
Well-Typed Music Does Not Sound Wrong (Experience Report)
Dmitrij Szamozvancev

University of Cambridge, UK

ds709@cam.ac.uk

Michael B. Gale
∗

University of Cambridge, UK

michael.gale@cl.cam.ac.uk

Abstract
Music description and generation are popular use cases for Haskell,

ranging from live coding libraries to automatic harmonisation sys-

tems. Some approaches use probabilistic methods, others build on

the theory of Western music composition, but there has been little

work done on checking the correctness of musical pieces in terms of

voice leading, harmony, and structure. Haskell’s recent additions to

the type-system now enable us to perform such analysis statically.

We present our experience of implementing a type-level model of

classical music and an accompanying EDSL which enforce the rules

of classical music at compile-time, turning composition mistakes

into compiler errors. Along the way, we discuss the strengths and

limitations of doing this in Haskell and demonstrate that the type

system of the language is fully capable of expressing non-trivial

and practical logic specific to a particular domain.

CCSConcepts •Applied computing→ Sound andmusic com-
puting; • Software and its engineering→ Functional languages;

Keywords Type-level computation; Haskell; music theory

ACM Reference format:
Dmitrij Szamozvancev and Michael B. Gale. 2017. Well-Typed Music Does

Not Sound Wrong (Experience Report). In Proceedings of 10th ACM SIG-
PLAN International Haskell Symposium, Oxford, UK, September 7-8, 2017
(Haskell’17), 6 pages.
https://doi.org/10.1145/3122955.3122964

1 Introduction
The connection between music and mathematics has been studied

by scholars as early as Pythagoras. These investigations were the

beginnings of the field of Western music theory – a formal descrip-

tion of what sounds good to the ear and what does not. For example,

consider the following composition
1
:

For readers who do not read music: the exact meaning of this

depiction is irrelevant, but note that compositions are read from

left to right and that, in this example, there are two voices – the

two series of notes which occur at the same points horizontally.

∗
Now at the University of Warwick: m.gale@warwick.ac.uk

1
The example is based on http://decipheringmusictheory.com/?page_id=46.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

Haskell’17, September 7-8, 2017, Oxford, UK
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5182-9/17/09. . . $15.00

https://doi.org/10.1145/3122955.3122964

To ensure that compositions sound good, composers follow strict

rules which have been developed over centuries of music tradition.

The piece above does not abide by these rules and will sound odd

when played. To avoid this, composers have to check by hand,

through close inspection of the notes, which rules have been vio-

lated. This process is laborious, error-prone and requires a thorough

understanding of music theory.

We present Mezzo 2, an embedded domain-specific language for

describing music in Haskell which statically enforces the rules of

classical music theory. Compositions which break the rules are not

valid programs and result in type errors. For example, the composi-

tion we gave can be described in the Mezzo EDSL as follows:

v1 = d qn :|: g qn :|: fs qn :|: g en
:|: a en :|: bf qn :|: a qn :|: g hn

v2 = d qn :|: ef qn :|: d qn :|: bf_ en
:|: a_ en :|: b_ qn :|: a_ qn :|: g_ hn

comp = defScore (v1 :-: v2)

The :|: operator is used for sequential composition of notes and

:-: is used to combine the two voices, v1 and v2, in parallel. The

defScore function applies a default set of rules. If we attempt to

compile this, GHC gives us the following two type errors:

Can't have major sevenths in chords: Bb - B_.
Parallel octaves are forbidden: A - A_, then G - G_.

As expected, the program does not compile since comp is musically

incorrect. The task of finding the mistakes, which would have taken

a composer some time to complete, was accomplished by Mezzo in

a fraction of that time. The type errors also tell us exactly what is

wrong and where the errors lie, although we have omitted line and

column numbers from the example here.

The first error is caused by a violation of a harmonic rule: major

seventh chords, which sound very dissonant, are generally forbid-

den. The second error is more complex and relates to counterpoint –
a polyphonic (multi-voice) compositional technique. Its most impor-

tant consideration is that the melodic lines have to be independent,

but give a coherent whole when played together. Composers have to

follow strict rules of voice-leading and harmonic motion to ensure

this [5]. Whenever two voices sing a perfect interval apart (unison,

fifth or octave), they become hard to distinguish and effectively

fuse together into one voice. Simply put, series of perfect intervals

are not interesting enough to create complex and dynamic music.

