.1 Rei�cation . 40
3.3.2 MIDI export . 41

4 Evaluation 43
4.1 Testing . 44

4.1.1 Deferred type errors . 44
4.1.2 Type equality . 44
4.1.3 Typeability assertion . 45

4.1.4 Testing of musical rules . 46
4.2 Examples . 47

4.2.1 Chopin’s Prelude . 47
4.2.2 Bach’s Prelude . 48
4.2.3 Contrapuntal composition . 48
4.2.4 Homophonic composition . 49

4.3 Further developments . 51

5 Conclusion 53
5.1 Results and accomplishments . 53

5.1.1 Type-level model . 53
5.1.2 Music description language . 54
5.1.3 Exporting . 54

5.2 Future work . 54

Bibliography 55

Appendices 59
A Music theory . 59
B Mezzo compositions . 63
C Haskell Symposium paper . 75
D Project Proposal . 85

List of Figures

2.1 Example notes and rests. 14
2.2 Examples chords. 15
2.3 Example progression. 16
2.4 Datatype promotion. 19
2.5 Structure of proxies. 20
2.6 Structure of singletons. 21

3.1 Structure of the Mezzo library. 25
3.2 The Mezzo pitch matrix. 26
3.3 Structure of vectors. 27
3.4 Structure of optimised vectors. 28
3.5 Harmonic concatenation. 28
3.6 Validation of harmonic composition rules. 30
3.7 Validation of harmonic motion rules. 31
3.8 Haskore music algebra. 32
3.9 Syntax of the Mezzo harmonic grammar. 34
3.10 Flat builders. 38
3.11 Construction of phrase lists. 39

4.1 Mezzo musical structures . 47
4.2 First measure of Chopin’s Prelude. 48
4.3 First two measures of Bach’s Prelude. 49
4.4 Example contrapuntal composition. 50
4.5 The Happy Birthday song with accompaniment. 50
4.6 Results of optimising MakeInterval. 52

Acknowledgements
There are many people to thank for devoting their time and e�ort to this dissertation. In
addition to all those who showed encouraging interest in the project idea, I would like to
personally thank the following people:

• Simon Peyton Jones, for agreeing to meet me for a discussion about the project and
giving valuable advice on future work,

• Richard Eisenberg, for always knowing the way out when I got hopelessly lost in the
scary world of TypeInType,

• The anonymous review committee of the 2017 Haskell Symposium, for their detailed,
constructive feedback on our paper submission,

• Al�e Wright, for proofreading the drafts of this dissertation and sharing useful academic
writing advice,

• My parents, for their constant support and stimulating conversations about the nature
and philosophy of classical music,

• And of course, Michael Gale, for being a wonderfully encouraging, responsible and
helpful supervisor, as well as becoming a great friend in the process.

chapter 1

Introduction

1.1 History and background

Music theory Music theory, the formal study of the aesthetic properties of music, aims to
provide a scienti�c basis for music composition, analysis and performance [15]. It might seem
surprising that a subjective, creative activity such as music composition can be formalised. But,
in fact, a large part of the process is governed by various rules and conventions that have been
developed over centuries of music tradition. These rules are dictated by mathematics, human
biology and psychology, ethnography and even history, and describe both low-level and global
features of compositions [31]. Enforcing them is a simple and largely algorithmic process, but
it is also error-prone – indeed, an important part of a composer’s education is learning to apply
the rules and identify mistakes as quickly as possible.

Computer music Computers drastically changed how music is created and consumed [6].
Not only do they simplify the composing, recording and editing processes, but they also
became the foundation of entirely new genres of music. One of the early applications of
computers was algorithmic music composition, i.e. programming computers to generate music
autonomously [33]. Many of the techniques used for automatic composition are based on some
encoding of music theory as a probabilistic model [16] or generative grammar [27]. Another
popular genre is live coding, which involves describing and transforming musical compositions
in real time, using a specialised live coding library or domain-speci�c language [1].

Computer-assisted composition Music creation has become an increasingly digital pro-
cess, and there are many software tools to assist both professional and novice composers. Many
programs o�er features such as music notation and playback which are replacing traditional
pen-and-paper composition. Other applications aim to provide musical inspiration or even
generate parts of a composition automatically, such as the harmony or rhythmic accompani-
ment. Somewhat surprisingly, there is a lack of tools which automate the task of musical rule
enforcement, despite the fact that it is a common, tedious and error-prone process. This project
is an attempt to create such a tool.

10 introduction

1.2 Project description

In this project I design and implement an embedded domain-speci�c language, Mezzo, for
describing musical pieces, which uses a type-level model of music to statically enforce rules of
classical composition. If a composition expressed in the language does not follow the rules of
classical music, it is not a valid program and leads to a type error. For example, a consonant
�fth interval described by playing a G and a C quarter note at the same time sounds good, so
this Mezzo expression compiles:

GHCi> g qn :-: c qn

However, playing a B and a C at the same time produces a very harsh-sounding, dissonant
major seventh interval, so a Mezzo expression describing it does not typecheck:

GHCi> b qn :-: c qn

error: Can’t have major sevenths in chords: B and C.

The implementation of Mezzo involves extensive use of type-level computation. This �eld
has been gaining attention in the last few years, especially in the area of dependently-typed
programming [2, 32]. Common use cases for type-level computation are theorem proving and
static veri�cation, but this project will serve to show that dependent types can be applied to
domains far removed from theoretical computer science or critical systems.

Though there are a number of fully dependently-typed functional languages available, I
decided to use Haskell [21] as the implementation language. The main appeals of Haskell are its
maturity, strong and stable type system, the availability of many external packages (for example,
MIDI codecs) and a robust optimising compiler with good support for type-level computation
and code generation. Thanks to its clean syntax and functional nature, Haskell is also a great
language for implementing embedded DSLs, which is the main deliverable of this project.
Additionally, this project provides a practical, nontrivial case study of dependently-typed
programming in Haskell and constructive evidence that the language is more than capable
of handling sophisticated type-level computation without being a fully dependently-typed
language yet.

1.3 Related work

Music composition is a popular use case for Haskell, and several libraries are available for both
music description and generation. One of the �rst related libraries was a composition system
called Haskore by Hudak et al. [18], which describes music as a recursive algebraic structure
with operators for parallel and sequential composition of musical pieces. The Haskore music
algebra forms the basis of Mezzo’s music model, extended with higher-level structures such as
chords and progressions. Haskore was superseded by Euterpea1 which is used in research on
sound synthesis and grammar-based composition [39].

1 http://euterpea.com/

http://euterpea.com/

related work 11

Mezzo borrows ideas from several other Haskell EDSLs, both for music and other media; in
particular, the Music Suite2 composition framework and the vector graphics EDSL Diagrams3.
However, the note and chord input method is implemented using a technique that I have not
seen used for this purpose before.

Research by Magalhães et al. lead to the development of several music analysis and compo-
sition tools revolving around type-level modelling of functional harmony [5, 26, 29]. Mezzo
uses a similar approach to enforce harmonic structure, but also implements static checks for
low-level rules of note and chord composition.

While there is substantial research on generation and analysis of music, little work has been
done on checking the correctness of compositions: the system closest to Mezzo is Chew and
Chuan’s Palestrina Pal [17], a Java program for rule-checking music written in the contrapuntal
style of Palestrina. Similar GUI-based programs and plug-ins are Counterpointer 4 and Fux 5,
but these are also specialised to contrapuntal compositions. I am not aware of similar libraries
for functional languages or systems that enforce musical rules statically.

2 http://music-suite.github.io/
3 http://projects.haskell.org/diagrams/
4 http://www.ars-nova.com/cp/
5 https://musescore.org/en/project/fux

http://music-suite.github.io/
http://projects.haskell.org/diagrams/
http://www.ars-nova.com/cp/
https://musescore.org/en/project/fux

12 introduction

chapter 2

Preparation

This chapter gives an overview of the topics and approaches explored in preparation for the
project, including the basics of music theory and dependently-typed programming in Haskell
needed to implement it. An account of the software engineering practices employed during
the project implementation is also given.

2.1 Musical preliminaries

This section provides a brief glossary of musical terms that are used in this dissertation. A
more detailed overview is given in Appendix A, and a broader treatment of music theory can
be found in any standard textbook – I used Walter Piston’s Harmony [37]. For simplicity, I use
analogies based on the keys of a piano. I annotate the examples (Figs. 2.1 to 2.3) with their
corresponding encoding in the Mezzo EDLS to give the reader an illustration of how they relate.

2.1.1 Glossary

Semitone The smallest frequency interval used in Western music, found between two adjacent
keys on a piano (e.g. a white and a black key). Two semitones make up a tone.

Pitch An absolute frequency speci�ed by an octave (the range between a frequency and its
double), pitch class (denoted by a capital letter A-G which represents the position in the octave),
and an accidental (the shift up or down by a semitone, speci�ed by a] or [), corresponding to a
key on a piano.

Duration A time interval expressed as a negative power of two: whole, half, quarter, etc. A
quarter duration lasts as long as two eighths. A dotted duration is a duration extended by its
half: a dotted half note lasts as long as three quarters.

Note A musical unit given by a pitch and its duration, e.g. a C natural quarter note or a G
sharp dotted eighth note.

Rest A musical unit of silence, given only by its duration.

14 preparation

z
z z

z z

c qn fs qn bf sn c’ en fs’ sharp hn’ r er r qr’

Figure 2.1 – Examples of notes and rests, with the corresponding piano keys. From left to right:
C4 quarter, F4 sharp quarter, B4 �at sixteenth, C5 natural sixteenth, F5 double sharp dotted half,
eighth rest, dotted quarter rest.

Interval The distance between two pitches (keys on the piano), either played at the same time
(harmonic interval), or one after another (melodic interval). An interval is speci�ed by its size
(e.g. second, �fth, octave) and class (e.g. perfect, major, augmented).

Perfect interval Unisons, fourths, �fths and octaves are called perfect intervals (due to the sim-
ple ratio of their frequencies), they can be diminished or augmented by shrinking or expanding
them by a semitone respectively.

Imperfect intervals Seconds, thirds, sixths and sevenths are imperfect intervals, they can be
major or minor, and can also be diminished and augmented.

Chord Two or more notes played at the same time, usually separated by major or minor thirds.
Chords are speci�ed by their lowest note (root), type (e.g. minor third dyad, diminished triad,
dominant seventh, doubled augmented triad), and inversion (rotation by shifting lower notes
up by an octave).

Scale Any subsequence of the 11 pitches in an octave. A diatonic scale consists of 7 pitches
separated by second intervals whose nature determines the mode of the scale (e.g. major, minor).
Tonal music mostly consists of the pitches of a particular diatonic scale, speci�ed by the key
(e.g. C major key). The relative position of a pitch in a scale is given by its scale degree, e.g.
degree III marks the third note of any scale.

Harmonic function The function of a chord expresses its role in a key. A tonic chord (built
on the �rst degree of a scale) represents stability, while a dominant chord (�fth degree) creates
tension which has to be resolved by returning to the tonic. A subdominant (fourth degree) starts
creating tension but can be followed by either a dominant or a tonic.

musical preliminaries 15

a w w w d w w w w

b

w w w e

w w w w

c w w w f w w w w
a b c d e f

c maj qc c min inv qc d min3D qc f augD qc af hdim7 qc g dom7’ i2 qc

Figure 2.2 – Examples of chords, with the corresponding piano keys: (a) CM triad, (b) Cm triad
in �rst inversion, (c) doubled D minor third dyad, (d) doubled Faug triad, (e) half diminished A[
seventh chord, (f) dominant G seventh chord in second inversion.

Chord progression A sequence of chords which follows the conventions of functional har-
mony. For example, a common progression is I–IV–V–I. Progressions often end in a cadence
to provide a closure to a piece: these create maximum tension (e.g. with a dominant seventh
chord) which is then resolved into the tonic of the key.

Voice A single, continuous melodic line of music.

Homophony A compositional technique where a single upper voice is embellished by an
accompaniment, e.g. a chord progression.

Counterpoint A polyphonic (multi-voice) compositional technique where each voice sings an
independent melody, but they give a coherent whole when played together. Strict counterpoint
has to follow many harmonic rules to ensure that the piece sounds consonant but the voices
stay independent.

16 preparation

I IV V7 I

inKey c_maj (ph_I ton :+ cadence (full subdom_IV auth_V7))

Figure 2.3 – Example of a I–IV–V–I chord progression in C major.

2.1.2 Composition rules

To ful�l the minimum project requirements, the Mezzo library must enforce the following
musical rules:

Harmonic intervals Minor seconds (one semitone, e.g. C–C]) and major sevenths (11 semi-
tones, e.g. C–B) sound very dissonant and are forbidden.

Melodic intervals Augmented, diminished and seventh melodic intervals (e.g. C–F]) are
hard to sing and sound disjoint so are forbidden.

Harmonic motion Voices separated by consecutive perfect intervals (�fths, octaves, e.g.
C–G then D–A) do not sound su�ciently independent and are forbidden. Similarly, an interval
can be followed by a perfect interval only when the voices move in di�erent directions (contrary
motion).

Cadences Progressions must end on a �rst degree chord (full cadence) or sixth degree chord
(deceptive cadence) in zeroth or �rst inversion, to provide the necessary closure to a piece.

2.2 Dependent types in Haskell

This section describes the various extensions and techniques we can use to enable dependently
typed programming in Haskell. While the language was not originally designed to have
dependent types, they are in the process of being introduced to Haskell’s leading compiler,
GHC 1. Mezzo makes use of the latest features to perform complex type-level computation.

2.2.1 Extensions

The Haskell Report 2010 [30] gives the core speci�cation of the language, its syntax, semantics,
and standard library. However, the language (and its compiler, GHC) is in very active devel-
opment, and most new features are added via language extensions – some are experimental,
others are in widespread production use. This section gives a short account of the extensions

1 https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell

https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell

dependent types in haskell 17

used in Mezzo for type-level computation, developed over the last 17 years – a more in-depth
overview can be found in Richard Eisenberg’s PhD dissertation [7].

Type classes One of Haskell’s unique features is the introduction of ad-hoc polymorphism
via type classes [13]: means of constraining polymorphic type parameters to get access to more
specialised functionality. For example, the class Show classi�es types which can be pretty-
printed: it de�nes a method show which takes a value of the instance type a and returns a
String:

class Show a where
show :: a -> String

This speci�es a contract: any type that is an instance of the Show class must implement the
method show. To pretty-print Booleans, Bool can be made an instance of Show:

instance Show Bool where
show True = "True"
show False = "False"

Now, any time we want to constrain a polymorphic type variable to types which can be pretty-
printed, we add a type class constraint, specifying that a type variable a can only be instantiated
with types which have an instance of Show:

exclaim :: Show a => a -> String
exclaim v = show v ++ "!"

Generalised algebraic datatypes Algebraic datatypes let us de�ne types as sums and prod-
ucts of other types. For example, polymorphic lists can be recursively de�ned as:

data List a = Empty | Cons a (List a)

Thus, a list of integers has the type List Int, while a list of lists of Booleans has the type
List (List Bool). However, all constructors return a value of type List a, and we have no
way of constraining the type variable a on a per-constructor basis to express invariants. For
instance, the above list type cannot enforce the invariant that “the list contains alternating
integer and Boolean elements”. The GADTs [36] extension lets us give explicit type signatures
for each of the type constructors, including the type variable in its return type. The above
speci�cation can thus be formally expressed as a GADT:

data IntBoolList a where
Empty :: IntBoolList Int
ConsInt :: Int -> IntBoolList Bool -> IntBoolList Int
ConsBool :: Bool -> IntBoolList Int -> IntBoolList Bool

Without GADTs, we could not enforce that the types alternate: Empty would have the poly-
morphic type List a and could not stand as the second argument for the constructors.

18 preparation

Type families Type families [41] open the door to type-level computation, enabling us to
write functions on types which are evaluated by the type checker at compile time. Suppose
that we �rst de�ne type-level Peano naturals using empty data type declerations:

data Z -- Zero
data S n -- Successor of a natural number

Now we can declare a closed type family [8] which calculates the sum of two type-level naturals:
this is done by a straightforward recursive de�nition, except we are pattern-matching and
recursing on types:

type family Sum a b where
Sum Z b = b
Sum (S a) b = S (Sum a b)

Datatype promotion A limitation of basic type-level programming in Haskell is that the
kind system (which classi�es types just as types classify terms) is very rudimentary, given by
the simple grammar:

κ ····= ∗ | κ → κ

The kind of types is * (e.g. Int :: *), while the kind of type constructors is an arrow from
kinds to kinds (e.g. List :: * -> *). This makes it di�cult to write “kind-safe” code: for
example, in the above de�nition of Sum, a and b can be any type, not just type-level naturals.
This problem was solved by the introduction of datatype promotion [46], a way of lifting types
to the kind level and data constructors to the type level (see Fig. 2.4). For example, after enabling
the extension, the type

data Nat = Zero | Succ Nat

can also be used as a kind Nat (distinct from the kind *) and inhabiting types Zero :: Nat
and Succ :: Nat -> Nat. Now we can be more precise in the declaration of Sum:

type family Sum (a :: Nat) (b :: Nat) :: Nat where ...

That is, Sum only takes types of kind Nat as arguments and returns a type of kind Nat as a
result. A related addition is kind polymorphism, which is a desirable feature once we have a
rich kind system. Just as the list length function length :: [a] -> Int is polymorphic in
the type of the elements, we can de�ne a type family Length for type-level (promoted) lists
containing elements of the polymorphic kind k:

type family Length (l :: [k]) :: Nat where
Length [] = Z
Length (x : xs) = S (Length xs)

dependent types in haskell 19

True False

Bool

*

True False

Bool

Term level

Type level

Kind level

Promotion

Figure 2.4 – Promotion of datatypes. After promotion, Bool becomes a kind, while its constructors
True and False become types. Note that the promoted types True and False have no term-level
inhabitants (but the original, unpromoted Bool type is still available).

Constraint kinds By default, Haskell’s type classes are a distinct construct from types: they
can only be declared using the class keyword and can only appear in type class constraints
(on the left-hand side of =>). The ConstraintKinds [4] extension lifts these limitations by
unifying types and constraints. More precisely, every type class constraint becomes a simple
type with kind Constraint, so it can be created and manipulated using type-level functions.
Similarly, any type with kind Constraint can be used as a type class constraint. Moreover,
while type families are not �rst-class types (i.e. we cannot treat unsaturated type families as
types), functions returning constraints can be freely passed around as �rst-class types:

type family ShowOrNum (a :: Bool) :: (* -> Constraint) where
ShowOrNum True = Show
ShowOrNum False = Num

f :: ShowOrNum True a => a -> String
f = show -- Compiles, since ’ShowOrNum True a’ evaluates to ’Show a’

Merging of types and kinds The above extensions allow for remarkably expressive type-
level code: we have a strong kind system, functions on types and constraints, and ways of
connecting the type and term level via GADTs. However, for some domains (e.g. generic
programming), this is not enough, as there are three distinct levels of organisation (terms, types
and kinds) but only two computation environments (run-time and compile-time). From version
8.0.1 onwards, GHC includes the TypeInType [45] extension, which solves this discrepancy by
unifying types and kinds entirely: it introduces the axiom * :: * and renames the “kind” * to
Type. That is, types and kinds can be treated uniformly, giving us kind families, kind-indexed
types, GADT promotion, etc. A striking example of this uni�cation is that we can de�ne a
heterogenous if-expression at the type level:

type family If (b :: Bool) (t :: k) (e :: k) :: k where ...
type family HIf (b :: Bool) (t :: k1) (e :: k2) :: If b k1 k2 where ...

20 preparation

The family If is a simple, homogenous type-level conditional expression, which returns t if b
is True and e otherwise. We use this to statically determine the return kind of HIf, based on
the truth-value of the argument type b: types and kinds can be used in a uniform way.

2.2.2 General approaches

This section introduces some of the techniques for overcoming the limitations of Haskell for
dependently-typed programming. The main problems are Haskell’s type erasure, and separation
of the type and term level, which make type-level information unavailable at runtime.

Proxies Haskell requires all arguments to term-level functions to have types of kind *. This
means that while promotion lets us have types of any kind, these types are not inhabited by
terms and cannot be the types of arguments to functions or data constructors. This limitation
makes the following type signature invalid:

sum :: (a :: Nat) -> (b :: Nat) -> (Sum a b :: Nat)

A simple solution is a proxy: a datatype which “holds” an arbitrarily-kinded type variable:

data Proxy (a :: k) = Proxy

Now, for any type t, Proxy t is inhabited by a term-level value Proxy (see Fig. 2.5), allowing
us to pass around types via term-level values:

sum :: Proxy (a :: Nat) -> Proxy (b :: Nat) -> Proxy (Sum a b :: Nat)
sum a b = Proxy

We can now call the function on two Proxy values. The TypeApplications [10] extension
gives a shorthand way of specifying the type variables in the type of a value:

sum (Proxy @5) (Proxy @7) :: Proxy @12

Proxy True Proxy False

Proxy

*Kind level

Type level

Term level

Figure 2.5 – Proxy created for a promoted Bool type. The kind * makes proxies suitable as function
arguments, but they contain no term-level information.

dependent types in haskell 21

SBool True SBool False

STrue SFalse

*Kind level

Type level

Term level

Figure 2.6 – Singleton type created for a promoted Bool type. Singletons have kind * and their
term-level structure is isomorphic to the type-level structure.

Rei�cation Proxies let us pass around types as term-level values, but all the information is
still only available in the types; as the types are erased, the type-level values become unavailable
at runtime. We need a way to pass down type information to the term level, that is, to reify
the type. The conventional solution to this problem involves Haskell’s type classes: for each
rei�able type, we provide a function reify which returns the term-level value of the type:

class ReifyNat (n :: Nat) where
reify :: Proxy n -> Int

We have to provide instances for each of the types by hand, but for recursive types we can
make use of type class preconditions:

instance ReifyNat Z where
reify n = 0

instance ReifyNat n => ReifyNat (S n) where
reify n = reify (Proxy @n) + 1

A Z is rei�ed to 0, and an S n is rei�ed to the term level value of n plus 1.

Singletons The idiomatic way of accessing type-level information at the term level (not
used in Mezzo) is entirely mirroring the types as terms (see Fig. 2.6). Types which have a
single, unique inhabitant (apart from bottom) are called singleton types [9]. A singleton type
for natural numbers would be

data SNat (n :: Nat) where
SZ :: SNat Z
SS :: SNat n -> SNat (S n)

With this de�nition, the only term inhabiting the type SNat 2 is SS (SS SZ) and the type
of SS (SS SZ) can only be SNat 2 (thanks to the GADT declaration). Creating singletons
for promoted types is a mechanical process and Richard Eisenberg’s singletons2 package can

2 https://hackage.haskell.org/package/singletons

https://hackage.haskell.org/package/singletons

22 preparation

generate them automatically from a type declaration. To avoid having to de�ne singletons by
hand or delegate a lot of work to an external package, Mezzo does not use singletons, which
ended up saving some work in the de�nition of the EDSL.

2.3 Software engineering

This section details the software engineering practices followed during the implementation of
the project, as well as a formal speci�cation of the requirements.

2.3.1 Starting point and methodologies

At the start of the project, I had a good understanding of music theory and an intermediate
grasp of Haskell. However, I had little working experience in type-level programming, which –
due to the lack of textbook coverage of the topic – I learned from papers and blog posts. As
some of the features I am using were only added to the language in 2016, there was often little
information I could �nd online if I got stuck – in these cases, I contacted Prof. Simon Peyton
Jones and Richard Eisenberg for help.

I used the spiral methodology for the implementation, iterating between planning, testing,
and adding new features. The type-level model was drafted and re�ned over the course of
several prototypes created during the planning and experimentation phase. Code was regularly
committed and pushed to GitHub 3, with large changes implemented in feature branches to
allow for quick backtracking. I made good use of GitHub’s project management tools to keep
track of tasks and new ideas. The project was built and unit tests were run after each push by
the continuous integration framework Travis 4. An early version of the library was uploaded to
Haskell’s open source package archive, Hackage5, which had received 73 downloads at the
time of writing.

2.3.2 Project requirements

This section expands on the project proposal and speci�es the requirements that must be
ful�lled for the project to be deemed successful. The requirements for each component are
given in order of priority, following the MoSCoW method guidelines.

Type-level model

MM1 The musical piece, or some accurate approximation of it, must reside in the type of a
composition. This way, musical composition rules can be enforced by the type checker.

MM2 Violation of a composition rule must produce a compile-time error, that is, a musically
incorrect composition must not constitute a valid program.

3 https://github.com/DimaSamoz/mezzo
4 https://travis-ci.org/DimaSamoz/mezzo
5 https://hackage.haskell.org/package/mezzo

https://github.com/DimaSamoz/mezzo
https://travis-ci.org/DimaSamoz/mezzo
https://hackage.haskell.org/package/mezzo

software engineering 23

MM3 The model must enforce rules of harmonic and melodic intervals, harmonic motion and
chord progression structure, as described in the proposal and Section 2.1.2.

MS1 The rule checking should have reasonable performance.

MS2 The model should support creation of notes, chords and chord progressions, as well as
melodic and harmonic composition.

MC1 The model could produce custom compiler errors, describing the type and location of
the musical error.

MC2 The library could support customisation of rules or di�erent levels of strictness.

MW1 The model won’t be used to generate compositions.

Music description language

LM1 The language must be embedded in the Haskell language, i.e. compositions must be
compilable by the Glasgow Haskell Compiler without any preprocessing.

LM2 The users must be able to interact with the library through term-level values and func-
tions, not types.

LS1 The EDSL should provide a concise, �exible method of music input, with little mental
burden or boilerplate.

LS2 The users should not need to be concerned with the types of compositions and the
compile-time computation happening in the background.

LS3 The users should be able to input notes, rests and chords, as well as compose pieces
melodically or harmonically.

LS4 The users should be able to use the library with minimal set-up, e.g. module imports.

LC1 The EDSL could provide a shorthand notation for chord progression input.

Exporting

EM1 The users must be able to export compositions as MIDI �les.

ES1 The users should be able to specify MIDI attributes such as tempo or time signature.

EC1 The library could support exporting into music notation formats such as MusicXML,
ABC or LilyPond.

24 preparation

chapter 3

Implementation

This chapter describes the implementation of the Mezzo library and EDSL. The system can be
split into three main components: the music model, the music description language, and the
rendering module (see Fig. 3.1).

Music model The core component of the library is responsible for modelling and checking
the correctness of musical compositions. To have static access to musical information, we
need a suitable type-level representation of compositions – this is explained in Section 3.1.1.
Section 3.1.2 describes the rule system implemented in the library. Section 3.1.3 provides a
high-level overview of the central datatype of the model, and how it combines the ideas of
Haskore with dependent types. Section 3.1.4 gives a detailed look at the functional harmony
model, inspired by HarmTrace.

Music

Composition

Chord progressions

Chords

Notes & Rests

Rules Pitch matrix

Model

User

EDSL Rendering

Figure 3.1 – Structural overview of the Mezzo library. The user writes compositions using the
EDSL which are converted into terms of the Music datatype. The correctness of the compositions
is checked, and correct pieces get translated into the type-level music representation. Correct
compositions can then be rendered into MIDI �les.

26 implementation

Music description language The Mezzo MDL provides an interface between the user and
the model via an embedded domain-speci�c language for music composition. The imple-
mentation relies heavily on compile-time code generation, introduced in Section 3.2.1. Next,
Section 3.2.2 describes a pattern for building �uent EDSLs in a functional setting, and Sec-
tion 3.2.3 presents shorthand methods for inputting melodies and chord progressions.

Music rendering Mezzo lets users export compositions into MIDI �les. Section 3.3.1 ad-
dresses the challenge of converting type-level information into primitive values, and Sec-
tion 3.3.2 shows how these values are then rendered as MIDI �les.

3.1 Music model

This section develops the type-level model of music used by Mezzo and presents the majority
of the type-level computation techniques implemented in the library.

3.1.1 The pitch matrix

Our �rst task is to �nd a consistent, structured representation of compositions at the type level
– without this, we would not be able to analyse music statically. I decided on a straightforward,
somewhat brute-force approach: keeping the music in a two-dimensional array of pitches (see
Fig. 3.2). The columns of the matrix represent durations and the rows are individual voices.
The matrix elements are pairs of pitches and durations (which specify a note). Although it
might seem like overkill, we cannot get around the need to keep all relevant information in the
types: for example, we should always be able to harmonically compose a long melody with a
long accompaniment, and ensure that all the arising intervals sound good.

The implementation of the composition rules requires that the composed music values have
the same “size”: sequential pieces must have the same number of voices, and parallel pieces
must have the same length. The usual solution to this is de�ning a vector type: a dependently
typed list, where the type contains not just the type of the elements, but the length of the list
itself. Using Haskell’s built-in type-level naturals, this datatype could be de�ned as a simple
GADT. However, we have to remember that vectors are usually used on the term level, while
we are on the type level now. Before GHC 8, it would have been impossible to declare type-level
vectors. This is where the TypeInType extension comes into play: in GHC 8, any datatype,
even GADTs, can be promoted to the type level. All we need is to de�ne the Vector datatype:

ˇ “ D ˇ “ G ˇ “ F] ˇ “(G ˇ “(A ˘ “ G
ˇ “ D ˇ “ E[ˇ “ D ˇ “(D ˇ “(D ˘ “ D
ˇ “ B[ˇ “ G > ˇ “(G ˇ “(F] ˘ “ G
ˇ “ G ˇ “ C ˇ “ D ˇ “(B[ˇ “(A ˘ “ G

Figure 3.2 – The pitch matrix representation of a 4-voice contrapuntal piece.

music model 27

t :-- ts None

Vector k lkKind level

Type level

Figure 3.3 – The structure of the promoted Vector datatype. A vector of kind Vector k l has l
type elements of kind k. Note that the kind variables k and l are not further classi�ed and have the
kinds Type (or *) and Nat, respectively.

the empty vector None has length 0 while the (:--) constructor takes an element of type t
and a vector of length n, and returns a vector of length n + 1 (see Fig. 3.3):

data Vector :: Type -> Nat -> Type where
None :: Vector t 0
(:--) :: t -> Vector t n -> Vector t (n + 1)

This vector type is suitable for storing the rows of our matrix (the individual voices), but in
those voices we need to store both pitches and durations. Moreover, the duration of the pitch
needs to a�ect the length of the row, that is, we want the kind to depend on the type of the
argument. This dependence on the argument types suggests using a proxy for the number of
repetitions, and a GADT for the element type. (:*) constructs an Elem t n from a value of
type t and the proxy for the number of occurrences:

data Times (n :: Nat) = T
data Elem :: Type -> Nat -> Type where

(:*) :: t -> Times n -> Elem t n

This dependent element type can now be used to declare the type of vectors optimised for
element repetition (see Fig. 3.4): in this case, the (:-) constructor takes an element of type
Elem t l (containing ` repetitions of a value of type t) and the tail of length n, and returns
a vector of length n + `. This way, the length of an OptVector is the sum of the number of
repetitions of its elements, i.e. the total duration of the notes:

data OptVector :: Type -> Nat -> Type where
End :: OptVector t 0
(:-) :: Elem t l -> OptVector t n -> OptVector t (n + l)

The Matrix type is de�ned as a simple type synonym:

type Matrix t p q = Vector (OptVector t q) p

Thanks to GADT promotion, all these types are now available at the kind level, and we can
declare type families for common list- and matrix operations. In particular, we need horizontal
(+|+) and vertical (+-+) concatenation of matrices:

28 implementation

t :* T :- ts End

OptVector k lElem k n Times nkKind level

Type level

Figure 3.4 – The structure of the OptVector datatype. Every element t of kind k repeated n times
has the dependent kind Elem k n, and the length l of the vector is equal to the sum of the length
of the individual elements.

type family (a :: Matrix t p q) +|+ (b :: Matrix t p r)
:: Matrix t p (q + r) where

None +|+ None = None
(r1 :-- rs1) +|+ (r2 :-- rs2) = (r1 ++ r2) :-- (rs1 +|+ rs2)

type family (a :: Matrix t p r) +-+ (b :: Matrix t q r)
:: Matrix t (p + q) r where

m1 +-+ m2 = ConcatPair (Align m1 m2)

(+|+) simply appends the individual rows of the matrices. (+-+) is more tricky, since the
“grids” of the two matrices might not align: we need to fragment both of them so the number
of cells matches up (see Fig. 3.5; the exact details are omitted for brevity).

Finally, we need to describe musical values at the type level – this is a straightforward
application of datatype promotion. All types which the user can later interact with need
term-level values: this is accomplished by creating kind-constrained proxies. For convenience,
I also de�ne specialised types for pitch vectors and matrices.

data PitchType = Pitch PitchClass Accidental OctaveNum | Silence
data Pit (p :: PitchType) = MkPit

type Voice l = OptVector PitchType l
type Partiture n l = Matrix PitchType n l

ˇ “ G ˇ “ A

+-+

ˇ “(C ˇ “ D ˇ “(E

=⇒

ˇ “ G ˇ “ A

ˇ “(C ˇ “ D ˇ “(E

=⇒
ˇ “(G ˇ “(G ˇ “(A ˇ “(A

ˇ “(C ˇ “(D ˇ “(D ˇ “(E

Figure 3.5 – Harmonic concatenation. Note how the quarter notes are fragmented and aligned
with the eighth notes in the other voice – this way, the matrix stays well-formed.

music model 29

A Partiture n l is our pitch matrix: it contains n voices of length l each. The next section
describes how the pitch matrix is used to implement the rule-checking component of the model.

3.1.2 Musical constraints

Intervals

The rules implemented in Mezzo mainly constrain the musical intervals arising between two
composed pieces. I declared a type family called MakeInterval to �nd the interval between
two pitches. It is used in most of the low-level correctness checks. For example, the interval
between a C and a G in the same octave and with the same accidental is a perfect �fth, while
the interval between a C natural and a pc2 sharp in the same octave is the interval between
the C natural and a pc2 natural expanded by a semitone:

type family MakeInterval (p1 :: PitchType) (p2 :: PitchType)
:: IntervalType where

MakeInterval (Pitch C acc o) (Pitch G acc o) = Interval Perf Fifth
MakeInterval (Pitch C Natural o) (Pitch pc2 Sharp o) =

Expand (MakeInterval (Pitch C Natural o) (Pitch pc2 Natural o))

Rules

An example of a musical rule is checking harmonic intervals: classically, minor seconds (one
semitone) and major sevenths (11 semitones) are to be avoided since they sound very dissonant.
To express this limitation, the ValidHarmInterval type class is declared, classifying intervals
which are harmonically valid:

class ValidHarmInterval (i :: IntervalType)

GHC’s custom type error feature lets us explicitly state which instances are invalid, and specify
an accompanying compiler error. That is, when the parameter i is instantiated with an invalid
interval, the precondition type class constraint is checked and a type error is encountered. At
this point, type-checking fails and the message is displayed as a type error.

instance TypeError (Text "Can’t have major sevenths in chords.")
=> ValidHarmInterval (Interval Maj Seventh)

instance TypeError (Text "Can’t have minor seconds in chords.")
=> ValidHarmInterval (Interval Min Second)

Lastly, we want to state that “everything else” is a valid interval. For this, we just state that any
interval i is valid, and use a compiler pragma to handle overlapping instances correctly: it tells
the type checker that it should prioritise more specialised instances declared for a class:

instance {-# OVERLAPPABLE #-} ValidHarmInterval i

30 implementation

We now need to “apply” this rule to the pitches in our pitch matrix. This is done by a series of
inference rules, which are straightforward to express using class constraints on the instance
declarations. For example, to check that two pitches (a dyad) are separated by a valid interval,
we need to form an interval and establish that it is harmonically valid:

class ValidHarmDyad (p1 :: PitchType) (p2 :: PitchType)
instance ValidHarmInterval (MakeInterval a b) => ValidHarmDyad a b

When working with constraints, a useful abstraction is enabled by the ConstraintKinds
extension. Constraints (and functions returning constraints) can be passed around as types,
which opens the door to many �exible options for validation: for example, checking if a vector
of types satis�es a constraint, or a type satis�es all the constraints in a vector. In our case, we
apply a binary constraint c to two optimised vectors:

type family AllPairsSatisfy (c :: a -> b -> Constraint)
(xs :: OptVector a n)
(ys :: OptVector b n)
:: Constraint where

AllPairsSatisfy c End End = True ~ True
AllPairsSatisfy c (x :* _ :- xs) (y :* _ :- ys)

= ((c x y), AllPairsSatisfy c xs ys)

If the vectors are empty, the constraint trivially holds (expressed as True ~ True, a tautology
where ~ is the type equality constraint). For the recursive case, we form a tuple, or conjunction,
of constraints: apply c to the heads as (c x y) (we can ignore the durations after the (:*))
and recursively apply c to the tails of the vectors.

Now we can de�ne validity for the harmonic concatenation of two voices (see Fig. 3.6).
ValidHarmDyad, as de�ned above, is a two-parameter type class, so it has kind PitchType ->
PitchType -> Constraint – a suitable �rst argument to AllPairsSatisfy:

class ValidHarmDyadsInVoices (v1 :: Voice l) (v2 :: Voice l)
instance AllPairsSatisfy ValidHarmDyad v1 v2

=> ValidHarmDyadsInVoices v1 v2

Finally, we use ValidHarmDyadsInVoices to validate the composition of pitch matrices
(Partitures). Given two matrices (v :-- vs) and us (where v is the topmost voice of the

ˇ “ B[ˇ “ G > ˇ “(G ˇ “(F] ˘ “ G

+-+ValidHarmDyad

ˇ “ G ˇ “ C ˇ “ D ˇ “(B[ˇ “(A ˘ “ G

Figure 3.6 – Validating harmonic composition. These pairwise comparisons are made between
each pair of voices in the composed pieces.

music model 31

ˇ “ B[ˇ “ G ˇ “ A ˇ “(G ˇ “(F] ˘ “ G

ˇ “ G ˇ “ C ˇ “ D ˇ “(B[ˇ “(A ˘ “ G

p1

p2

q1

q2

ValidMotion

Figure 3.7 – Validating harmonic motion. Note that this example would not typecheck: the C-G
interval moves into the D-A interval, causing parallel �fths.

�rst matrix), they can be concatenated if: (1) vs and us can be concatenated, and (2) v can be
concatenated with all of the voices in us. The second condition is implemented by mapping
ValidHarmDyadsInVectors v (of kind Voice l -> Constraint) over all the voices in us
and checking whether all the constraints are satis�ed:

class ValidHarmConcat (ps :: Partiture n1 l) (qs :: Partiture n2 l)
instance (ValidHarmConcat vs us

, AllSatisfy (ValidHarmDyadsInVectors v) us
) => ValidHarmConcat (v :-- vs) us

By translating logical expressions into type class constraints, I implement similar techniques
for other musical rules. ConstraintKinds lets us be very �exible in expressing rules, since we
can declare type families that return a Constraint. For example, rules of harmonic motion
are computed using the ValidMotion type family, which takes the four adjacent pitches as
arguments and returns a Constraint (see Fig. 3.7). ValidMotion p1 p2 q1 q2 is therefore
a valid constraint, so it can stand on the left-hand side of =>.

We have now seen how Mezzo stores music at the type level and checks the correctness
of musical operations. The source code of the model does not contain a single term-level
de�nition: only types, type classes and type families – yet all of the computation used in the
library is performed here, statically.

The next section introduces the musical structure that the users interact with.

3.1.3 The central datatype

This section deals with the datatype that enables interaction between the type-level music
model and term-level operations. The main inspiration comes from Haskore, an early music
description library developed by Paul Hudak’s research group [23]. The library treats music
as an algebraic structure with two associative operators: sequential (melodic) and parallel
(harmonic) composition. In BNF syntax, a musical piece M can be expressed as:

M ····= Note | Rest | M : | : M | M :−: M

That is, a piece of music M is either a note, a rest, two pieces of music composed together
sequentially or two pieces of music composed together in parallel (see Fig. 3.8). This model
can be used to separate the description and performance of music and establish algebraic

32 implementation

M ····= ˇ “(| > | M : | : M | :−:

M

M

Figure 3.8 – Representation of the Haskore music algebra. A piece of music is either a note, a rest,
melodic composition of pieces or harmonic composition of pieces.

laws which help formal reasoning about compositions. The approach was extended to other
structures as well and generalised as the algebraic theory of polymorphic temporal media [19].