To correct the problems, we change the last three notes of the

second voice to avoid the major seventh and the parallel octaves:

v2 = d qn :|: ef qn :|: d qn :|: bf_ en
:|: a_ en :|: g_ qn :|: fs_ qn :|: g_ hn

The code now compiles without errors and comp is seen as a valid

composition that can be used as part of a larger piece or exported

to a MIDI file on its own.

2 https://hackage.haskell.org/package/mezzo

https://doi.org/10.1145/3122955.3122964
mailto:m.gale@warwick.ac.uk
http://decipheringmusictheory.com/?page_id=46
https://doi.org/10.1145/3122955.3122964
https://hackage.haskell.org/package/mezzo

Haskell’17, September 7-8, 2017, Oxford, UK D. Szamozvancev and M. B. Gale

This experience report describes the implementation of Mezzo

and also addresses the challengeswe faced by usingHaskell for type-

level computation. Our library provides a non-trivial and practical

use case for advanced type-level features in Haskell and functional

programming in general. We also provide evidence that Haskell is

more than capable of handling sophisticated type-level computation

without being a fully dependently typed language yet.

2 Music Model
In this section, we give a top-down description of the music model

implemented in Mezzo and present the majority of the type-level

computation techniques used by the library.

Enforcing themusical rules at the type-level buys usmany advan-

tages over a more standard implementation at the term-level. For

example, we get better integration with existing development tools

which can highlight the precise locations in source files at which

type errors occur. Users of our library can therefore see where the

rules are violated, and we found this very useful in practice. We

also benefit from the usual advantages of static typing such as the

ability to write functional programs in which only compositions

that are guaranteed to sound good may be constructed, or func-

tions which do not need to handle inputs that cannot possibly be

musically or structurally valid. However, in our experience, type

inference cannot always handle the complex types involved, which

makes such programs somewhat difficult to write. The leaking of

internals in the case of real type errors is also common, but this is

a known drawback of EDSL design in general [11].

2.1 The Music Data Type
Mezzo’s music model is responsible for representing musical pieces

both at the term- and type-level, as well as expressing and enforcing

the composition rules.

The main inspiration comes from Haskore, a music description

library developed by Hudak et al. [7]. The novelty of Haskore is

that it treats music as a recursive structure with two associative

operators: sequential (melodic) and parallel (harmonic) composition.

In BNF syntax, a piece of music M can be expressed as:

M ::= Note | Rest | M : | : M | M :−: M

This is encoded into Haskell as follows:

data Music = Note Pit Dur | Rest Dur
| Music :|: Music | Music :-: Music

This describes a tree-like structure with the leaves containing notes

(with some pitch and duration) or rests (with some duration). The

Music type is fairly simple, but it is already capable of expressing

a huge variety of musical compositions – however, we have no

guarantee that all Music values will sound good, as there is nothing
to constrain their structure.

To statically enforce rules on compositions, we need to know

their detailed structure at compile-time. This can be achieved by

adding a type argument to the Music type, containing some type-

level representation of the music (Section 2.2). Ideally, we would

like this to depend on the term-level value of Music m, which
is a typical use-case for dependently typed programming. Haskell
already supports this through various language extensions; a thor-

ough overview of them can be found in Richard Eisenberg’s PhD

thesis [3]. In this case, we can useGADTs: this way, each constructor
can determine what m should be instantiated with. More complex

computation is enabled by type families, which we use to convert

type-level information about pitches and durations into our music

representation, as well as to combine these representations. Finally,

we encode musical rules as type class constraints on the type vari-

ables: whenever we construct a new term of type Music m, it must

follow the composition rules. The Music type now looks like this:

data Music m where
Note :: NoteConstraints p d

=> Pit p -> Dur d -> Music (FromPitch p d)
Rest :: RestConstraints d

=> Dur d -> Music (FromSilence d)
(:|:) :: MelConstraints m1 m2

=> Music m1 -> Music m2 -> Music (m1 +|+ m2)
(:-:) :: HarmConstraints m1 m2

=> Music m1 -> Music m2 -> Music (m1 +-+ m2)

In Section 2.5, we discuss how this type can be parameterised

by user-defined rules. This is made possible by the separation of

structure and constraints which also makes it easy to add new

top-level musical constructs, such as chords or chord progressions.