A straightforward translation of the above BNF description into Haskell is as follows:

data Music =
Note Pit Dur | Rest Dur | Music :|: Music | Music :-: Music

This describes a tree-like structure with the leaves containing a note (with some pitch and
duration) or a rest (with some duration). Though the Music type is fairly simple, it is already
capable of expressing a huge variety of musical compositions – however, we have no guarantee
that any Music value will sound good, as there is nothing to constrain their structure. The rest
of this section describes how the Haskore model is augmented with the notion of correctness
via dependent types in Mezzo.

To make the library statically “aware” of composition rules, we need to have access to the
musical information at compile-time. This can be achieved by adding a type argument m to
the type above, containing the pitch matrix of the composition. This pitch matrix re�ects the
term-level contents of a Music value, that is, every Music value is dependently typed. The steps
required to transform the Haskore music algebra into a dependently-typed, rule-checked music
model are as follows:

1. Add a type variable to the Music datatype which represents the pitch matrix of the
composition.

2. Turn Pit and Dur into proxies, making the pitch and duration information available at
the type level.

3. De�ne operations which convert pitches and durations into pitch matrices. For example,
FromPitch p d creates a singleton pitch matrix containing the pitch p with duration d.

4. Turn Music into a generalised algebraic datatype, so we have control over the return types
of the individual constructors. This is where the functions described in the previous step,
as well as the matrix concatenation operations (+|+) and (+-+) can be applied to the
type variables of the constructor arguments.

music model 33

5. Apply the type class constraints expressing musical rules to the type variables of the
constructor arguments. This ensures that a constructor can only be used if the arguments
conform to these musical rules: for example, two pieces of music can be combined with
(:-:) only if their pitch matrices can be harmonically composed.

After completing these steps, we get the central datatype used in Mezzo:

data Music :: Partiture n l -> Type where
(:|:) :: ValidMelComp m1 m2

=> Music m1 -> Music m2 -> Music (m1 +|+ m2)

(:-:) :: ValidHarmComp m1 m2
=> Music m1 -> Music m2 -> Music (m1 +-+ m2)

Note :: ValidNote p d
=> Pit p -> Dur d -> Music (FromPitch p d)

Rest :: ValidRest d
=> Dur d -> Music (FromSilence d)

The advantage of this approach is that the rules and the structure of music are decoupled:
we can easily modify the existing rules, add new ones or completely replace the system with
one suitable for, say, jazz compositions. Indeed, Mezzo provides several rule sets which enable
changing between di�erent levels of strictness. The Music datatype can itself be extended with
new top-level constructors using the same recipe: de�ne proxies, conversion functions and
constraints, then add a data constructor:

data Music :: Partiture n l -> Type where
...
Chord :: ValidChord c d

=> Cho c -> Dur d -> Music (FromChord c d)

Prog :: ValidProg t p
=> TimeSig t -> Prog p -> Music (FromProg t p)

This is how the main Mezzo datatype is de�ned: the EDSL creates and manipulates Music
values which can then be rendered into MIDI �les. The term-level compositions are structurally
di�erent from the type-level pitch matrices: the latter is a simpli�ed representation, abstracting
over the tree-like shape of Music values, and enabling systematic rule-checking of composition
operations.

3.1.4 Harmony model

Mezzo implements a harmonic model heavily inspired by HarmTrace, a harmony analysis
framework developed by Magalhães et al. [28] and used in the online chord progression

34 implementation

ProgType ::= Cad | Phrase := ProgType

Phrase ::= Ton Dom Ton | Dom Ton | Ton

Cad ::= V I | V7 I | viio I | I64 V7 I | V7 vi | Subdom Cad

Ton ::= I | Ton Ton

Dom ::= V | V7 | viio | II7 V7 | Subdom Dom | Dom Dom

Subdom ::= IV | ii | iii IV | Subdom Subdom

Figure 3.9 – Simpli�ed syntax of the Mezzo harmonic grammar. In the implementation, all elements
are annotated with the key of the piece and length information.

generation tool Chordify 1. The aim of such a model is the abstract representation of functional
harmony, e.g. chord progressions. While the HarmTrace model is more robust (handling, for
example, borrowed chords and transposition), the implementation in Mezzo includes some
ideas that are made possible by the type-level music model, such as abstraction of the key and
key-dependent chord quality.

Chord progressions are schemas for harmonising melodies, based on the functional interpre-
tation of various chords in a key. For example, the tonic chord (chord built on the �rst degree of
the scale) represents stability, while the dominant (chord on the �fth degree) creates harmonic
tension which has to be resolved. Martin Rohrmeier [40] used these harmonic conventions to
develop a formal grammar of harmony, and Mezzo implements a subset of this grammar by
converting production rules into datatypes (see Fig. 3.9).

A chord progression consists of a sequence of harmonic phrases and ends with a cadence, a
closing phrase – this ensures that all progressions must have a closure, in accordance with the
requirements. This is implemented as a vector-like data structure which ends with a cadence
(instead of Nil) and keeps the key of the piece and the length of the progressions in its type
parameters:

data ProgType (k :: KeyType) (l :: Nat) where
CadPhrase :: Cadence k l -> ProgType k l
(:=) :: Phrase k l -> ProgType k n -> ProgType k (n + l)

Phrases consist of a sequence of tonic and dominant regions and have three forms: tonic-
dominant-tonic (I–V–I), dominant-tonic (V–I) or tonic (I). These functional regions are in turn
expressed as datatypes resembling CFG rules. For example, a dominant region (Dominant)
can consist of only a major �fth degree chord (DomVM), a secondary dominant (on the second
degree) followed by a dominant seventh chord (DomSecD), or a subdominant region followed
by a dominant region (DomSD). DegreeC is just a type synonym for a seventh chord, specifying
the scale degree, quality, and key of the chord.

1 https://chordify.net/

https://chordify.net/

music description language 35

data Dominant (k :: KeyType) (l :: Nat) where
DomVM :: DegreeC V MajQ k Inv2 o

-> Dominant k 1
DomSecD :: DegreeC II DomQ k Inv0 o

-> DegreeC V DomQ k Inv2 (OctPred o)
-> Dominant k 2

DomSD :: Subdominant k ls
-> Dominant k ld
-> Dominant k (ls + ld)

Haskell’s algebraic datatypes make expressing CFG production rules easy, and the use of GADTs
ensures that all elements have the same key and keep track of the length of the progressions.
Since the DegreeC type also holds the chord inversion and the base octave, we can manipulate
these so that the notes of the chords are as close together as possible, making the progressions
conjunct and �uid – this is not addressed in HarmTrace, as its aim is analysis, not composition.
Subdominants, tonics and cadences are described in the same way, and these abstract harmonic
types are then converted into concrete chords and pitch matrices.

Next, we move down to the term level and consider Mezzo’s music description language,
and how it interacts with the type-level model.

3.2 Music description language

Embedded domain-speci�c languages provide a good compromise between syntactic freedom
and built-in functionality: while we are restricted to the syntactic rules of the host language,
we get all its syntactic constructs, libraries and compiler with no extra work. Mezzo’s music
description language (MDL) is a DSL embedded into Haskell: it provides a concise and �exible
syntax for describing musical pieces and uses Haskell’s type inference to enforce the musical
rules previously described. This section discusses how the Mezzo MDL is implemented, and
how it interacts with the type-level model. I also describe a general pattern for implementing
EDSLs inspired by continuation-passing style, which emerged as a result of the work on this
library.

3.2.1 Literal values

As explained in the previous section, the type model provides proxies for types that that are
exposed to the user (see Section 3.1.1). For example, the proxy for pitch classes de�nes a value
MkPC which can have the type PC (PitchClass C), PC (PitchClass D), and so on. The
parameter of the PC type constructor is a phantom type: it is used to tag values of this type but
it is not needed to construct them and does not appear in the parameters of a data constructor.
This means that creating term-level literals for proxies is trivial (and very boring):

_c :: PC (PitchClass C)
_c = MkPC

_d :: PC (PitchClass D)
_d = MkPC

36 implementation

That is, the literal value for the pitch class C is MkPC with the type PC (PitchClass C).
De�ning literals for every musical value would be very repetitive, so most of the declarations are
generated at compile-time using Template Haskell, Haskell’s compile-time metaprogramming
framework [43]. For example, the following function generates all the literal declarations for
pitch classes (_c, _d, etc.):

pitchClassLits :: DecsQ
pitchClassLits = genLitDecs pcFormatter "PC" ’’PitchClass

The function genLitDecs takes a formatter (a function that transforms the name of a type,
e.g. C, into the name of the constant, e.g. _c), the name of the proxy constructor and the type
whose promoted data constructors we want to use as the proxy arguments, and returns the list
of declarations for the literals. The TH approach really pays o� when creating pitch literals for
each pitch class, accidental and octave: a 14-line TH function generates 210 literal declarations.

Having the Music constructors and literal values for pitch and duration already makes it
possible to write music:

Note _cn _ei :|: Note _dn _ei :|: Note _en _qu :|: Rest _ha

The above syntax is a bit verbose, and most MDLs provide shorthand notation for common
composition tasks. The one designed for Mezzo is based around an approach I call �at builders:
this pattern can be applied to the general task of EDSL design and works well in Mezzo.

3.2.2 Flat builders

Flat builders are inspired by the various attempts to express variable argument and post�x
functions in Haskell, such as continuation-passing style and the Okasaki’s �at combinators [34].
Flat builder expressions do not contain parentheses, and they build a value through a series of
transformations (cf. the OOP Builder pattern [3, Item 2]). Though the underlying ideas are not
new, I attempted to develop them into a general pattern which can be used in the design of
natural language-like EDSLs.

Variable argument functions are not natively supported by Haskell, but can be simulated by
functions which take their continuations as an argument. To encapsulate this idea, I use type
synonyms for the three main types of terms in use:

Speci�ers Specify an initial value of type t to start the “building process”. The forall
keyword binds the type m without making it an explicit type parameter of Spec.

type Spec t = forall m. (t -> m) -> m

For example, the function string turns its argument into a String speci�er:

string :: String -> Spec String
string inp cont = cont inp

music description language 37

Converters Convert a value of type s to a value of type t

type Conv s t = s -> Spec t

For example, the function firstChar converts a String into a Char speci�er by taking
the head element of the input:

firstChar :: Conv String Char
firstChar str cont = cont (head str)

Terminators Finish building a value of type t and return the result of type r.

type Term t r = t -> r

For example, the function printAscii �nishes building Char value and returns it as an
ASCII code (using the built-in function fromEnum):

printAscii :: Term Char Int
printAscii = fromEnum

Now, building a value is just a matter of sequencing a speci�er, zero or more converters
and a terminator, ensuring that the types match up. In the example below, we specify a string,
convert it into a character and print it out as an integer:

GHCi> string "Hello" firstChar printAscii −→ 72

Unlike function composition, builders can be read (and written) from left to right with no
syntactic interference, which lets us write code that reads like natural language:

GHCi> add 5 to 7 and display the result −→ "result: 12"

In Mezzo, builders are used to construct note values: speci�ers for pitches; converters for
accidentals; and terminators for durations (see Fig. 3.10). For example, a C quarter note can be
written as c qn, while a double-sharp F dotted half note is f sharp sharp hn’. As speci�ers
are polymorphic in the type of the �nal value, we can use the same pitch speci�ers for notes
and chords: g qn is a G quarter note, g maj inv qc is a G major chord in �rst inversion.
Though the terminator syntax is di�erent, this only a�ects the 15 duration literals, and not the
210 pitch literals. As before, builder components are generated by Template Haskell macros.

3.2.3 Melody and harmony

This section provides a brief look at syntactic shorthand notations implemented in Mezzo for
melody and harmony input. It also showcases several interesting variations on the classic list
and vector data structures.

38 implementation

Speci�ers

c fs

d’3

Converters

sharp inv

dim

Terminators

qn hn’

ec

Note and chord building

af en c aug wc’ b flat maj7 inv inv qc

Figure 3.10 – Graphical representation of �at builders.

Melodies

Flat builders are a big step up from literals and constructors, but they are still not the most
convenient way to input long sequences of notes that form a melody. Since writing melodies
is likely to be the most common composition activity, I implemented a melody input method
inspired by Lilypond2, a TEX-like music typesetting system.

Using �at builders, a simple melody can be composed as follows:

d qn :|: g qn :|: fs qn :|: g en :|: a en :|: bf qn :|: a qn :|: g hn

We have to specify the duration of every note, even though it does not change that much. It is
more convenient to be explicit only when the duration changes, and otherwise assume that
each note has the same duration as the previous one. With this in mind, we can use Mezzo’s
melody construction syntax to describe the melody above:

melody :| d :| g :| fs :< g :| a :^ bf :| a :> g

Notes are only given as pitch speci�ers. The duration is either implicit ((:|) means “next
note has the same duration as previous note”) or explicitly given by constructor as an absolute
duration (e.g. (:<) means “next note is an eighth note”). This makes melody input shorter and
less error-prone, as most of the constructors will likely be (:|).

Melodies are implemented as “snoc” lists, i.e. lists whose head is at the end. The di�erence
is that the Melody type keeps additional information in its type variables (like a vector), and
has a constructor for every duration:

data Melody :: Partiture 1 l -> Duration -> Type where
Melody :: Melody (End :-- None) Quarter

(:|) :: (MelConstraints ms (FromPitch p d))
=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p d) d

2 http://lilypond.org/

http://lilypond.org/

music description language 39

(:<) :: (MelConstraints ms (FromPitch p Eighth))
=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p Eighth) Eighth

...

The type keeps track of the “accumulated” music, as well as the duration of the last note. The
Melody constructor initialises the partiture and sets the default duration to a quarter. (:|)
takes the melody constructed so far (the tail) and a pitch speci�er, and returns a new melody
with the added pitch and unchanged duration. The other constructors do the same thing, except
they change the duration of the last note. While the syntax of the constructors might need
some getting used to, they allow for very quick and intuitive melody input.

Chord progressions

Chord progressions are constructed using term-level literals and functions, for example, dom_V7
for a dominant seventh and ph_VI for a dominant-tonic phrase. The subtlety of the model
is that it enforces that every harmonic element has the same key, but the keys are implicit,
polymorphic type variables (like the k in DegreeC V DomQ k Inv2 o). We must be able to
specify the key of the elements in order to convert them into pitch matrices. We could give the
key as an argument to each literal value, but that would quickly become cumbersome. Instead,
we make everything a function of the key, including the elements of the phrase list:

data PhraseList (p :: ProgType k l) where
Cdza :: Cad c

-> Key k -> PhraseList (CadPhrase c)

(:+) :: InKey k (Phr p)
-> InKey k (PhraseList ps)
-> Key k -> PhraseList (p := ps)

PhraseList is the term-level “singleton” of the promoted type-level ProgType described in
Section 3.1.4. The Cdza constructor takes a Cadence proxy as its argument and returns a
function from a key to a PhraseList. The ‘cons’ operator (:+) takes a function from the key
to a phrase (encapsulated by the type synonym InKey), and a function from the key to a phrase
list, and returns a function from the same key to a new phrase list (see Fig. 3.11). This means

k

:+ C

k

=⇒ C

k

Figure 3.11 – Construction of phrase lists. The phrase and the tail must both depend on the same
key k, and the result of the construction is a function from that key to a new phrase list.

40 implementation

that a phrase list is itself a function of the key, and specifying the key of the progression is just
a matter of applying the progression to a key:

prog = (ph_ivi ton dom_V7 ton :+ cadence auth_V) c_maj

An advantage of having both the progressions and the key at the type level is that the quality
of a chord (major or minor) can be statically determined from the key. The above progression
can be changed from C major to C minor just by altering the key – there is no need to modify
the phrase list. If a harmonic element is only valid in a certain mode (e.g. second degree minor
subdominants are only available in major mode), correct usage can also be enforced statically
via type class constraints. For example, the following progression would produce a custom
type error:

GHCi> prog = (cadence (full subdom_ii auth_V)) c_min

error: Can’t have a ii subdominant in minor mode.

In this section we explored some of the features of the Mezzo EDSL and how it interacts
with the type model. The next section describes the MIDI exporting module: while the actual
creation of the �le is easy using external libraries, there are some interesting challenges involved
in converting Music terms into exportable values.

3.3 Music rendering

This section presents Mezzo’s music exporting module, which renders Mezzo compositions
into MIDI �les. To accomplish this goal, we need to get information which is entirely at the
type-level down to the term level. Users of Mezzo mainly work with proxies, which, as outlined
in Section 2.2.2, contain no term-level information. We need to reify the types of musical
constructs, i.e. make the type-level information available as term-level values. This translation
between the two levels can be accomplished using Haskell’s type classes.

3.3.1 Reification

Our aim is to �nd a primitive representation for all musical types that the user can interact
with. Speci�cally, we want a function that can convert a proxy into a suitable term-level value.
The solution is a generalisation of the ReifyInt type class introduced in Section 2.2.2:

class Primitive (a :: k) where
type family Rep a
prim :: proxy a -> Rep a

The Primitive class is poly-kinded, so it can be used with naturals, pitches, chords, and so on.
Its method, prim, takes a proxy with an arbitrary type constructor (Dur, Pit, etc.) and returns
a representation type of the value, speci�ed in an associated type family. Rep is a function of
the instance type, so it reduces to di�erent types for di�erent instances of a. The primitive

music rendering 41

representation for a pitch would be an integer (e.g. its MIDI number), while for a chord it
would be a list of integers (the constituent pitches). We can be even more �exible: for example,
chord types (major, diminished, etc.) are converted into functions from integers to integer lists,
mapping the MIDI code of the root pitch to the list of MIDI codes of the chord pitches. Similarly,
inversions can be represented by the repeated composition of a function which rotates a list of
MIDI numbers and adds 12 (the number of semitones in an octave) to the last element.

Now we declare instances of Primitive for our types: we have to do this by hand for the
constant types (e.g. octaves and pitch classes), but can use recursive calls to prim for compound
types, provided that we state the preconditions:

instance Primitive Oct0 where
type Rep Oct0 = Int ; prim _ = 12 ...

instance Primitive C where
type Rep C = Int ; prim _ = 0 ...

instance (IntRep pc, IntRep acc, IntRep oct)
=> Primitive (Pitch pc acc oct) where

prim _ = prim (PC @pc) + prim (Acc @acc) + prim (Oct @oct)

IntRep is another example of ConstraintKinds in use: it is a constraint synonym expressing
that the primitive representation of a type is an integer:

type IntRep t = (Primitive t, Rep t ~ Int)

The pc type variable in the Pitch instance above is bound to the one in the instance declaration,
and since we assert that pc is an instance of Primitive, we can get its primitive representation
using prim. As the representation is an integer for all three types, we get the MIDI number of
the pitch by adding these integers together.

3.3.2 MIDI export

MIDI is a simple, compact standard for music communication, often used for streaming events
from electronic instruments. The format describes music as a sequence of MIDI messages
for various musical events, such as the beginning or the end of a note and tempo change. It
is a popular standard in computer music since it abstracts away musical information from
instrument sound, so converting written scores into MIDI �les is straightforward.