2.2 The Pitch Matrix
A crucial step in creating a static model of music is finding a suitable

representation of musical pieces at the type level. It must have a

consistent, but accurate structure that makes rule enforcement as

simple as possible. The model must also not discard any relevant

musical information: for example, it should always be possible to

compose a long melody with a long accompaniment and ensure that

all arising harmonic intervals are valid. While intuitive to compose

with, the Haskore algebra is too unstructured to formally reason

about: for example, it is not clear how one would recursively find

two notes which are played at the same time.

We decided on the straightforward approach of keeping the

music in a two-dimensional array of notes. The columns of this

matrix represent durations and the rows are individual voices. The

matrix elements are pairs of pitches and durations, which specify

notes. Importantly, all durations in one column are equal: this

ensures that notes in the same column are played at the same time.

The implementation of the composition rules relies on the fact

that the composed music values have the same “size”: sequential

pieces must have the same number of voices, and parallel pieces

must have the same length. An experienced Haskell programmer

would immediately exclaim “Vectors!” – but note that we are at the

type level now. Thanks to data type promotion and TypeInType,
this is not an issue: any data type, even GADTs, can be promoted to

the type level. All we need is to define the usual Vector data type:

data Vector :: Type -> Nat -> Type where
None :: Vector t 0
(:--) :: t -> Vector t (n - 1) -> Vector t n

This vector type is suitable for storing the rows of the matrix (the

individual voices), but in those rows we need to store both pitches

and durations. Moreover, we want the length of a voice to be the

total duration of the notes, so we need to keep track of the duration

at the type level too. We do this by defining a new Elem type that
holds a value (a pitch) and the number of repetitions (the duration),

expressed as the proxy Times for type-level naturals:

data Times (n :: Nat) = T
data Elem :: Type -> Nat -> Type where

(:*) :: t -> Times n -> Elem t n

Well-Typed Music Does Not Sound Wrong (Experience Report) Haskell’17, September 7-8, 2017, Oxford, UK

This is used to build up an optimised vector. Note that in this case

the length of this vector is not the number of elements, but their

total duration, so a whole note and 8 eighths have the same length:

data OptVector :: Type -> Nat -> Type where
End :: OptVector t 0
(:-) :: Elem t d -> OptVector t (n - d)

-> OptVector t n

We can now declare a type synonym for matrices:

type Matrix t p q = Vector (OptVector t q) p

Thanks to GADT promotion, all these types are available at the kind

level and we can define type families for common list and matrix

operations. In particular, we define horizontal (+|+) and vertical

(+-+) concatenation of matrices, as well as means of converting

musical values to pitch matrices. For example, FromPitch p d
creates a singleton matrix with the pitch p of duration d. To ensure

that all column elements have the same duration, +-+ “aligns” its
argument matrices by breaking up long notes which are played at

the same time as several shorter ones.

Finally, we need to describe musical values at the type level – this

is a straightforward application of data type promotion. All types

which describe compositions need term-level values: we accomplish

this by creating kind-constrained proxies, such as Pit:

data PitchClass = C | D | E | F | G | A | B
data Accidental = Natural | Sharp | Flat
data Octave = Oct_1 | Oct0 | Oct1 | Oct2 | ...
data PitchType = Pitch PitchClass Accidental Octave

| Silence
data Pit (p :: PitchType) = Pit

We also define specialised types for pitch vectors and matrices:

type Voice l = OptVector PitchType l
type PitchMatrix n l = Matrix PitchType n l

We can now explicitly specify the type variable for Music m. A mi-

nor nuisance here is that kind inference of recursive types can only

use monomorphic recursion, just like type inference. If we want

polymorphic recursion, which we have in the recursive application

of the Music type constructor in :|: and :-:, we need to provide

a complete user-supplied kind signature (CUSK). Additionally, with
-XTypeInType enabled, GHC requires us to explicitly quantify all

the kind variables in the type definition as shown below. This is

explained in more detail in Section 9.11.5 of the GHC 8 User Guide.

data Music :: forall n l. PitchMatrix n l -> Type ...

2.3 Intervals
The rules implemented in Mezzo mainly constrain the musical
intervals arising between two composed pieces. To find the interval

between two pitches, we declare a type family called MkInterval.
It is used in most of the low-level correctness checks. For example,

the interval between a C and a G in the same octave and with the

same accidental is a perfect fifth, while the interval between a C

and a pc2 sharp in the same octave is the interval between the C

and a pc2 natural expanded by a semitone:

type family MkInterval p1 p2 :: IntervalType where
MkInterval (Pitch C acc o) (Pitch G acc o) =

Interval Perf Fifth
MkInterval (Pitch C Natural o) (Pitch pc2 Sharp o) =

Expand (MkInterval (Pitch C Natural o)
(Pitch pc2 Natural o)) ...

2.4 Musical Rules
An example of a musical rule is checking harmonic intervals: clas-

sically, minor seconds (one semitone) and major sevenths (11 semi-

tones) are to be avoided since they sound very dissonant. To ex-

press this limitation, we declare the ValidHarmInterval type class
which determines whether an interval is harmonically valid. GHC’s

custom type error feature (in GHC.TypeLits) lets us specify in-

stances for invalid intervals by making the type error the “precon-

dition”, as shown below. Hence whenever GHC tries to determine

whether a major seventh is a valid harmonic interval, it encounters

a type error. A general, catch-all instance represents valid intervals:

class ValidHarmInterval (i :: IntervalType)
instance TypeError (Text "Minor seconds forbidden.")

=> ValidHarmInterval (Interval Min Second)
instance TypeError (Text "Major sevenths forbidden.")

=> ValidHarmInterval (Interval Maj Seventh)
instance {-# OVERLAPPABLE #-} ValidHarmInterval i

Note that in the general case we need to permit overlapping in-

stances, which is indicated by a compiler pragma.

We now need to apply this rule to the pitches in our pitch matrix.

This is done by a series of simple inference rules, which are easy

to express using class constraints on the instance declarations. For

example, to check that two pitches (a dyad) are separated by a

valid interval, we need to form an interval and establish that it is

harmonically valid:

class ValidHarmDyad (p1 :: PitchType) (p2 :: PitchType)
instance ValidHarmInterval (MkInterval a b)

=> ValidHarmDyad a b

When working with constraints, a useful abstraction is made

possible by the ConstraintKinds extension. Constraints (and func-
tions returning constraints) can be passed around as types, which

opens the door to many flexible options for validation. For example,

we can check if a vector of types satisfies a constraint or a type

satisfies all the constraints in a vector. The following definition

allows us to apply a binary constraint to two optimised vectors,

ensuring that all constraints hold pairwise (the durations can be

ignored, as notes in the same column have the same duration):

type family AllPairsSatisfy
(c :: a -> b -> Constraint)
(xs :: OptVector a n) (ys :: OptVector b n)
:: Constraint where

AllPairsSatisfy c End End = Valid
AllPairsSatisfy c (x :* _ :- xs) (y :* _ :- ys)

= ((c x y), AllPairsSatisfy c xs ys)

Now we can define validity for harmonic concatenation of two

voices. ValidHarmDyad, defined above, is a two-parameter type

class of kind PitchType -> PitchType -> Constraint – a suit-

able first argument to AllPairsSatisfy:

class ValidHarmDyadsInVoices (v1 :: Voice l)
(v2 :: Voice l)

instance AllPairsSatisfy ValidHarmDyad v1 v2
=> ValidHarmDyadsInVoices v1 v2

Finally, we use ValidHarmDyadsInVoices to validate the compo-

sition of pitch matrices. Given two matrices (v :-- vs) and us
(where v is the topmost voice of the first matrix), they can be con-

catenated if: (1) vs and us can be concatenated, and (2) v can be

concatenated with all of the voices in us. The second condition is

Haskell’17, September 7-8, 2017, Oxford, UK D. Szamozvancev and M. B. Gale

implemented by mapping ValidHarmDyadsInVoices v (of kind

Voice l -> Constraint) over all the voices in us and check-

ing whether all the constraints are satisfied. AllSatisfy applies a

unary constraint to all elements of a Vector:

class ValidHarmConcat (ps :: PitchMatrix n1 l)
(qs :: PitchMatrix n2 l)

instance (ValidHarmConcat vs us
, AllSatisfy (ValidHarmDyadsInVoices v) us
) => ValidHarmConcat (v :-- vs) us

By translating logical expressions into type class constraints, we

can encode most of the low-level musical rules in the type system.