I use a MIDI codec package for Haskell called HCodecs3 by George Giorgidze, which
provides lightweight MIDI import and export capabilities. The basic MIDI representation of a
musical note is given as a Haskell datatype, containing the MIDI number of the pitch, its start
timestamp and duration (both in MIDI ticks):

data MidiNote = MidiNote Int Ticks Ticks

3 https://hackage.haskell.org/package/HCodecs

https://hackage.haskell.org/package/HCodecs

42 implementation

The function playNote creates a MIDI track (list of MIDI events) for the note with the given
pitch and duration by concatenating a NoteOn and a NoteOff MIDI event. Thanks to the
recursive description of Music values, converting Mezzo compositions into MIDI tracks is
entirely syntax-directed:

musicToMidi (Note pitch dur) = playNote (prim pitch) (prim dur)
musicToMidi (Rest dur) = playRest (prim dur)
musicToMidi (m1 :|: m2) = musicToMidi m1 ++ musicToMidi m2
musicToMidi (m1 :-: m2) = musicToMidi m1 >< musicToMidi m2

For notes and rests, we use prim (from the Primitive class) to get the integer representation
of the pitch and duration and convert them into a MIDI track with two events. Note that
Haskell’s instance resolution ensures that the correct de�nition of prim is used for each call.
Sequential composition simply maps to concatenating the two tracks, while parallel composition
uses the library’s merging operation, denoted by (><), which interweaves the two lists of
messages respecting their timestamps. One of the main bene�ts of the Haskore model is that
the algebraic description maps so elegantly to common list operations, even with a type-heavy
implementation. The Mezzo-speci�c constructions do not require a lot of work either. For
example, to render a chord, we �rst create a list of MIDI notes from its primitive representation,
then fold the resulting list of tracks with the merge operator.

musicToMidi (Chord c d) = foldr1 (><) notes
where notes = map (\p -> playNote p (prim d)) (prim c)

Finally, we need to attach a header to this track (containing the tempo, instrument name
and key signature) and export it as a MIDI �le, which is done using HCodecs functions. The
produced �les can be played in a MIDI editor or converted into other music formats.

This chapter provided an overview of the most interesting components of the Mezzo
implementation: it’s type-level music model, the EDSL, and the exporting facilities. Next, I
examine the achievements of the project, and compare them with the requirements.

chapter 4

Evaluation

This chapter discusses and analyses the implemented project, comparing its results with the
requirements set out in Chapter 2.

The aim of the project was to create a dependently-typed music composition library, and
this core aim was ful�lled. Two evaluation strategies were used to demonstrate this:

Testing A common way to ensure the correctness of software projects is unit and integration
testing, and there is a range of Haskell libraries which simplify these tasks. However, I realised
early into the preparation that the usual testing methods would not immediately work with
Mezzo: testing usually examines the correct runtime behaviour of a program, but most of the
computation in Mezzo happens at compile-time. The ways in which this problem is approached
are discussed in Section 4.1.

Examples The proof of the pudding is in the eating, and the proof of a composition library
is in writing compositions. The project proposal required that it should be possible to encode a
few classical compositions in Mezzo, which are demonstrated in Section 4.2.

I considered other techniques but decided that they would not be valuable measures of the
success of this project.

Performance analysis The speci�cation deliberately did not set strict constraints on per-
formance, as it would be naïve to expect the same performance from complex type-level
computation as execution of compiled, optimised, low-level code. While checking the correct-
ness of compositions is not fast – on the order of 5-20 seconds, depending on the complexity of
the rules and number of voices – I deemed it to be within the “reasonability” requirement. I did
some performance analysis and optimisation (see Section 4.3), but there is more work that can
be done.

User study While one of the deliverables of the project is an EDSL, I decided that testing its
usability is outside the scope of the project: comparison to other EDSLs would be uninformative,
and testing the correctness of the rule enforcement can be done without external participants.
While the language was developed with usability in mind, this is ultimately not the main
concern of the project.

44 evaluation

4.1 Testing

Most of the important computation in Mezzo happens at compile-time, so testing these com-
putations must also happen at compile-time. One approach could be putting each unit test
into a separate �le and checking whether they compile if they should, or fail to compile if they
shouldn’t. However, this is a laborious way of testing (though, due to an unforeseen bug in
GHC, this is what I had to do to test the rule enforcement – see Section 4.1.4), one that can
be simpli�ed and automated using testing frameworks. Unfortunately – and understandably –
most of the testing frameworks for Haskell operate at runtime. Therefore, our task is to write
runtime unit tests for compile time computation – while this might sound counter-intuitive,
there are Haskell features and libraries which allow us to do just that.

4.1.1 Deferred type errors

A naïve approach to testing compile-time code is writing down a term that should compile,
and if it compiles, then the computation must be correct. There are two problems with this
approach. First, it is not guaranteed that code which compiles is correct: for example, stuck
type families do not produce compile-time errors in Haskell. Second, the method does not
work well with testing frameworks and continuous integration: these assume that the code
being tested compiles, and the only errors it produces happen at runtime. The latter problem
can be solved by a recent addition to Haskell’s type checker: deferred type errors [44]. This
compiler option enables a �le to compile even if it contains type errors, and turns those errors
into runtime exceptions if the incorrect piece of code is evaluated. This way, all of our unit
tests compile, and type errors can be caught at runtime.

4.1.2 Type equality

Unit testing generally consists of building assertions: for example, we assert that a function
returns the expected value for some input, and the testing framework noti�es us if that is ever
not the case. The simplest form of assertions is equality of term-level values. For Mezzo, our
task is to de�ne a notion of type equality and make it “available” as a term-level assertion: for
instance, we might wish to assert that MakeInterval (Pitch C Natural Oct4) (Pitch E
Flat Oct4) equals the type Interval Min Third. There are multiple techniques for turning
type equality into term-level tests, such as explicit type signatures or equality constraints. A
neat approach uses the fact that id, the identity function, must have the same argument and
return types. If the function type Proxy t1 -> Proxy t2 is inhabited by id, we know that
t1 and t2 must be equal. The technique implemented in Mezzo is based on the similar idea of
heterogenous propositional type equality [25], de�ned as a GADT:

data (a :: k1) :~: (b :: k2) where
Refl :: a :~: a

This de�nes a datatype (:~:) of kind k1 -> k2 -> Type with a single constant inhabitant
Refl. The type of this inhabitant is a :~: a, indicating that the two sides of (:~:) must be
equal. If we have a value Refl of type t1 :~: t2, we know that t1 is equal to t2 – that is,

testing 45

we have a term-level proof of the equality of the two types. While this formulation has more
complex uses (for example, in generic programming), I only use it as a “unit test” for type
equality:

mkIntval :: MakeInterval (Pitch C Natural Oct4) (Pitch E Flat Oct4)
:~: Interval Min Third

mkIntval = Refl

This de�nition type-checks only if Refl is a valid inhabitant of the type, and Refl is a valid
inhabitant of the type only if MakeInterval (Pitch C Natural Oct4) (Pitch E Flat
Oct4) evaluates to Interval Min Third. Moreover, by deferring type errors to runtime, type
equality can be tested with normal unit test assertions, as described next.

4.1.3 Typeability assertion

Type equalities give us term-level unit tests for compile-time computation, and deferred type
errors turn type errors into runtime errors. All we need now is to turn proofs of type equal-
ity into assertions, which are then handled by the Haskell test framework, HSpec1. For
this, I use the should-not-typecheck2 package by Callum Rogers. It de�nes an assertion,
shouldNotTypecheck, that passes only if its argument does not compile. I made a simple
variant of this assertion which does the opposite: passes only if its argument type-checks.
The main idea behind these assertions is that they force the evaluation of the argument in an
environment that handles exceptions; if a TypeError exception (via deferred type errors) is
caught, a pass (or failure) is asserted:

shouldTypecheck :: NFData a => a -> Assertion
shouldTypecheck a = do
result <- try (evaluate (force a)) -- Using Haskell’s do-notation
case result of
Right _ -> return () -- Test passes
Left (TypeError msg) -> assertFailure ("Term didn’t compile.")

This lets us write our unit tests in an idiomatic way:

main = hspec $
describe "MakeInterval" $

it "should correctly create intervals from pitches"
(shouldTypecheck mkIntval)

If mkIntval type-checks, the test is passed – otherwise, we get a test failure instead of a
compiler error or runtime exception. Similar assertions test most of the type-level computation
happening in Mezzo, and this helped locate several bugs during the development process.

1 http://hackage.haskell.org/package/hspec
2 http://hackage.haskell.org/package/should-not-typecheck

http://hackage.haskell.org/package/hspec
http://hackage.haskell.org/package/should-not-typecheck

46 evaluation

4.1.4 Testing of musical rules

The methods discussed so far are used to unit test various type-level functions used in
Mezzo, but the enforcement of musical rules is more complex and requires integration test-
ing. Originally, I planned to use shouldNotTypecheck to test the musical rules: for example,
shouldNotTypecheck (c qn :-: b qn) would pass, indicating that major sevenths are cor-
rectly forbidden by the language. Unfortunately, it turned out that custom type errors are not
converted into runtime errors properly. This is related to a compiler bug (a so called GHC panic,
an exception that should never occur) I discovered which is encountered when evaluating
terms with deferred custom type errors. As I did not �nd any reports of this particular problem
on GHC’s issue tracking page, I submitted a bug report myself 3, which was subsequently
addressed and the �x is scheduled to be included in the next GHC release. Later it turned out
that this �x solved other long-standing reported problems caused by the same compiler bug.

While this bug prevents us from writing automated tests for custom type errors at the time
of writing, we can still test the rules manually. I created two sets of tests: one for musical
values that should compile (i.e. which do not violate musical rules, such as c qn :-: g qn,
a perfect �fth), the other for values that should not (i.e. which are musically incorrect, such
as a major seventh harmonic interval, c qn :-: b qn). Testing is just a matter of compiling
the tests and ensuring that this either succeeds for correct values, or produces the suitable
type error for musical mistakes. Below are examples of the “failing” tests, together with the
compiler errors they produce:

-- Flattening the lowest note would bring its MIDI code outside
-- the range of allowed values, so this should be disallowed.
test "too low" $ cf_5 qn
-- error: Note can’t be lower than C natural of octave -1: Cb_5.

-- In the strictest rule set, major seventh chords are forbidden.
test "major seventh" $ d maj7 qc
-- error: Can’t have major seventh chords: D Maj7.

-- Minor second degree subdominants are only allowed in major key.
test "ii subdominant" (prog $ cadence (full subdom_iii_IV auth_V))
-- error: Can’t have a ii subdominant in minor mode.

-- Augmented melodic intervals are difficult to sing and are
-- therefore disallowed in choral music.
test "augmented melodic C-Fs" $ c qn :|: fs qn
-- error: Augmented melodic intervals are forbidden: C and F#.

-- Minor second harmonic intervals sound very harsh and dissonant.
test "minor second harmonic G-Gs" $ g en :-: gs en
-- error: Minor second harmonic intervals are forbidden: G and G#.

3 https://ghc.haskell.org/trac/ghc/ticket/13487

https://ghc.haskell.org/trac/ghc/ticket/13487

examples 47

-- Voices singing in parallel fifths do not sound sufficiently
-- independent so are disallowed in contrapuntal music.
test "parallel fifths" $ (a qn :|: g wn) :-: (d qn :|: c wn)
-- error: Parallel fifths are forbidden: A and D, then G and C.

4.2 Examples

Unit tests are useful for formal evaluation, but the best way to �nd bugs and de�ciencies
in a music library is to try it out on real compositions. The project proposal required that
the library should be able to encode the following piano compositions: Bach’s Prelude in C
Major, BWV 846, Beethoven’s Für Elise and Chopin’s Prelude, Op. 28, No. 20. These have all
been successfully implemented, and their full source code can be found in Appendix B. This
section discusses Chopin’s and Bach’s pieces, as well as simple examples of contrapuntal and
homophonic composition. I chose these examples to showcase the di�erent compositional
techniques that Mezzo supports (see Fig. 4.1).

CounterpointChord sequence Homophony

Figure 4.1 – Common musical structures that Mezzo supports. The blocks represent coherent
musical elements, e.g. chords (vertical) or voices (horizontal).

4.2.1 Chopin’s Prelude

Chopin’s Prelude was chosen to test Mezzo’s chord composition capabilities. As discussed
in Section 3.2.2, Mezzo uses �at builders to describe chords: e.g. c sharp majD inv qc is a
doubled C sharp major quarter chord in �rst inversion. The whole piece consists of a sequence
of chords: doubled triads and seventh chords in the right hand, and octaves in the left. The
piece could be transcribed in almost its entirety – however, I occasionally had to leave out a few
notes as they would create forbidden intervals which Mezzo pointed out. This demonstrates
that the library works, as well as the fact that it is perfectly common for composers to break
the rules for artistic e�ect. Nevertheless, this does not invalidate the purpose of the library,
since it aims to catch unintentional mistakes, not deliberate ones. If the rule-checking ever
gets in the way, it can be made less restrictive or turned o� completely (see Section 4.3). The
�rst measure of the composition can be seen on Fig. 4.2.

48 evaluation

rh1 = c_ minD’ i2 qc
:|: af_ majD qc
:|: (ef maj3 ec’ :|: d min3 sc

:-: g_ maj3 qc)
:|: c_ minD inv qc

lh1 = c__ oct qc :|: f_3 oct qc
:|: g_3 oct qc :|: c__ oct qc

Figure 4.2 – First measure of Chopin’s Prelude.

4.2.2 Bach’s Prelude

Bach’s Prelude is a great example of the advantages of making Mezzo an embedded DSL: we
can make use of standard Haskell functionality in our compositions. For example, we can
abstract out certain properties of musical pieces using functions. The Prelude consists of 32
rhythmically identical bars followed by a short conclusion. The repeated bars only di�er in the
5 pitches they contain, while their order and rhythm is always the same. Instead of typing all
measures out one-by-one, we can abstract out the pitches from the structure of the bar – that
is, create a function from the �ve pitches to the entire measure:

-- One bar in the top voice
v1b p1 p2 p3 = r er :|: notes :|: notes :|: r er :|: notes :|: notes

where notes = p1 sn :|: p2 sn :|: p3 sn

-- One bar in the middle voice
v2b p = r sr :|: p qn’ :|: r er :|: p qn’ :|: r sr

-- One bar in the bottom voice
v3b p = p hn :|: p hn

-- Construct single bar given five pitches
bar p1 p2 p3 p4 p5 = v1b p3 p4 p5 :-: v2b p2 :-: v3b p1

Amazingly, this works without any type signatures: Haskell’s type inference is able to deduce
the most general type for these functions, despite the fact that the types and constraints
involved are very complex.

With this “bar-generating” function, the entire piece can be described in very little code.
The �rst two bars are demonstrated in Fig. 4.3.

4.2.3 Contrapuntal composition

Counterpoint is a form of polyphonic writing, characterised by strict rules of voice leading and
harmonic motion [11]. Pieces are usually written for four singing voices which have to be kept
independent throughout the composition. On its strictest setting, Mezzo is able to register all of

examples 49

bar c e g c’ e’ :|: bar c d a d’ f’

Figure 4.3 – First two measures of Bach’s Prelude.

the common mistakes, such as concealed �fths or parallel octaves. As an example, I transcribed
a piece from an online chorale composition guide4 into Mezzo (see score on Fig. 4.4). In its �rst
part, the guide deliberately composes an incorrect piece, and then points out the voice leading
In the second part, the guide corrects the mistakes and presents a new version – however,
Mezzo is still able to detect an error which the author of the tutorial missed.

v1 = melody :| d :| g :| fs :< g :| a :^ bf :| a
:| a :| a :| d’ :| c’ :| bf :| a :> g

v2 = melody :| d :| ef :| d :| d :| d :| d
:| cs :| d :| d :| ef :| d :| d :> bf_

v3 = melody :| bf_ :| g_ :| a_ :< g_ :| fs_ :^ g_ :| a_
:| a_ :| fs_ :| g_ :| g_ :| g_ :| fs_ :> g_

v4 = melody :| g__ :| c_ :| c_ :< bf__ :| a__ :^ g__ :| f__
:| a__ :| d__ :| bf__ :| c_ :| d_ :| d_ :> g__

-- ^ The guide used a ’d_’ which would have caused
-- a concealed octave with the second voice.

comp = play v1 :-: play v2 :-: play v3 :-: play v4

4.2.4 Homophonic composition

Homophony is a compositional texture where a principle musical line is sung in the top voice
while the lower voices provide an accompaniment – the lower voices sing in chords, rather than
lines. This texture is very common in non-choral music: in popular music, a singer with musical
accompaniment is essentially a form of homophony. I used the Happy Birthday song to test
out Mezzo’s melody and chord progression input (see Fig. 4.5) – while the chord progression

4 http://decipheringmusictheory.com/?page_id=46

http://decipheringmusictheory.com/?page_id=46

50 evaluation

Figure 4.4 – Example contrapuntal composition.

generation is still fairly rudimentary, the EDSL provides an easy way to input progression
schemas which are statically guaranteed to sound good.

mel = melody :~| r :~| r :<. g :<< g :^ a :| g :| c’ :> b
:<. g :<< g :^ a :| g :| d’ :> c’
:<. g :<< g :^ g’ :| e’ :| c’ :| b :| a
:<. f’ :<< f’ :^ e’ :| c’ :| d’ :>. c’

chords =
ph_IVI (ton_T_T ton ton) (dom_D_D dom_V dom_V) (ton_T_T ton ton)

:+ cadence (full subdom_ii auth_V)

comp = play mel :-: prog triple (inKey c_maj chords)

I V V

4
3

I I ii V I

Figure 4.5 – The Happy Birthday song with a chord progression accompaniment.

further developments 51

4.3 Further developments

By using Mezzo to encode real compositions as shown above, it became clear that small
additions to the library which improve performance or usability could be made. I decided
to include them for completeness. We submitted a paper based on this project to Haskell’17
(Appendix C) before I made these additions, which now also address some of the reviewers’
comments.

Rule sets The music checking rules were initially hardcoded into the language, making the
library quite in�exible. Moreover, I realised that not all types of music have to follow all of the
rules described (for example, rules of harmonic motion do not apply to homophonic music). For
this reason, Mezzo implements several rule sets for di�erent levels of rule strictness, including
one which does not enforce any rules, allowing for complete �exibility.

Scores It is quite common for compositions to have global attributes such as tempo, key or
time signature. Di�erent sections of a piece might have a di�erent set of these attributes, e.g.
in the case of a key or tempo change, but this cannot be handled purely with composition of
Music values. Mezzo therefore includes a Score type which encapsulates a piece of music and
its attributes, and lets users compose di�erent scores using sections (see below). The attributes
a�ect both the Music pieces, e.g. the key and time signature of progressions, and the metadata
of the MIDI �les produced, e.g. the tempo. We can also set non-musical attributes such as the
title of the piece and the rule set used to check the correctness of the piece. The syntax for
creating scores uses �at builders:

sco = score setTitle "Composition"
setTimeSig c_maj
setKeySig quadruple
setTempo 120
setRuleSet free
withMusic (c qn :-: b qn)

Although the above composition includes a dissonant major seventh, the �le still compiles, as
we turn o� rule-checking by switching to the free rule set. Note that we changed the type
checking behaviour through a value-level de�nition.

Sections Type-checking can be a time-consuming process, especially if the musical piece is
long. Mezzo lets us break up large compositions into sections and “pre-render” these sections
into simple MidiTracks with no type information to keep track of. This process is quite natural,
as most compositions have a clear modular structure: for example, Für Elise (see Appendix B)
can be broken down into a repeating theme and several independent episodes. Low-level
harmonic and melodic rules do not apply across these sections, so it is unnecessary to keep
the whole piece in the types at all times. Instead, we convert all sections into lists of MIDI
events, which are then arranged into the correct order and rendered into the MIDI �le. This
signi�cantly simpli�es composition of large pieces, as we only keep as much information in
the types as we need for a particular section.

52 evaluation

Performance An issue mentioned in the beginning of this section is the performance of
the library: type-checking compositions takes a relatively long time. The bottleneck is the
MakeInterval function, which is called for almost every pair of pitches. As it is a recursive
function, it was not di�cult to increase the number of base cases, so the recursion can terminate
early. This simple modi�cation resulted in signi�cant increase in compilation speed, especially
for compositions with several voices or chords (see Fig. 4.6).

Für Elise Bach Chopin Counterpoint Happy
Birthday

0

10

20

30

40 36.67

13.17

26.25

38.32

9.85

29.1

11.87 11.44
9.21

7.38Co
m

pi
la

tio
n

tim
es

(s)

Before After

Figure 4.6 – Comparison of compilation times before and after the optimisation of MakeInterval.
The time averages were computed from �ve sets of measurements taken in identical conditions.

This chapter presented several evaluation strategies used to test the correctness and ex-
pressiveness of the Mezzo composition library. The last chapter presents a summary of the
results and concludes the dissertation.

chapter 5

Conclusion

The project was a success. Its aim was the creation of a music composition library and EDSL
which can enforce various musical rules statically. The three main components – the type-level
model, the music description language and the exporting module – have been built, and the
library was evaluated via unit tests and example compositions. The project also served as
a case study in dependently typed programming in Haskell, examining various approaches
of type-level computation, EDSL design, rei�cation and testing. This chapter concludes the
dissertation and proposes ideas for further extensions to the library.

5.1 Results and accomplishments

All of the minimum success criteria given in the project proposal have been met. Moreover,
nearly all of the extensions have been implemented, including the non-must criteria of the
project speci�cation. It was understood that automatic generation of music would be a di�cult
task, as we would need to generate random types, and I am uncertain whether that is possible.
LilyPond output – while desirable – was deemed to be of low importance for the purposes of
this project.

5.1.1 Type-level model

• Every musical piece contains its static representation, a pitch matrix, in the type (MM1).

• The Music type provides constructors for notes, rests, chords, progressions, and sequen-
tial and parallel composition (MS2).

• The correctness of every construct is enforced statically (MM2), either via GADTs or
type class constraints, producing custom type errors (MC1).

• Mezzo provides three levels of strictness: no enforcement, classical rules, and strict rules
(MC2).

• Compilation times are entirely acceptable (MS1).

54 conclusion

5.1.2 Music description language

• The Mezzo EDSL is fully embedded into Haskell (LM1), requiring few dependencies, and
a single module to import into the source �le (LS4).

• Users do not need to interact with the types (LM2), and ideally the type-level music
model is hidden from view (LS2).

• The library provides easy means of note, rest, chord and composition input (LS1, LS3),
as well as shorthands for melodies and chord progressions (LC1).

5.1.3 Exporting

• Users can export Mezzo compositions into MIDI �les with custom attributes such as
tempo, title or key signature (EM1, ES1).

5.2 Future work

While the core of the project is complete, there are further ideas or improvements which can
be implemented in the future. Listed below are a few of the limitations and extensions which
could be addressed.

• Mezzo progressions are functions of the key, while melodies are not – it should not be
di�cult to add a similar abstraction of composing melodies via scale degrees instead of
absolute pitches.

• There is currently no way to change the dynamics of pieces: every note has the same
volume. This could be solved by adding dynamics attributes to scores.

• Progressions are rhythmically very rigid: there is no way to modify the number of notes
played or create arpeggios.

• In many cases, the complex type-level model is a disadvantage, especially in real error
messages: these are usually very cryptic and give little idea of what could be going
wrong. Leaking of internals through error messages is a common problem in EDSL de-
sign which has been addressed to some extent by the Helium compiler [14] and recent
research by Serrano and Hage [42] – however, no Haskell implementation of their ap-
proach exists yet.

• There are other interesting models of music composition, such as the T-calculus [24]
and tiled temporal media [22], chord spaces [38], and music calculi [35]. These could be
integrated into Mezzo.

Overall, the project achieved its goals, and I think it became an interesting case study in both
music formalisation and dependently-typed programming in Haskell.

Bibliography

[1] Samuel Aaron and Alan F. Blackwell. From Sonic Pi to Overtone: Creative musical
experiences with domain-speci�c and functional languages. In Proceedings of the First
ACM SIGPLAN Workshop on Functional Art, Music, Modeling & Design, pages 35–46. ACM,
2013.

[2] David Aspinall and Martin Hofmann. Dependent types. Advanced Topics in Types and
Programming Languages, pages 46–86, 2005.

[3] Joshua Bloch. E�ective Java. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2 edition,
2008.

[4] Max Bolingbroke. Constraint Kinds for GHC. http://blog.omega-prime.co.uk/?p=
127, 2011. [Online; accessed 31/03/2017].

[5] W. Bas de Haas, José Pedro Magalhães, Frans Wiering, and Remco C. Veltkamp. Automatic
functional harmonic analysis. Computer Music Journal, 37(4):37–53, 2013.

[6] Roger T. Dean. The Oxford Handbook of Computer Music. OUP USA, 2009.

[7] Richard A Eisenberg. Dependent Types in Haskell: Theory and Practice. PhD thesis,
University of Pennsylvania, 2016.

[8] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich.
Closed type families with overlapping equations. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, pages 671–683,
New York, NY, USA, 2014. ACM.

[9] Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with
singletons. In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages 117–130, New
York, NY, USA, 2012. ACM.

[10] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. Visible type
application. In Proceedings of the 25th European Symposium on Programming Languages
and Systems - Volume 9632, pages 229–254, New York, NY, USA, 2016. Springer-Verlag
New York, Inc.

[11] Johann Joseph Fux and Alfred Mann. The study of counterpoint from Johann Joseph Fux’s
Gradus ad Parnassum. WW Norton & Company, 1965.

http://blog.omega-prime.co.uk/?p=127
http://blog.omega-prime.co.uk/?p=127

56 bibliography

[12] George Giorgidze. HCodecs. https://hackage.haskell.org/package/HCodecs, 2014.
[Online; accessed 15/10/2016].

[13] Cordelia V. Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type classes
in Haskell. ACM Transactions on Programming Languages and Systems, 18(2):109–138,
March 1996.

[14] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning Haskell.
In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell ’03, pages 62–71,
New York, NY, USA, 2003. ACM.

[15] Michael Hewitt. Music Theory for Computer Musicians. Nelson Education, 2008.

[16] Lejaren A. Hiller and Leonard M. Isaacson. Experimental Music: Composition with an
electronic computer. Greenwood Publishing Group Inc., 1959.

[17] Cheng Zhi Anna Huang and Elaine Chew. Palestrina Pal: a grammar checker for music
compositions in the style of Palestrina. In Proceedings of the 5th Conference on Understand-
ing and Creating Music. Citeseer, 2005.

[18] Paul Hudak. Haskore music tutorial. In Second International School on Advanced Functional
Programming, pages 38–68. Springer Verlag, LNCS 1129, August 1996.

[19] Paul Hudak. An algebraic theory of polymorphic temporal media. In International
Symposium on Practical Aspects of Declarative Languages, pages 1–15. Springer, 2004.

[20] Paul Hudak. Haskore. https://hackage.haskell.org/package/haskore, 2016. [On-
line; accessed 15/10/2016].

[21] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell:
Being lazy with class. In Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages, HOPL III, pages 12–1–12–55, New York, NY, USA, 2007. ACM.

[22] Paul Hudak and David Janin. Tiled polymorphic temporal media. In Proceedings of the
2nd ACM SIGPLAN International Workshop on Functional Art, Music, Modeling & Design,
pages 49–60. ACM, 2014.

[23] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music notation –
An algebra of music. Journal of Functional Programming, 6(03):465–484, Nov 2008.

[24] David Janin, Florent Berthaut, Myriam Desainte-Catherine, Yann Orlarey, and Sylvain
Salvati. The T-calculus: Towards a structured programming of (musical) time and space.
In Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling &
Design, FARM ’13, pages 23–34, New York, NY, USA, 2013. ACM.

[25] Simon Peyton Jones, Stephanie Weirich, Richard A Eisenberg, and Dimitrios Vytiniotis.
A re�ection on types. In A List of Successes That Can Change the World, pages 292–317.
Springer, 2016.

https://hackage.haskell.org/package/HCodecs
https://hackage.haskell.org/package/haskore

bibliography 57

[26] Hendrik Vincent Koops, José Pedro Magalhães, and W. Bas de Haas. A functional approach
to automatic melody harmonisation. In Proceedings of the First ACM SIGPLAN Workshop
on Functional Art, Music, Modeling & Design, FARM ’13, pages 47–58, New York, NY, USA,
2013. ACM.

[27] Fred Lerdahl and Ray Jackendo�. A generative theory of tonal music. The MIT Press,
Cambridge. MA, 1983.

[28] José Pedro Magalhães and W. Bas de Haas. Functional modelling of musical harmony: An
experience report. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 156–162, New York, NY, USA, 2011. ACM.

[29] José Pedro Magalhães and Hendrik Vincent Koops. Functional generation of harmony
and melody. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Functional
Art, Music, Modeling & Design, FARM ’14, pages 11–21, New York, NY, USA, 2014. ACM.

[30] Simon Marlow et al. Haskell 2010 Language Report.

[31] Josh H. McDermott, Alan F. Schultz, Eduardo A. Undurraga, and Ricardo A. Godoy.
Indi�erence to dissonance in native Amazonians reveals cultural variation in music
perception. Nature, 535(7613):547–550, 2016.

[32] James McKinna. Why dependent types matter. ACM SIGPLAN Notices, 41(1):1–1, 2006.

[33] Gerhard Nierhaus. Algorithmic Composition: Paradigms of Automated Music Generation.
Springer Verlag Wien, Jan 2009.

[34] Chris Okasaki. Theoretical pearls: Flattening combinators: Surviving without parentheses.
Journal of Functional Programming, 13(4):815–822, July 2003.

[35] Yann Orlarey, Dominique Fober, Stéphane Letz, and Mark Bilton. Lambda calculus and
music calculi. In Proceedings of the International Computer Music Conference, pages 243–243.
International Computer Music Accociacion, 1994.

[36] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geo�rey Washburn.
Simple uni�cation-based type inference for GADTs. In Proceedings of the Eleventh ACM
SIGPLAN International Conference on Functional Programming, ICFP ’06, pages 50–61, New
York, NY, USA, 2006. ACM.

[37] Walter Piston. Harmony. Revised and expanded by Mark DeVoto. New York: WW Norton,
1978.

[38] Donya Quick and Paul Hudak. Computing with chord spaces. In International Computer
Music Conference, September 2012.

[39] Donya Quick and Paul Hudak. Grammar-based automated music composition in Haskell.
In Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling &
Design, FARM ’13, pages 59–70, New York, NY, USA, 2013. ACM.

58 bibliography

[40] Martin Rohrmeier. Towards a generative syntax of tonal harmony. Journal of Mathematics
and Music, 5(1):35–53, 2011.

[41] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. Type
checking with open type functions. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’08, pages 51–62, New York, NY, USA, 2008.
ACM.

[42] Alejandro Serrano and Jurriaan Hage. Type error diagnosis for embedded DSLs by two-
stage specialized type rules. In European Symposium on Programming Languages and
Systems, pages 672–698. Springer, 2016.

[43] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, pages 1–16, New
York, NY, USA, 2002. ACM.

[44] Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães. Equality proofs
and deferred type errors: A compiler pearl. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’12, pages 341–352, New York,
NY, USA, 2012. ACM.

[45] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with explicit kind
equality. SIGPLAN Notices, 48(9):275–286, September 2013.

[46] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytinio-
tis, and José Pedro Magalhães. Giving Haskell a promotion. In Proceedings of the 8th ACM
SIGPLAN Workshop on Types in Language Design and Implementation, TLDI ’12, pages
53–66, New York, NY, USA, 2012. ACM.

appendix a

Music theory

This Appendix provides a more in-depth overview of musical concepts discussed in this
dissertation.

Musical primitives
The basic primitives of music are notes and rests: they are combined into larger melodic and
harmonic units to create compositions.

Notes

Notes are speci�ed by a pitch and a duration: the pitch describes how high or low a note is (e.g.
the key pressed on the piano), while the duration is the length of time the note is played for
(e.g. how long the piano key is pressed).

• A pitch is given by its pitch class, accidental and octave number. The musical range is
divided into octaves numbered from −1 to 8, and the pitch class – one of C, D, E, F, G, A
or B – is the relative position of the note in the octave (white keys on a keyboard). The
accidentals alter the pitch: a sharp raises it by a semitone (key to the right), a �at lowers it
by a semitone (key to the left), a natural does not change it (and is the default accidental).
Some notes can be expressed in two ways, these are called enharmonic equivalents: for
example, a B �at is the same as an A sharp.

• Durations are expressed as negative powers of two: whole, half, quarter, eighth, sixteenth,
thirty-second, etc. That is, a whole note lasts as long as two successive half notes, and a
half note is as long as four eighths. A duration of a note can be extended by its half with
a dot: a dotted quarter note is as long as three eighths.

Rests

Rests are periods of silence and are only speci�ed by a duration, expressed in the same way as
note durations.

60 appendices

Intervals
A very important concept in music is that of an interval, which characterises the number of
semitones between two pitches. We can talk about harmonic intervals between notes played at
the same time, and melodic intervals between notes played one after the other. An interval is
speci�ed by its class (major, minor, perfect, augmented, diminished) and size (unison, second,
third, . . . , seventh, octave). Unisons, fourths, �fths and octaves are the perfect intervals and can
be diminished or augmented by shrinking or expanding them by a semitone respectively. All
other intervals can be major (sounding bright) and minor (sounding serious) and can also be
diminished and augmented.

Chords
A chord is two or more notes played at the same time. A triad consists of three notes, usually
separated by two thirds. Depending on the class of the thirds (major or minor), we have major,
minor, augmented and diminished triads, each with its own character: for example, a major
triad sounds stable and positive, while a diminished triad sounds tense and suspicious. A triad
is often doubled: the lowest note is repeated an octave higher, which gives a 4 note chord with
the same type as the underlying triad. Seventh chords consist of 4 notes separated by thirds; the
most important type is the dominant (or major/minor) seventh chord, which creates a large
amount of harmonic tension. Chords can be inverted by raising the lower pitches by an octave.

Scales
An octave spans 12 pitches separated by semitones, and a scale is any subsequence of those
pitches. All 12 pitches make up the chromatic scale, while diatonic scale is a 7-pitch subset of
that, with one, possibly altered, pitch for each pitch class. Scales are given by their keynote, i.e.
�rst pitch, and mode, which is usually major or minor. Tonal music pieces are mostly built from
the pitches of a speci�c scale, with occasional accidentals: for example, a piece in the key of
C major would mostly consist of pitches from the C major scale (and would be played on the
white keys of the piano keyboard, as they represent the C major scale). The index of a pitch in
a scale is the scale degree, given in Roman numerals. For example, the degree I of a C major
scale is a C, while the degree VI of a D minor scale is a B �at.

Progressions
Chord progressions are sequences of chords following a pattern. Most patterns are based on
the notion of functional harmony, where the chords built on the degrees of a scale have a
speci�c function (role). The chord built on the �rst degree (the tonic) represents stability and
completion. The chord of the �fth degree (the dominant) creates tension and is usually resolved
by a tonic. The fourth degree chord (the subdominant) builds moderate tension and can be
resolved into the tonic or followed by a dominant. A chord progression would therefore follow
the functional roles of the chords: a common example is I–IV–V–I. The last 2-3 chords of a
progression are often called a cadence and provide the closure for a piece.

music theory 61

Counterpoint
Counterpoint is a way of composing polyphonic (multi-part) pieces, often for several singing
voices. The most important consideration is that the melodic lines have to be independent,
but give a coherent whole when played together. There are several di�erent types (species) of
counterpoint of increasing complexity, each having to adhere to strict rules of voice-leading
and harmonic motion.

62 appendices

appendix b

Mezzo compositions

To ful�l the project requirements, the Mezzo library has to be robust enough to describe real
piano compositions. Due to their di�erences in complexity, structure and musical style, I chose
the following pieces:

1. Johann Sebastian Bach: Prelude in C Major, BWV 846

2. Frédéric Chopin: Prelude, Op. 28, No. 20

3. Ludwig van Beethoven: Für Elise

Below is the full Mezzo source code for all three compositions. Note that since these pieces
are not strictly composed contrapuntal chorales, there is bound to be some use of dissonance
and disjunct voice-leading for musical e�ect – in these cases, either a note was removed or the
type-checking was bypassed to allow the piece to compile. All compositions type-check an can
be rendered to MIDI �les.

Johann Sebastian Bach: Prelude in C Major

This prelude has a simple, repetitive structure and little rhythmic variation. In computer science,
repetition is usually handled by abstraction and parameterisation – and that is exactly what
is used in the description of this piece. Making use of the fact that Mezzo is embedded into
Haskell, we can de�ne a function which creates one bar of the prelude, given the �ve pitches
that occur in it. This way, the bulk of the composition can be described by a series of function
calls. Note that – fortunately – we do not need to supply any type signatures: Haskell’s type
inference �nds the most general type for us.

import Mezzo

-- Bar repetitions

-- One bar in the top voice
v1b p1 p2 p3 = r er :|: notes :|: notes :|: r er :|: notes :|: notes

where notes = p1 sn :|: p2 sn :|: p3 sn

64 appendices

-- One bar in the middle voice
v2b p = r sr :|: p qn’ :|: r er :|: p qn’ :|: r sr

-- One bar in the bottom voice
v3b p = p hn :|: p hn

-- Render out a single bar given five pitches
bar p1 p2 p3 p4 p5 = section "bar" $

score setTempo 100
setKeySig c_maj
setRuleSet free
withMusic music

where music = v1b p3 p4 p5 ‘hom‘ v2b p2 ‘hom‘ v3b p1

bars =
[bar c e g c’ e’, bar c d a d’ f’
, bar b_ d g d’ f’, bar c e g c’ e’, bar c e a e’ a’
, bar c d fs a d’, bar b_ d g d’ g’, bar b_ c e g c’
, bar a_ c e g c’, bar d_ a_ d fs c’, bar b_ d g d’ f’
, bar g_ bf_ e g cs’, bar f_ a_ d a d’, bar f_ af_ d f b
, bar e_ a_ c g c’, bar e_ f_ a_ c f, bar d_ f_ a_ c f
, bar g__ d_ g_ b_ f, bar c_ e_ g_ c e, bar c_ g_ bf_ c e
, bar f__ f_ a_ c e, bar fs__ c_ a_ c ef, bar af__ f_ b_ c d
, bar g__ f_ g_ b_ d, bar g__ e_ g_ c e, bar g__ d_ g_ c f
, bar g__ d_ g_ b_ f, bar g__ ef_ a_ c fs, bar g__ e_ g_ c g
, bar g__ d_ g_ c f, bar g__ d_ g_ b_ f, bar c__ c_ g_ bf_ e
]

-- Conclusion and end chord

concV1 = play $ melody :~< r
:<< f_ :| a_ :| c :| f :| c :| a_ :| c
:| a_ :| f_ :| a_ :| f_ :| d_ :| f_ :| d_ :~< r
:<< g :| b :| d’ :| f’ :| d’ :| b :| d’
:| b :| g :| b :| d :| f :| e :| d

concV2 = r sr :|: c_ wn :|: b_ hn’ :|: r er’

concV3 = c__ wn :|: c__ wn

mezzo compositions 65

conc = section "Conclusion" $
score setTempo 100

setKeySig c_maj
withMusic (concV1 ‘hom‘ concV2 ‘hom‘ concV3)

endChord = section "End chord" $
score setTempo 100

setKeySig c_maj
withMusic (c maj inv wc ‘hom‘ c__ oct wc)

main = renderSections "rendered/Bach.mid"
"Johann Sebastian Bach - Prelude in C Major" $
bars ++ [conc, endChord]

Frédéric Chopin: Prelude, Op. 28, No. 20
While Bach’s Prelude almost entirely consists of a repeated melodic phrase, Chopin’s Prelude
is a sequence of complex chords and little melodic movement. Mezzo’s symbolic chord input
can handle all but the most non-standard chords that appear in the composition, making the
structure of the piece very clear.

import Mezzo

-- First part

part1Rh1 = c_ minD inv inv qc :|: af_ majD qc
:|: ((ef maj3 ec’ :|: d min3 sc) :-: g_ maj3 qc) :|: c_ minD inv qc

part1Lh1 = c__ oct qc :|: f_3 oct qc :|: g_3 oct qc :|: c__ oct qc

part1Rh2 = af__ majD’ i2 qc :|: cs_ majD inv qc
:|:((c min3 ec’ :|: bf_ min3 sc):-: ef_ maj3 qc):|: af__ majD inv qc

part1Lh2 = af_3 oct qc :|: df_3 oct qc :|: ef_3 oct qc :|: af_3 oct qc

part1Rh3 = b__ dimD inv qc :|: c_ majD inv qc
:|: pad2 ((g en’ :|: f sn) :-: c qn) :|: pad (c_ min inv inv qc)

part1Lh3 = g_3 oct qc :|: c_3 oct qc :|: f_3 oct qc :|: c__ oct qc

part1Rh4 = d_ dom7 inv qc :|: g_ majD qc
:|: pad (((b en’ :|: a sn) :-: fs qn :-: d qn) :|: g_ maj inv qc)

part1Lh4 = d__ oct qc :|: g_3 oct qc :|: d_3 oct qc :|: g_3 oct qc

part1Rh = part1Rh1 :|: part1Rh2 :|: part1Rh3 :|: part1Rh4
part1Lh = part1Lh1 :|: part1Lh2 :|: part1Lh3 :|: part1Lh4

66 appendices

part1 = section "First part" $
score setKeySig c_min

setTempo 30
withMusic (hom part1Rh part1Lh)

-- Second part

part2Rh1 = ef maj3D qc :|: ef fourthD qc
:|: (d’ qn :-: (af en’ :|: gf sn) :-: d qn) :|: d fourthD qc

part2Lh1 = c__ oct qc :|: c_ oct qc :|: b__ oct qc :|: bf__ oct qc

part2Rh2 = c fifthD qc :|: d maj3D qc
:|: g_ maj’ i2 ec’ :|: pad (a_ min3 inv sc) :|: g_ maj inv qc

part2Lh2 = a__ oct qc :|: af__ oct qc :|: g__ oct qc :|: f__ oct qc

part2Rh3 = c fifthD qc :|: af_ maj3D qc
:|: ((g en’ :|: f sn) :-: g_ fifth qc) :|: c_ min’ i2 qc

part2Lh3 = ef__ oct qc :|: f__ oct qc :|: b_3 oct qc :|: c__ oct qc

part2Rh4 = af__ majD’ i2 qc :|: df_ majD inv qc
:|:((ef en’ :|: d sn):-: g_ maj3 qc :-: f_ qn):|: pad (c_ min inv qc)

part2Lh4 = af_3 oct qc :|: df_3 oct qc :|: g_3 oct qc :|: c_3 oct qc

part2Rh = pad (part2Rh1 :|: part2Rh2 :|: part2Rh3) :|: part2Rh4
part2Lh = part2Lh1 :|: part2Lh2 :|: part2Lh3 :|: part2Lh4

part2 = section "Second part" $
score setKeySig c_min

setTempo 30
withMusic (hom part2Rh part2Lh)

-- End chord

end = section "End chord" $
score setKeySig c_min

setTempo 30
withMusic (hom (c minD wc) (c_ fifth wc))

mezzo compositions 67

main = renderSections "rendered/Chopin.mid"
"Frederic Chopin - Prelude in C Minor"
[part1, part2, part2, end]

Ludwig van Beethoven: Für Elise
A structurally diverse piano piece with thematic episodes and variations, complex melody,
rhythm and harmony, showcasing most of the composition features implemented in Mezzo. It
is also a good example of modular composition: the independent episodes are compiled and
pre-rendered into simple MIDI tracks, which are then “glued together” to form a large-scale
composition. This way, there is no need to keep the entire piece in a single type, as the notes
appearing in one episode have no e�ect on a repetition of the theme. This simple optimisation
makes a big di�erence: without it, the compiler runs out of stack space after composing only
the �rst two sections; with it, the entire composition compiles in less than 40 seconds.

import Mezzo

-- Fur Elise theme

-- Refrain

refrCoreRh = play $ melody :<< e’ :| ds’ :| e’ :| ds’ :| e’
:| b :| d’ :| c’ :^ a :~< r :< b :~<< r

refrCoreLh = play $ melody :~> r
:<< a__ :| e_ :| a_ :| c :| e :| a
:<< e__ :| e_ :| gs_ :~<. r

refrRh = refrCoreRh :|: e sn :|: gs sn :|: c’ en :|: r sr :|: e sr
:|: refrCoreRh :|: e sn :|: c’ sn :|: b sn

refrLh = refrCoreLh :|: a__ sn :|: e_ sn :|: a_ sn :|: r sr
:|: refrCoreLh

refrBh = hom refrRh refrLh
:|: hom (a qn) (a__ sn :|: e_ sn :|: a_ sn :|: r sr)
:|: hom refrRh refrLh

refrain = section "refrain" $
score setTempo 90

setKeySig a_min
withMusic refrBh

68 appendices

-- Variation
varRh = play $ melody

:< a :~<< r
:<< b :| c’ :| d’ :<. e’
:<< g :| f’ :| e’ :<. d’
:<< f :| e’ :| d’ :<. c’
:<< e :| d’ :| c’ :< b
:<< e :| e :| e’ :| e :| e’ :| e’ :| e’’
:<< ds’ :| e’ :| ds’ :| e’ :| ds’ :| e’ :| ds’

varLh = play $ melody
:<< a__ :| e_ :| a_ :~<. r
:<< c_ :| g_ :| c :~<. r
:<< g__ :| g_ :| b_ :~<. r
:<< a__ :| e_ :| a_ :~<. r
:<< e__ :| e_ :~>. r :~< r

variation = section "variation" $
score setTempo 90

setKeySig a_min
setRuleSet free
withMusic (hom varRh varLh)

theme = refrain ++ variation ++ refrain

-- First episode

ep1Rh1 = pad2 (a en :|: r sr)
:|: pad (c maj3 inv sc :|: c fourth inv sc) :|: c maj inv sc

ep1Rh2 = play $ melody :| c’ :<<. f’ :<<< e’ :< e’ :| d’
:<<. bf’ :<<< a’ :<< a’ :| g’

ep1Rh3 = play $ melody :<< f’ :| e’ :| d’ :| c’

ep1Rh4 = play $ melody :< bf :| a :<<< a :| g :| a :| bf :^ c’
:<< d’ :| ds’ :<. e’ :<< e’ :| f’ :| a :^ c’
:<<. d’ :<<< b

mezzo compositions 69

ep1Lh1 = pad2 (a__ sn :|: e_ sn :|: a_ sn)
:|: pad (c sn :-: bf_ sn :|: c sn :-: a_ sn)
:|: (c sn :-: bf_ sn :-: g_ sn)

ep1Lh2 = play $ melody
:<< f_ :| a_ :| c :| a_ :| c :| a_
:| f_ :| bf_ :| d :| bf_ :| d :| bf_ :| f_ :| e

ep1Lh3 = bf_ sn :-: g_ sn :-: f_ sn :|: pad2 (e sn)
:|: bf_ sn :-: g_ sn :-: f_ sn :|: pad2 (e sn)

ep1Lh4 = pad (play $ melody :<< f_ :| a_ :| c :| a_ :| c :| a_
:<< f_ :| a_ :| c :| a_ :| c :| a_
:<< e_ :| a_ :| c :| a_)

:|: d_ oct sc
:|: pad (play $ melody :<< f_ :| g_ :| e :| g_ :| e :| g_ :| f)

ep1part = score setTempo 70
setKeySig c_maj
withMusic

ep1p1 = section "1st episode, part 1" $
ep1part (hom ep1Rh1 ep1Lh1)

ep1p2 = section "1st episode, part 2" $
ep1part (hom ep1Rh2 ep1Lh2)

ep1p3 = section "1st episode, part 3" $
ep1part (hom ep1Rh3 ep1Lh3)

ep1p4 = section "1st episode, part 4" $
ep1part (hom ep1Rh4 ep1Lh4)

episode1 = ep1p1 ++ ep1p2 ++ ep1p3 ++ ep1p4

-- Second episode

ep2Rh1 = play $ melody :<<< c’ :| g’ :| g :| g’ :| a :| g’

:| b :| g’ :| c’ :| g’ :| d’ :| g’
:| e’ :| g’ :| c’’ :| b’ :| a’ :| g’
:| f’ :| e’ :| d’ :| g’ :| f’ :| d’

70 appendices

ep2Lh1 = pad (c maj3 ec :|: pad (r sr)
:|: g sn :-: f sn
:|: e min3 sc)
:|: g sn :-: f sn :-: d sn
:|: c maj ec
:|: pad (f_ maj3 ec
:|: g_ maj3 ec)

ep2Rh2 = play $ melody :<<< e’ :| f’ :| e :| ds’ :| e’ :| b
:| e’ :| ds’ :| e’ :| b :| e’ :| ds’
:<. e’ :<< b :| e’ :| ds’ :<. e’ :<< b
:| e’ :| ds’ :| e’ :| ds’ :| e’ :| ds’

ep2Lh2 = gs_ min3 ec :|: pad (r qr :|: r wr)

ep2part = score setTempo 70
setKeySig c_maj
withMusic

ep2p1 = section "2nd episode, part 1" $
ep2part (hom ep2Rh1 ep2Lh1)

ep2p2 = section "2nd episode, part 2" $
ep2part (hom ep2Rh2 ep2Lh2)

episode2 = ep2p1 ++ ep2p1 ++ ep2p2

-- Third episode

-- Repeat a composition 6 times.
repeat6 n = n :|: n :|: n :|: n :|: n :|: n

ep3Rh1 = pad3 (a en :|: r qr)
:|: cs dim7 inv qc’ :|: pad (d min inv qc)
:|: pad2 (cs’ min3 sc :|: d’ min3 sc)
:|: pad (d dim’ i2 qc :|: d dim’ i2 ec :|: a min qc’)

ep3Lh1 = rep :|: rep :|: rep :|: rep :|: rep
where rep = repeat6 (a__ sn)

mezzo compositions 71

ep3Rh2 = pad2 (d min3 inv qc
:|: c maj3 inv sc :|: b_ min3 inv sc)
:|: pad (fs_ dim’ i2 qc)
:|: pad2 (a_ min3 inv ec :|: a_ min3 inv ec
:|: c maj3 inv ec :|: b_ min3 inv ec
:|: a_ min3 inv qc’)

ep3Lh2 = repeat6 (d__ fifth sc)
:|: repeat6 (ds__ sn :-: a__ sn)
:|: e__ fourth sc :|: e__ fourth sc :|: e__ fourth sc
:|: e__ fourth sc :|: e__ maj3 sc :|: e__ maj3 sc
:|: a_3 oct sc :|: a__ sn :|: a__ sn
:|: a__ sn :|: a__ sn :|: a__ sn)

ep3Rh3 = cs dim7 inv qc’ :|: pad (d min inv qc)
:|: pad2 (cs’ min3 sc :|: d’ min3 sc
:|: d’ min3 qc :|: d’ min3 ec :|: d’ min3 qc’
:|: ef maj3 inv qc
:|: d min3 inv sc :|: c min3 inv sc)
:|: pad (bf_ maj inv qc
:|: d min ec :|: d dim qc
:|: d dim ec :|: a_ min inv qc)
:|: pad3 (r er)
:|: pad (b_ fourth inv ec :-: gs_ en)
:|: pad3 (r qr)

ep3Lh3 = aNotes :|: aNotes :|: aNotes
:|: bfNotes :|: bfNotes :|: bfNotes :|: bNotes
:|: c_ qn :|: r er :|: e_ en :|: r qr
where aNotes = repeat6 (a__ sn)

bfNotes = repeat6 (bf__ sn)
bNotes = repeat6 (b__ sn)

ep3part = score setTempo 90
setKeySig d_min
withMusic

ep3p1 = section "3rd episode, part 1" $
ep3part (hom ep3Rh1 ep3Lh1)

ep3p2 = section "3rd episode, part 2" $
ep3part (hom ep3Rh2 ep3Lh2)

72 appendices

ep3p3 = section "3rd episode, part 3" $
ep3part (hom ep3Rh3 ep3Lh3)

episode3 = ep3p1 ++ ep3p2 ++ ep3p3

-- Fourth episode

ep4Rh1 = tripletE a_ c e :|: tripletE a c’ e’
:|: tripletE d’ c’ b :|: tripletE a c’ e’
:|: tripletE a’ c’’ e’’ :|: tripletE d’’ c’’ b’
:|: tripletE a’ c’’ e’’ :|: tripletE a’’ c’3 e’3
:|: tripletE d’3 c’3 b’’ :|: tripletE bf’’ a’’ gs’’

ep4Lh1 = pad2 (a_3 en)
:|: pad2 (r er) :|: a_ min ec :|: a_ min ec
:|: pad2 (r er) :|: a_ min ec :|: a_ min ec
:|: pad2 (r er) :|: a_ min ec :|: a_ min ec

ep4Rh2 = tripletE g’’ fs’’ f’’ :|: tripletE e’’ ds’’ d’’
:|: tripletE cs’’ c’’ b’ :|: tripletE bf’ a’ gs’
:|: tripletE g’ fs’ f’

ep4p1 = section "4th episode, part 1" $
score setTempo 90

setKeySig a_min
setRuleSet free
withMusic (hom ep4Rh1 ep4Lh1)

ep4p2 = section "4th episode, part 2" $
score setTempo 90

setKeySig a_min
withMusic ep4Rh2

episode4 = ep4p1 ++ ep4p2

mezzo compositions 73

-- End chord

endChord = section "End chord" $
score setTempo 90

setKeySig a_min
withMusic (hom (a qn) (a_3 oct qc))

main = renderSections "rendered/FurElise.mid"
"Ludwig van Beethoven - Fur Elise"
[theme
, episode1, episode2
, theme
, episode3, episode4
, theme
, endChord
]

74 appendices

appendix c

Haskell Symposium paper

An Experience Report based on this project has been submitted to the early track of the ACM
SIGPLAN Haskell Symposium 2017, part of the 22nd ACM SIGPLAN International Conference
on Functional Programming. A board of anonymous reviewers provided feedback on the paper,
some of which has been incorporated into the library (see Section 4.3). The reviews and the
paper are included in their entirety – note that the latter was written based on an un�nished
implementation of Mezzo and does not cover some later additions included in this dissertation.

Review 1
This experience report describes a novel application of dependently-typed Haskell programming,
the representation of musical scores that are statically checked for correctness using the type
system. It showcases recent developments in GHC Haskell, in particular the TypeInType
language extension introduced in GHC 8.0. A key theme is the use of dependent types and
ConstraintKinds in EDSL design.

The paper is generally well-written. It introduces concepts clearly and without requiring
substantial background in either music theory or dependent types. The subject matter is
interesting, and the authors have managed to pack a lot of detail into a six-page experience
report.

My most signi�cant criticism of the paper is that it does not su�ciently justify why it takes
the approach of representing music and encoding musical rules at the type level. The use of
dependent types leads to signi�cant complexity and, as the authors observe in section 7.2,
extremely long compile times. While the existence of case studies such as the present paper
is valuable (and may help motivate improvements in GHC’s support for dependently-typed
programming), it seem to me that the particular problem at hand might be better solved by a
“normal” term-level program.

It would surely be easier to take a simple algebraic representation of music (as presented in
Section 3.1) and write a functional program to check its correctness. Lifting such a program to
the type level is then an independent problem, potentially even solvable automatically (e.g. by
the “singletons” library). Thus, I would like to see more of an argument in the paper about the
bene�t dependent types bring here.

On the one hand, checking correctness in the type system makes it possible to write
functions that are guaranteed to construct correct outputs for all inputs. Are there such

76 appendices

examples, and how easy are they to write using Mezzo?
On the other hand, this style of dependently-typed programming means that functions

consuming music do not have to deal with incorrect input. The paper gives an example of a
function consuming music, musicToMidi, but this does not seem to rely on the music having
any structure beyond that of the algebraic data type. Are there examples of functions that can
make use of the additional type structure?

Overall, I would like to see this paper accepted, but perhaps re-submission to the regular
track would give the authors the opportunity to further draw out the key ideas and argue more
clearly the case for dependent types in this domain. Correspondingly, I have ranked the paper
as “weak accept” at this stage.

More speci�c comments: The paper could be a little more self-contained. There are various
types referenced without explicit de�nition (e.g. Elem, which presumably has constructor :*),
in some cases without even being mentioned in the text (e.g. Quarter, PitchS). I appreciate
that space constraints make this di�cult, of course.

p2, c2, l27. What is the q in NoteConstraints p q? Should it be d? Relatedly, I can un-
derstand MelConstraints and HarmConstraints as imposing the composition requirements,
but what is the purpose of NoteConstraints and RestConstraints?

p3, c1, l34. Having only a limited background in music theory, I wasn’t previously familiar
with the word partiture. A brief de�nition in the text might help.

p3, c1, l36. Can you unpack this paragraph a bit more? Polymorphic recursion in data types,
and the corresponding need for CUSKs, may be a bit obscure.

p3, c1, l56. The MakeInterval type family seems to be neither de�ned nor referenced
anywhere else in the paper, so this sentence is unnecessary.

p3, c2, l35. The de�nition of AllPairsSatisfy ignores the durations of the notes. This
seems surprising, as it appears that ValidHarmDyadsInVectors will apply ValidHarmDyad
to notes that occur at di�erent times (but at the same index in the vectors). Or is there some
constraint elsewhere that the melodies being harmonically composed have the same rhythm?

p4, section 4.2. The flat builders idea is nicely presented, and the choice of terminology
and types de�nitely help make it comprehensible. However, this section feels a bit out of step
with the rest of the paper, as it is suddenly about CPS rather than dependent types. Nice as the
idea is, perhaps the space might be better used with more of a focus on the key message of the
paper.

p5, section 5.2. It is nice that the extra type information does not get in the way of producing
MIDI output, but not terribly surprising. This section could perhaps be condensed into an
example of the use of prim.

p5, c2, l34. What is Chord? It doesn’t seem to be de�ned anywhere.
p5, section 6. Modulo the usual problems of space, it would be nice to see a bit more

discussion of the relationship between Mezzo and previous work such as HarmTrace and
Haskore.

p6, c1, l5. Is there really hardly any other work on checking the correctness of compositions
programmatically? I’m not familiar with the literature, but this seems surprising. Or is the
claim limited to systems that enforce rules using a type system or similar static analysis?

haskell symposium paper 77

p6, section 7.1. The authors’ perspective on the current state of dependently-typed pro-
gramming in GHC Haskell is valuable, and perhaps this section could be expanded. What
would Mezzo look like in a dependently-typed language (such as Idris or Agda)? Which things
would be easier or harder? Do the bene�ts of dependent types in Haskell justify the additional
complexity introduced?

p6, c1, l38. I’d appreciate a better explanation of the problem identi�ed by reference to GHC
Trac 12564.

Review 2
The paper presents Mezzo, a Haskell EDSL for describing “correct” polyphonic compositions in
Haskell. Compositions are encoded in Haskell’s type system, and as a result the EDSL uses all
the latest type-system extensions implemented in GHC.

I �nd quite a few of the design decisions presented in this paper to be highly questionable.
The motivation of the paper seems reasonable – certainly it would be nice to have a tool

that composers may use to spot potential problems with their piece. The choice to encode
these checks in the type system of the language, however, leads to a number of undesirable
consequences:

1. “incorrect” music cannot be expressed at all, no matter what the composer intended;

2. “correctness” is rigid: it is di�cult to modify or extend the rules;

3. “correctness” is limited: only rather simple properties of the composition can be validated.

I think that (1) is undesirable, as the notion of “correct” in the setting of music is in many
ways up to the composer. So it seems much more desirable to have a system that points out
potential mistakes, rather than rejecting them outright. Similarly, in the context of education, it
is desirable to be able to express “incorrect” programs, so that students can experiment, and see
for themselves what is “wrong” with the composition, rather than rejecting the composition
with an error message.

About the rigidity (2): it seems quite di�cult to add new rules to the system, or change the
existing rules. This is in part because the rules are encoded using quite a lot of sophisticated
type-level machinery. The other problem, however, is that they are baked into the language. In
contrast, if the validation function was just a simple Haskell function, that given a composition
returned some potential problems, it would be easy to extend the system to support new
“correctness” checks, or even check multiple “correctness” properties on the same composition.
In contrast, with the Mezzo approach, one would have to change the whole language.

About (3): the checks that Mezzo performs are fairly simple; it is not at all obvious that
more complex checks can be implemented at all, certainly not easily.

All of these issues would be completely circumvented if the implementation took a more
conventional approach, and emphasized programming in Haskell, rather than programming in
Haskell’s type system.

In terms of the structure of the paper – the explanations are fairly clear. However, most
of the paper is spent on the details of the encodings used Mezzo’s implementation, and few

78 appendices

alternative design consideration are mentioned. The experience of designing the language is
mentioned only brie�y in Section 7. There is no description of the experience using Mezzo
at all, and some of the statistics reported at the end of the paper suggest that it might be
quite unusable, as even short pieces take a very long time to compile. The assertion that the
type-level work somehow speeds up the generation of MIDI seems misleading – MIDI is a
simple format, and generating it would be very quick on pretty much any modern computer.

Review 3
This paper shows how to implement functions that check that a musical composition follows
the rules of classical music composition. The cool thing is that it is done at the type level, and
the result is thus an EDSL for correct musical compositions. Compositions that violate the
rules cause type errors, which are expressed in readable domain speci�c terminology, thanks
to recently added functionality in GHC for producing custom type error messages.

So I guess the paper thus serves as a showcase for what can be achieved with GHC’s fancy
type system extensions. But since type level computations are rather ine�cient in GHC, this
approach does not seem to give you a practically useful system. Even one of the small examples
in the paper (a composition containing only 16 notes) takes close to 3 seconds to type check
(on my laptop), and the authors mention that a larger example takes 35 seconds to type check.

So I am wondering how this system would compare (in code size, e�ciency and maintain-
ability, etc) to a solution using the �rst simple algebraic type from section 3.1 for music and a
composition rule checking function implemented as a normal, value-level function, perhaps
encapsulated as an abstract data type to enforce the composition rules as an invariant? In
the typical use case, would it be a big loss to get run-time errors instead of compile-time type
errors when the composition rules are violated?

I am naturally also wondering what it would be like to do this in a language with proper
support dependent types, such as Agda or Idris. Would you still have the same e�ciency
problems? (Probably not, I am guessing. . .)

Also, this is not the �rst Haskell Symposium Experience Report that makes use of GHC’s
type system extensions to create a type safe EDSL: The 2016 paper “Experience Report: Types
for a Relational Algebra Library” by Lennart Augustsson and Mårten Ågren seems somewhat
similar, one di�erence being that the library presented in that paper was practically useful. . .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Experience Report: Well-typed music does not sound wrong
Anonymous Author(s)

Abstract
Music description and generation are popular use cases for Haskell,
ranging from live coding libraries to automatic harmonisation sys-
tems. Some approaches use probabilistic methods, others build on
the theory of Western music composition, but there has been little
work done on checking the correctness of musical pieces in terms
of voice leading, harmony and structure. Haskell’s recently intro-
duced type-system features can be used to perform such low-level
analysis and veri�cation statically.

We present our experience implementing a type-level model
of classical music and an accompanying EDSL which enforce the
rules of classical music at compile-time, turning composition mis-
takes into compiler errors. Along the way, we discuss the strengths
and limitations of doing this in Haskell and demonstrate that the
type system is capable of expressing non-trivial and practical logic
speci�c to a particular domain.

CCSConcepts •Applied computing→ Sound andmusic com-
puting; • Software and its engineering→ Functional languages;
Domain speci�c languages;

Keywords Type-level computation; Haskell; music theory
ACM Reference format:
Anonymous Author(s). 2017. Experience Report: Well-typed music does not
sound wrong. In Proceedings of Haskell Symposium, Oxford, UK, September
2017 (HASKELL’17), 6 pages.
DOI: 10.475/123_4

1 Introduction
Millennia ago, Pythagoras famously investigated the mathematical
connection between the lengths of strings in a string instrument
and the pitches of the corresponding notes. These experiments
were the beginnings of the �eld of Western music theory, a formal
description of what sounds good to the ear and what does not.
The principles of music theory have acted as the foundation of
music composition for centuries and, alongside a variety of other
methods, have often been applied to the problem of algorithmic
music generation [9].

We present Mezzo1, an embedded domain-speci�c language in
Haskell for describing music. We take inspiration from formal sys-
tems of music theory, which can be used to analyse and compose
music based on a description of classical music rules. However,
unlike previous work in the area, we do not use such a model to
generate new music, but instead check the correctness of user-made
compositions with respect to the rules – an essential task which
composers have been doing by hand for centuries.

1 h�ps://hackage.haskell.org/package/mezzo

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HASKELL’17, Oxford, UK
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

Mezzo makes extensive use of recent additions to Haskell’s
type system and, in particular, the new TypeInType extension [15]
which removes the distinction between types and kinds. At the core
of Mezzo is a type-level model of music, allowing compositions to
be represented entirely on the type-level. This allows for the rules
of music theory to be expressed as type families and type classes
which are then later enforced as type constraints. Compositions
which do not follow these rules do not satisfy the corresponding
constraints and lead to errors at compile-time.

Users can interact with the library through an embedded domain-
speci�c language, which provides constructs for composing music
using notes, melodies and chords. These basic constructs are in
e�ect the singleton values of the corresponding notes in the type-
level model, which are then combined into larger compositions
using a range of combinators. Where possible, composition errors
lead to custom type errors which explain the musical rule that was
violated. Finally, if a composition type-checks, it can be exported
to a MIDI �le.

In this experience report, we discuss the challenges we faced in
implementing Mezzo in Haskell, related to type-level computation,
dependently typed EDSL design, and rei�cation. We believe that
our library provides both a non-trivial and practical use case for
advanced type-level features in Haskell and functional program-
ming in general. We also provide evidence that Haskell is more than
capable of handling relatively sophisticated type-level computation
without being a fully dependently-typed language yet.

2 Example
This section provides an overview of some musical concepts and
the rules that the library enforces through a simple example. A
complete introduction to music theory is beyond the scope of this
paper, but may be found in any standard music textbook – we
suggest Walter Piston’s Harmony [12].

As an introductory example, we will attempt to compose a simple
contrapuntal melody for two voices2.

g ���� �� ����
� ����� �� � ��

Counterpoint is a polyphonic (multi-part) compositional tech-
nique. Its most important consideration is that the melodic lines
have to be independent, but give a coherent whole when played
together. To ensure this, composers have to follow strict rules of
voice-leading and harmonic motion which were developed cen-
turies ago and followed since then [3].

The above composition can be described in the Mezzo EDSL
as shown below by specifying the voices as sequences of notes,
such as d qn which represents a D quarter note, with :|: acting as
the sequential composition operator. The di�erent voices are then
composed in parallel using :-:.

2 The example is based on h�p://decipheringmusictheory.com/?page_id=46.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

HASKELL’17, September 2017, Oxford, UK Anon.

v1 = d qn :|: g qn :|: fs qn :|: g en
:|: a en :|: bf qn :|: a qn :|: g hn

v2 = d qn :|: ef qn :|: d qn :|: bf_ en
:|: a_ en :|: b_ qn :|: a_ qn :|: g_ hn

comp = v1 :-: v2

However, this composition has a few mistakes, and indeed, Mezzo
catches them and indicates this with type errors at compile-time:
error:

• Can't have major sevenths in chords.
• In the expression: v1 :-: v2

error:
• Direct motion into a perfect octave is forbidden.
• In the expression: v1 :-: v2

Bar 2 starts with a major seventh chord, which sounds very
dissonant and is generally forbidden – Mezzo therefore lets us
know that a harmonic rule was broken. The second issue is more
complex and stems from the fact that counterpoint requires the
voices to be independent, in the sense that all voices should be
discernible at all times. Whenever two voices sing a perfect interval
apart (unison, �fth or octave), they become hard to distinguish and
e�ectively fuse together into one voice. Simply put, series of perfect
intervals are not interesting enough to create complex, dynamic
music and are therefore forbidden (or at least to be avoided). Mezzo
sees the parallel octaves in the last two notes and noti�es us in the
form of a compiler error.

To correct the problems, we change the last three notes of the
second voice to avoid the major seventh and the parallel octaves.
v2 = d qn :|: ef qn :|: d qn :|: bf_ en
:|: a_ en :|: g_ qn :|: fs_ qn :|: g_ hn

The corrected Mezzo code compiles without errors – from now
on, comp is seen as a valid composition and can be used in larger
pieces or exported into a MIDI �le.

3 Music model
In this section, we develop the model of music implemented in
Mezzo and present the majority of the type-level computation
techniques used by the library.

Mezzo’s music model is responsible for representing musical
pieces both at the term- and type-level, as well as expressing and
enforcing the composition rules. The main inspiration comes from
Haskore, a music description library developed by Hudak et al. [6].
The novelty of Haskore is that it treats music as a recursive structure
with two associative operators: sequential (melodic) and parallel
(harmonic) composition. In BNF syntax, a piece of music M could
be expressed as:
M ::= Note | Rest | M :|: M | M :-: M

This lets us separate the description and performance of music
and establish algebraic laws which help formal reasoning about
compositions.

3.1 The Music datatype
A straightforward translation of the above BNF description into
Haskell is as follows:
data Music = Note Pit Dur | Rest Dur

| Music :|: Music | Music :-: Music

This describes a tree-like structure with the leaves containing a
note (with some pitch and duration) or a rest (with some duration).
Though the Music type is fairly simple, it is already capable of
expressing a huge variety of musical compositions – however, we
have no guarantee that any Music value will sound good, as there
is nothing to constrain their structure.

To make our library statically “aware” of composition rules, we
need to have access to the musical information at compile-time –
this can be achieved by adding a type argument to our type, contain-
ing some type-level representation of the music. Ideally, we would
like this to depend on the term-level value of Music m, which is a
typical use-case for dependently typed programming. Haskell alrady
supports many of the desired features through various language
extensions [1]. In this case, we can use the GADTs extension to en-
able the de�nition of generalised algebraic datatypes [11]: this way,
we can be speci�c about what the type variable should contain for
each possible constructor. More complex computation is enabled by
the TypeFamilies extension, which we use to convert type-level
information about pitches and durations (passed as type arguments)
into our music representation, as well as to combine these repre-
sentations. Finally, we encode musical rules as type class constraints
on the type variables: this way, whenever we construct a new term
of type Music m, it must follow the implemented composition rules.
Our �nal Music type looks like this:

data Music m where
Note :: NoteConstraints p q

=> Pit p -> Dur d -> Music (FromPitch p d)
Rest :: RestConstraints d

=> Dur d -> Music (FromSilence d)
(:|:) :: MelConstraints m1 m2

=> Music m1 -> Music m2 -> Music (m1 +|+ m2)
(:-:) :: HarmConstraints m1 m2

=> Music m1 -> Music m2 -> Music (m1 +-+ m2)

The separation of structure and constraints makes it easy to
extend or even completely change the musical rules implemented,
as well as to add new top-level musical constructs, such as chords
or chord progressions.

We’ve seen how the main Mezzo data type is de�ned: the EDSL
manipulates Music values which can then be rendered into MIDI
�les. But how is music actually represented at the type level? We
explore this in the next section.

3.2 The pitch matrix
To make rule description and enforcement as simple as possible,
we want to represent music at the type-level in a consistent, struc-
tured way. We decided on a straightforward, somewhat brute-force
approach: keeping the music in a two-dimensional array of pitches.
The columns of the matrix represent durations and the rows are
individual voices. The matrix elements are pairs of pitches and
durations (which specify a note).

The implementation of the composition rules relies on the fact
that the composed music values have the same “size”: sequential
pieces must have the same number of voices, and parallel pieces
must have the same length. An experienced Haskell programmer
would immediately exclaim “Vectors!” – but note that we are on
the type level now. However, thanks to data-type promotion [16]
and TypeInType, this is not an issue: in GHC 8, we can promote
any data-type, even GADTs, without doing any extra work. All we

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Experience Report: Well-typed music does not sound wrong HASKELL’17, September 2017, Oxford, UK

need is to de�ne the Vector data-type (using GHC.TypeLits to get
e�cient naturals and arithmetic at the type level):
data Vector :: Type -> Nat -> Type where

None :: Vector t 0
(:--) :: t -> Vector t (n - 1) -> Vector t n

This vector type is suitable for storing the rows of our matrix
(the individual voices), but in those rows we need to store both
pitches and durations. We do this by de�ning a new Elem type that
holds the value and the duration, and use it to build up an optimised
vector. Note that the length of this vector is not the number of
elements, but their total duration, so a whole note and 8 eights have
the same length. We can also declare a type synonym for matrices.
data OptVector :: Type -> Nat -> Type where

End :: OptVector t 0
(:-) :: Elem t l -> OptVector t (n - l)

-> OptVector t n
type Matrix t p q = Vector (OptVector t q) p

Thanks to GADT promotion, all these types are now available
at the kind level, and we can declare type families for common list-
and matrix operations. In particular, we de�ne horizontal (+|+)
and vertical (+-+) concatenation of matrices, as well as means of
converting musical values to pitch matrices.

Finally, we need to describe musical values at the type level –
this is a straightforward application of datatype promotion. All
types which the user can later interact with need term-level val-
ues: we accomplish this by creating kind-constrained proxies. For
convenience, we also de�ne specialised types for pitch vectors and
matrices.
data PitchType = Pitch PitchClass Accidental Octave

| Silence
data Pit (p :: PitchType) = Pit

type Voice l = OptVector PitchType l
type Partiture n l = Matrix PitchType n l

We can now explicitly specify the type variable for Music m. An
important thing to note here is that we have polymorphic recur-
sion in the application of Music, so GHC requires us to provide a
complete user-supplied kind signature (CUSK) by quantifying all the
kind variables in the type de�nition.
data Music :: forall n l. Partiture n l -> Type where

...

Lastly, we show how musical rules can be expressed as type class
constraints.

3.3 Musical constraints
In Mezzo, a piece of music is either correct or incorrect. That is,
correctness is just a predicate on Music values, and this can be im-
plemented using Haskell’s type classes, acting as compile-time type
predicates. This view of type classes is made even more powerful
by the ConstraintKinds extension, which lets us treat constraints
as “�rst-class” types of kind Constraint.

The rules implemented in the library mainly apply at the compo-
sition of Music values and constrain themusical intervals, which are
described by their size (unison, second, third, etc.) and type (perfect,
minor, major, augmented, diminished). We use the MakeInterval
type family to �nd the interval between two pitches: its de�nition
relies heavily on type-level pattern matching and recursion, but is
otherwise unchallenging.

An example of a musical rule is checking harmonic intervals:
classically, minor seconds (one semitone) and major sevenths (11
semitones) are to be avoided since they sound very dissonant. To
express this limitation, we declare the ValidHarmInterval type
class: its instances are only the intervals which are allowed in har-
mony. However, we can do better, using GHC’s custom type error
feature (in GHC.TypeLits): we make the type error the “precondi-
tion” to an instance of an invalid interval, so whenever GHC tries
to determine whether a major seventh is a valid harmonic interval,
it encounters the type error:
class ValidHarmInterval (i :: IntervalType)
instance TypeError (Text "Minor␣seconds␣forbidden.")

=> ValidHarmInterval (Interval Min Second)
instance TypeError (Text "Major␣sevenths␣forbidden.")

=> ValidHarmInterval (Interval Maj Seventh)
instance ValidHarmInterval i -- General case

Note that we need to account for overlapping instances – for
purposes of space we omit the OVERLAPPING and OVERLAPPABLE
pragmas in this paper, but they have to be added to make instance
resolution deterministic. In general, we omit some uninteresting
corner cases too for the sake of brevity.

We now need to “apply” this rule to the pitches in our pitch
matrix. This is done by a series of simple inference rules, which
are easy to express using class constraints on the instance declara-
tions. For example, we know that two voices can be harmonically
composed if all of the pitch pairs form valid harmonic intervals.

When working with constraints, a useful abstraction is made
possible by the ConstraintKinds extension. Constraints (even
unsaturated ones) can be passed around as types, which opens the
door to many �exible options for validation: for example, checking
if a vector of types satis�es a constraint, or a type satis�es all the
constraints in a vector. In our case, we apply a binary constraint to
two optimised vectors:
type family AllPairsSatisfy

(c :: a -> b -> Constraint)
(xs :: OptVector a n) (ys :: OptVector b n)
:: Constraint where

AllPairsSatisfy c End End = Valid
AllPairsSatisfy c (x :* _ :- xs) (y :* _ :- ys)

= ((c x y), AllPairsSatisfy c xs ys)

Now we can de�ne validity for harmonic concatenation of two
voices. ValidHarmDyad, which checks if two pitches form a valid
interval, is a two-parameter type class, so it has kind a -> b ->
Constraint – exactly what AllPairsSatisfy needs.
class ValidHarmDyadsInVectors

(v1 :: Voice l) (v2 :: Voice l)
instance AllPairsSatisfy ValidHarmDyad v1 v2

=> ValidHarmDyadsInVectors v1 v2

We use similar techniques to implement the other musical rules.
The details do get a bit complicated, but ultimately it is just a matter
of translating logical rules into type class constraints. The extension
lets us be very �exible in expressing rules, since we can even declare
type families that return a Constraint. For example, constrains for
harmonic motion are computed based on the adjacent pitch pairs.

4 Music description language
Among the most important considerations for DSL design are ex-
pressiveness and conciseness. Haskell’s minimalistic syntax makes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

HASKELL’17, September 2017, Oxford, UK Anon.

it a great choice for implementing EDSLs and provides a lot of �exi-
bility with its built-in constructs and abstractions. In this section we
discuss how Mezzo’s music description language is implemented
and how the di�culties arising from a heavily typed model can
be overcome. We also describe a general pattern for implementing
�uent EDSLs inspired by continuation-passing style.

4.1 Literal values
As explained in the previous section, the type model provides prox-
ies that the user can interact with – these are just constant values
with a phantom type variable. This means that creating literal term-
level values for proxies is trivial (and very boring):
_c :: PC (PitchClass C) ; _c = PC

In fact, this is so boring that code for most of the DSL literals
are generated at compile-time using Template Haskell [14]. The
approach really pays o� when creating literal values for pitches
for each pitch class, accidental and octave: the 14-line function
generates 210 literal declarations.

Having literal values and smart constructors already makes it
possible to write simple music:
noteP _cn ei :|: noteP _dn ei :|: noteP _en qu

The above syntax is still a bit verbose, and most MDLs provide
shorthand notation for common composition tasks. Since Mezzo
handles both note-level and chord-level input, we decided on an
approach that makes notation concise and �exible. This pattern,
which we call �at builders, can be applied to the general task of
EDSL design and works well in Mezzo.

4.2 Flat builders
Flat builders are inspired by the various attempts to express variable
argument and post�x functions in Haskell, such as continuation-
passing style and the Okasaki’s �at combinators [10]. ‘Flat’, as the
expressions do not contain parentheses, and ‘builders’, as they build
a value through a series of constructions and transformations. The
ideas here are not new, but we feel that having suitable types and a
consistent terminology makes CPS programming simpler.

Variable argument functions are not explicitly supported by
Haskell, but can be simulated by functions which take their contin-
uations as an argument. Instead of using the Cont monad, we use
simple type synonyms to encapsulate the “building blocks”:

• Speci�ers: specify an initial value of type t to start the “build-
ing process”.
type Spec t = forall m. (t -> m) -> m

• Converters: convert a value of type s to a value of type t.
type Conv s t = s -> Spec t

• Terminators: �nish building a value of type t and return the
result of type r.
type Term t r = t -> r

As a simple example, consider an expression which takes a string,
converts it into a character by taking the �rst element and prints
out the ASCII code for the element:
string :: String -> Spec String
firstChar :: Conv String Char
printAscii :: Term Char Int
string "Hello" firstChar printAscii --> 72

Unlike simple function composition, builders can be read (and
written) from left to right with no syntactic interference, which
makes them a good choice for EDSL development:
add 5 to 7 and display the result --> "result: 12"

In Mezzo, builders are used to construct note values: speci�ers for
pitches, converters for accidentals, terminators for durations. For ex-
ample, a C natural quarter note can be simply written as c qn, while
a double-sharp F with a dotted half note is f sharp sharp hn’.
The main advantage of using builders is that the speci�ers don’t
have to know the �nal return type of the builder, which makes them
very reusable. We can use the same pitch speci�ers for notes and
chords: c sharp qn is a C sharp quarter note, c sharp maj inv qc
is a C sharp major chord in �rst inversion. Though the terminator
syntax is di�erent, this only a�ects the 6 duration literals, and not
the 210 pitch literals. As before, builder components are generated
by Template Haskell macros.

4.3 Melodies
Flat builders are a big step up from literals and constructors, but
still not the most convenient way to input long sequences of notes.
Since writing melodies is likely to be the most common composi-
tion activity, we implemented a melody input method inspired by
LilyPond, a TeX-like music typesetting system. The top voice of
the example in Section 2 was written as:
d qn :|: g qn :|: fs qn :|: g en :|:
a en :|: bf qn :|: a qn :|: g hn

We have to specify the duration of every note, even though
changes of duration in melodies are not very common. It is therefore
more convenient to be explicit only when the duration changes,
and otherwise assume that each note has the same duration as
the previous one. With this in mind, we can use Mezzo’s melody
constructor to describe the melody above:
melody :| d :| g :| fs :< e :| a :^ bf :| a :> g

Notes are only given as pitches, the duration is either implicit
((:|) means “next note has the same duration as the previous
note”) or explicit in the constructor (e.g., (:<) means “next note is
an eighth note”). This makes melody input shorter and less error-
prone, as most of the constructors will likely be (:|).

Melodies are implemented as “snoc” lists, that is, lists whose head
is at the end. The di�erence is that the Melody type keeps additional
information in its type variables (like a vector), and instead of 2
constructors it has 25:
data Melody :: Partiture 1 l -> Nat -> Type where

Melody :: Melody (End :-- None) Quarter
(:|) :: (MelConstraints ms (FromPitch p d))

=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p d) d

(:<) :: (MelConstraints ms (FromPitch p Eighth))
=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p Eighth) Eighth

...

The type keeps track of the “accumulated” music, as well as
the duration of the last note. The Melody constructor initialises
the partiture and sets the default duration to a quarter. (:|) takes
the melody constructed so far (the tail) and a pitch speci�er, and
returns a new melody with the added pitch and unchanged duration.
The other constructors do the same thing, except they change the
duration of the last note. While memorising the constructors might

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Experience Report: Well-typed music does not sound wrong HASKELL’17, September 2017, Oxford, UK

take some time, they allow for very quick and intuitive melody
input.

5 Music rendering
Mezzo can export all well-typed compositions to MIDI �les. Adding
other audio formats in the future should not be di�cult and would
follow the same principles outlined in this section. The principal
question we address in this section is the one of how to reify com-
positions which exist entirely on the type-level so that we can
use them generate corresponding values on the term-level. As you
might recall, users of Mezzo mainly interact with proxies, which
contain no term-level information. This is deliberate since we do
not wish to duplicate information which might be prone to errors.
To solve this, we once again make use of type classes.

5.1 The Primitive class
Our aim is to �nd a primitive representation for all of the musical
types that the user can interact with. That is, to �nd a function
which can convert type-level information into term-level values.
Our solution is to de�ne a type class for “primitive” values:

class Primitive (a :: k) where
type Rep a
prim :: proxy a -> Rep a

Primitive is poly-kinded, so it can be used with types, naturals,
pitches, etc. Its main method, prim, takes the instance type with an
arbitrary type constructor, and returns a representation type of the
value, speci�ed in an associated type family. The primitive represen-
tation for a pitch would be an integer (e.g., its MIDI number), while
for a chord it would be a list of integers (the constituent pitches).
As there are no constraints on the representation type, we can be
even more �exible: for example, chord types (major, diminished,
etc.) are converted into functions from integers to integer lists.

All we need now is to declare instances of Primitive for our
types: unfortunately, we have to do this mostly by hand, as Haskell
does not have “kind classes” which would let us express that “every
type of this kind is a primitive”. In our case, it’s not too bad: we just
declare separate instances for all of the promoted data constructors
of a type:

instance Primitive Oct0 where
type Rep Oct0 = Int ; prim _ = 12 ...

instance Primitive C where
type Rep C = Int ; prim _ = 0 ...

Having done the hard part, pitches (and other compound types)
are straightforward:

instance (Primitive pc, Primitive acc, Primitive oct)
=> Primitive (Pitch pc acc oct) where

type Rep (Pitch pc acc oct) = Int
prim _ = prim (PC @pc) + prim (Acc @acc)

+ prim (Oct @oct)

The @pc syntax is possible with the TypeApplications exten-
sion, which provides a short way of instantiating the polymorphic
type variables of a term [2]. The pc type variable is bound to the
one in the instance declaration, and since we assert that pc is an in-
stance of Primitive, we can get its primitive representation using
prim.

5.2 MIDI export
MIDI is a simple, compact standard for music communication, often
used for streaming events from electronic instruments. The format
describes music as a sequence of MIDI messages for various musical
events, for example, the beginning or the end of a note, tempo
change, etc. It is a popular standard in computer music since it
abstracts away musical information from instrument sound, so
converting written scores into MIDI �les is straightforward.

We use a MIDI codec package for Haskell called HCodecs3 by
George Giorgidze, which provides lightweight MIDI export and
import capabilities. We only needed to add a type for MIDI notes
(with their number, start time and duration) and functions to con-
vert notes into two MIDI events NoteOn and a NoteOff. Thanks
to the algebraic description of Music values, converting Mezzo
compositions into MIDI tracks is entirely syntax-directed:
musicToMidi (Note pitch dur) =

playNote (prim pitch) (prim dur * 60)
musicToMidi (Rest dur) =

playRest (prim dur * 60)
musicToMidi (m1 :|: m2) =

musicToMidi m1 ++ musicToMidi m2
musicToMidi (m1 :-: m2) =

musicToMidi m1 >< musicToMidi m2

For notes and rests, we use prim to get the integer representation
of the pitch and duration and convert them into a MIDI track with
two events. Sequential composition simply maps to concatenating
the two tracks, while parallel composition uses the library’s merge
operation, which interweaves the two lists of messages respecting
their timestamps. We think that one of the main bene�ts of the
Haskore system is that the algebraic description maps so elegantly
to common list operations, even with a type-heavy implementation.
The Mezzo-speci�c constructions do not require a lot of work either:
musicToMidi (Chord c d) = foldr1 (><) notes

where notes = map (`playNote` prim d * 60) (prim c)

We �rst create a list of MIDI notes from the primitive represen-
tation of the chord, then fold the resulting list of tracks with the
merge operator.

All that is left to do is to attach a header to this track (containing
the tempo, instrument name and key signature) and export it as a
MIDI �le, which is done using HCodecs functions. In the future,
we plan to add ways to con�gure the attributes and metadata of
this �le, but the existing implementation already produces valid,
playable MIDI �les.

6 Related work
One of the �rst experiments in algorithmic composition, the Illiac
Suite in 1957 [4], consisted of four pieces of increasing musical com-
plexity: the �rst two used the rules of counterpoint to generate one-
and four-part melodies, while the second two used stochastic pro-
cesses and Markov chains to compose more experimental-sounding
music. Joint research into linguistics, music theory and cognition
resulted in Lerdahl and Jackendo�’s in�uential generative theory of
tonal music [7], which relates the structure of compositions with
musical understanding through well-formedness and preference
rules – a model that inspired several implementations and derived
theories. Martin Rohrmeier developed a formal grammar of func-
tional harmony [13] which was then implemented as a Haskell
3 h�ps://hackage.haskell.org/package/HCodecs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

HASKELL’17, September 2017, Oxford, UK Anon.

library, HarmTrace [8], for music analysis and composition. This
work describes harmonic constructs like chords and progressions
at the type level and has been one of the initial inspirations for
Mezzo.

While there is substantial research on generation and analysis
of music, little work has been done on checking the correctness
of compositions: the system closest to ours is Chew and Chuan’s
Palestrina Pal [5], a Java program for grammar-checking music
written in the contrapuntal style of Palestrina. We are not aware of
similar libraries for functional languages or systems that enforce
musical rules statically.

7 Conclusions
We have described the implementation of Mezzo, a library for com-
posing music which statically enforces that compositions follow
the rules of classical music. This means that composers no longer
have to check that they follow the rules by hand. An EDSL provides
a straightforward interface to the library to compose music and
well-typed compositions can be exported to MIDI �les.

7.1 Type-level computation
Haskell has long been a playground for type system experimenta-
tion, starting with type classes and functional dependencies through
GADTs and type families to merging types and kinds entirely.
Mezzo uses most of these features, and development has been re-
ally enjoyable and surprisingly easy: promotion, GADTs and type
families work seamlessly together and there is very little mental
overhead needed to think and reason about programs. Of course,
we don’t get the full power of functional programming at the type
level (type-families are not “�rst-class types”), but conditionals,
datatypes and recursion go a really long way.

During development, we have encountered a few limitations and
nuisances – some of these are already being addressed. A frequent
type error we saw was related to type family applications in type
class (or family) instances: this was often triggered by performing
natural arithmetic or pattern-matching, and the solution wasn’t
always obvious4. Another cause for unexpected errors was non-
covering type families: type families are accepted even if they are
stuck. This made debugging di�cult and was the reason why we
implemented the rule system using type classes instead of type
families on constraints: custom compiler errors wouldn’t always
get triggered, as they are accepted arguments to type families.

While type-level programming is already quite pain-free, we
thought of a few feature ideas that we would have found helpful.
The large part of the rule-checking system is built using type classes,
but handling overlapping instances made describing recursive rules
problematic. While closed type classes wouldn’t make much sense
(in their normal use, instances rarely overlap), a separate construct
acting as a closed type predicate could be useful. Similarly, we often
felt that the lack of “kind classes” or type-class promotion forced us
to write a lot of repetitive code, e.g., for enumerating pitch classes.
They would open the doors to pretty-printing of types, simpli�ed
implementation of singletons and ways of adapting Haskell design
patterns to the type level.

4 This problem is known and tracked under ticket #12564 on GHC Trac.

7.2 Performance
One thing we haven’t touched upon yet is performance, mainly
since it was not our main concern. It is safe to say that we cannot
expect a type checker to match the performance of highly optimised
machine code execution, and accordingly, compile times were quite
slow. Checking harmonic motion rules is a complicated operation:
a short 4-voice composition takes more than 35 seconds to type-
check. This means that Mezzo is most likely too cumbersome to
use for actual music education at the moment, but we feel that this
does not reduce its value as an example of what is possible to do in
Haskell’s type-system. Of course, all this upfront work means that
runtime performance is great: the composition that takes 37 seconds
to compile can be converted into a MIDI �le almost instantaneously.

Overall, we feel that Haskell provided everything we were look-
ing for, if not more: mature and robust type-level computation fea-
tures, a great medium for implementing embedded domain-speci�c
languages and good library and community support. We �rmly
believe that in a few years Haskell will be on par with the depen-
dently typed languages used in research and is already an excellent
choice for anyone wanting to look into type-level programming.

References
[1] Richard A Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. Ph.D.

Dissertation. University of Pennsylvania.
[2] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016. Visi-

ble Type Application. In Proceedings of the 25th European Symposium on Program-
ming Languages and Systems - Volume 9632. Springer-Verlag New York, Inc., New
York, NY, USA, 229–254. DOI:h�p://dx.doi.org/10.1007/978-3-662-49498-1_10

[3] Johann Joseph Fux. 1965. The study of counterpoint from Johann Joseph Fux’s
Gradus ad Parnassum. Number 277. WW Norton & Company.

[4] Lejaren A Hiller and Leonard M Isaacson. 1959. Experimental Music; Composition
with an electronic computer. Greenwood Publishing Group Inc.

[5] Cheng Zhi Anna Huang and Elaine Chew. 2005. Palestrina Pal: a grammar
checker for music compositions in the style of Palestrina. In Proc. of the 5th Conf.
on Understanding and Creating Music. Citeseer.

[6] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. 2008. Haskore
music notation – An algebra of music. Journal of Functional Programming 6, 03
(Nov 2008), 465–484.

[7] Fred Lerdahl and Ray Jackendo�. 1983. A generative theory of tonal music. The
MIT Press, Cambridge. MA.

[8] José Pedro Magalhães and W. Bas de Haas. 2011. Functional Modelling of Musical
Harmony: An Experience Report. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’11). ACM, New York,
NY, USA, 156–162. DOI:h�p://dx.doi.org/10.1145/2034773.2034797

[9] Gerhard Nierhaus. 2009. Algorithmic Composition: Paradigms of Automated Music
Generation. Vol. 1. Springer Verlag Wien.

[10] Chris Okasaki. 2003. THEORETICAL PEARLS: Flattening Combinators: Sur-
viving Without Parentheses. J. Funct. Program. 13, 4 (July 2003), 815–822. DOI:
h�p://dx.doi.org/10.1017/S0956796802004483

[11] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geo�rey
Washburn. 2006. Simple Uni�cation-based Type Inference for GADTs. In
Proceedings of the Eleventh ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’06). ACM, New York, NY, USA, 50–61. DOI:h�p:
//dx.doi.org/10.1145/1159803.1159811

[12] Walter Piston. 1978. Harmony. (Revised and expanded by Mark DeVoto). Londres:
Victor Gollancz LTD (1978).

[13] Martin Rohrmeier. 2011. Towards a generative syntax of tonal harmony. Journal
of Mathematics and Music 5, 1 (2011), 35–53.

[14] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for
Haskell. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell (Haskell
’02). ACM, New York, NY, USA, 1–16. DOI:h�p://dx.doi.org/10.1145/581690.
581691

[15] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC
with Explicit Kind Equality. SIGPLAN Not. 48, 9 (Sept. 2013), 275–286. DOI:
h�p://dx.doi.org/10.1145/2544174.2500599

[16] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios
Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell a Promotion. In
Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI ’12). ACM, New York, NY, USA, 53–66. DOI:h�p:
//dx.doi.org/10.1145/2103786.2103795

appendix d

Project Proposal

Computer Science Tripos – Part II – Project Proposal

Typesafe music composition
D. Szamozvancev, Downing College

21 October 2016

Project Originator: D. Szamozvancev
Project Supervisor: M. B. Gale
Director of Studies: Dr R. Harle
Project Overseers: Prof J. Crowcroft & Dr T. Sauerwald

Introduction
Music composition was among the �rst applications of digital computers, with experiments
going back to the late 1950s [16]. Since then, a lot of new approaches have been developed and
computer-assisted music composition has almost started its own musical genre. This project
aims to exploit the formal nature of the music-theoretical rules governing the classical music
of the common practice period, and express them as types and type-level operations such that
these rules would be enforced statically by the type checker. The end product would be a
Haskell combinator library for music composition, one that could assist composers in writing
music and music students in learning and applying the rules of music composition.

The language choice has fallen on Haskell due to its strong, static type system and a variety
of type-level extensions. Features like GADTs, type families and (nearly) dependent types
enable programmers to express complex assumptions about the problem domain and let the
type checker enforce those assumptions. I intend to make use of these advanced type-level
features to encode some basic rules of chord construction, voice-leading and rhythm in a
type-based model. Haskell’s purely functional nature lends itself well to the implementation of
a combinator-based, intuitive and expressive composition library, where the typed harmonic
model can be utilised.

86 appendices

Starting point
The �eld of computer-assisted music composition is very rich with research into various
composition and analysis techniques [33]. I have spent some time exploring the rule-based
methodologies, especially the work of Magalhães et al. [29] which the project aims to build
upon and extend. I have also looked into the research of the Yale Haskell Group on music
generation [39] and functional composition libraries [23]. The relevant Tripos courses are
Foundations of Programming, Semantics of Programming Languages and Types.

I have some piano and music theory background and am fairly pro�cient with Haskell,
albeit I will go into further depth regarding its type-level extensions. Up to this point only
small, experimental code snippets have been written to test out the MIDI library for Haskell.

Resources required
For the project I will be using my own computer, a 2013 MacBook Pro with a 2 GHz Intel
Core i7 CPU and 8 GB of RAM. I accept full responsibility for this machine and I have made
contingency plans to protect myself against hardware and/or software failure. If the computer
should fail, I will continue work on an MCS machine. The project �les will be backed up to a
USB drive and cloud storage twice daily, and I will frequently push code changes to an online
GitHub repository.

The main piece of software, the GHC compiler, is freely available online for download.
Other than that, I will be using a text editor and a music player for MIDI playback, and possibly
software to convert MIDI into audio �les.

Work to be done
The main components of the project are the following:

1. A precise, extensible model of tonal harmony and melody expressed as a collection of
Haskell datatypes. The model should statically enforce various rules of music theory, i.e.
ensure that a term violating these rules would not typecheck.

2. A �exible combinator library for music composition which lets users create simple
musical pieces that follow the common principles of composition.

3. A way of exporting the created pieces as MIDI or audio �les – this would use existing
codec libraries available for Haskell.

4. Evaluation of the above components by examining the correctness of the model and
testing it with unit tests.

Success criteria
The project will be deemed successful if the type model can enforce a set of common rules
of classical composition, and the composition library is �exible enough to create reasonably

project proposal 87

complex piano music. As these criteria are fairly subjective, I will list the concrete requirements
that need to be achieved:

1. The type system must rule out the following violations:

(a) Major seventh and minor second intervals in chords

(b) Consecutive �fths and octaves

(c) Ending a piece on a scale degree chord other than I or V

(d) Ending a piece on a chord in second inversion

(e) Leaps by large or augmented intervals

(f) Rhythm that is independent of the underlying metre

2. The user must be able to implement the following pieces using the library:

(a) Johann Sebastian Bach: Prelude in C Major, BWV 846

(b) Ludwig van Beethoven: Für Elise

(c) Frédéric Chopin: Prelude, Op. 28, No. 20

Possible extensions
By its nature such an art-oriented project is very extensible, e.g. by adding new rules, composi-
tion techniques, etc. A few ideas are listed below.

• A highly desired extension would be using the harmony model to generate music auto-
matically. This would involve building a system for stochastic music composition and
could be further extended by adding new genres, scales, instruments, interaction and
customisation.

• Type errors are the bane of every programmer, and they get even worse when complicated
type-level computation is involved. It would be great to customise the error messages so
the fault is described in music-theoretical terms.

• Counterpoint is a method of composing complex, multi-part music with its own set of
rules. These could be added to the harmony model.

• The library can also be extended with many extra combinators for various composi-
tion techniques and combined with the automatic generation system to, for example,
harmonise a user-supplied melody, create a cadence, arpeggiate a chord, etc.

Timetable
The schedule I plan to stick to is as follows:

1. Michaelmas weeks 2–4 Research on music theory, algorithmic composition and type-
level computation in Haskell.

88 bibliography

2. Michaelmas weeks 5–6 Make draft of the type model. I expect the �rst attempt to
“evolve” as features are being added, so I decided to schedule in a period of experimentation.
The �nal type model will be started from a clean slate, with the bene�t of hind sight.

3. Michaelmas weeks 7–8 Start implementing the type model.

4. Michaelmas vacation Continue work on the type model. Along the way, unit tests will
be written to ensure that the model rejects terms that violate musical rules. By the end
of the vacation the implementation should ful�l the �rst set of success criteria.

5. Lent weeks 0–2 Write progress report and create the exporting module. The abstract
Haskell terms have to be converted into a valid MIDI representation. This step will either
use HCodecs [12], a codec library, or build on Haskore [20], a Haskell music creation
system.

6. Lent weeks 3–4 Begin work on the composition library. This will most likely involve a
lot of back-and-forth tweaks between the library, type model and exporting module.

7. Lent weeks 5–6 Finish work on the composition library.

8. Lent weeks 5–6 Test the project against the success criteria. Depending on the type
model, a formal proof of its correctness could be attempted as well.

9. Lent weeks 7–8 Finish up the main project and start drafting the dissertation.

10. Easter vacation: Write dissertation.

11. Easter weeks 0–2: Proofreading, �nal testing and submission.

	Introduction
	History and background
	Project description
	Related work

	Preparation
	Musical preliminaries
	Dependent types in Haskell
	Software engineering

	Implementation
	Music model
	Music description language
	Music rendering

	Evaluation
	Testing
	Examples
	Further developments

	Conclusion
	Results and accomplishments
	Future work

	Bibliography
	Appendices
	Music theory
	Mezzo compositions
	Haskell Symposium paper
	Project Proposal