We found the pitch matrix representation very well suited for this

purpose, as it encapsulates all of the relevant musical information

in a structured way that is easy to reason about.

2.5 Rule Sets
Mezzo’s rule sets address the question of flexibility: how can we rec-

oncile formal rule checking with artistic expression? Our solution

is to provide users with three levels of rule strictness (including

one that does not enforce any musical rules), and allow them to

define custom rules and correctness checks if they wish. Different

parts of a composition can be checked according to different rules.

Rule sets are implemented using constraint kinds and associated
type families. The RuleSet type class contains associated constraint
synonyms for each of the Music constructors:

class RuleSet t where
type HarmConstraints t m1 m2 :: Constraint
type NoteConstraints t p d :: Constraint ...

A rule set is defined as a unit data type and an accompanying

instance of RuleSet:

data Classical = Classical
instance RuleSet Classical where

type HarmConstraints Classical m1 m2 =
ValidHarmConcat m1 m2

type NoteConstraints Classical p d = Valid ...

Finally, we have to parameterise Music values by their rule set:

data Music :: Type -> PitchMatrix n l -> Type where
(:-:) :: HarmConstraints rs m1 m2 =>
Music rs m1 -> Music rs m2 -> Music rs (m1 +-+ m2)

Note :: NoteConstraints rs p d =>
Pit p -> Dur d -> Music rs (FromPitch p d) ...

To instantiate rs, we create a new type encapsulating Music values
and rule sets:

data Score = forall rs m. MkScore rs (Music rs m)

Now we can dynamically change the type checking behaviour by

changing the rule set arguments: for example, MkScore Classical
(c qn :-: b qn) produces a type error, while MkScore Empty
(c qn :-: b qn) compiles (where Empty enforces no rules). As

Haskell type classes are open, users are free to define their own

rule sets with custom constraints on composition operators, chords,

or even notes and rests. For instance, we can implement a rule set

for first-species counterpoint by extending the predefined Strict
rule set with constraints allowing only whole notes and no chords.

3 Music Description Language
This section showcases some interesting aspects of the Mezzo EDSL

which makes use of the type-level model. To increase usability and

conciseness, the language provides shorthand methods for note,

chord, melody and progression input, covering the most common

musical structures composers might use.

3.1 Note and Chord Input
Mezzo’s note and chord input method is based on continuation-
passing style: it allows musical values to be built via a series of

flexible “transformations” with little syntactic interference. For

example, a C quarter note can be written as c qn, while a D flat

major half chord in first inversion is d flat maj inv hc. The
main advantage of this approach – as opposed to simple constructor

functions – is the reuse of syntactic constructs: if the pitch c is

followed by qn, we construct a C quarter note; but if it is followed

by maj qc, we create a C major quarter chord instead. The exact

details of the implementation are outside the scope of this paper

and involve no complex type-level computation. However, we refer

the interested reader to Okasaki’s paper on flat combinators for
more information on this style of programming [9].

3.2 Melodies
The input method described above is concise, but still contains

a lot of redundancy, especially when writing melodies. For the

first voice in Section 1, we had to specify the duration of every

note, even though most notes had the same duration. As this is

commonly the case, it is more convenient to be explicit only when

the duration changes, and otherwise assume that each note has the

same duration as the previous one. With this in mind, we can use

Mezzo’s melody construction syntax to describe the melody from

Section 1 more concisely:

melody :| d :| g :| fs :< e :| a :^ bf :| a :> g

Notes are only given as pitches and the duration is either implicit,

or explicit in the constructor. For example, :|means “the next note

has the same duration as the previous note”, while :< means “the

next note is an eighth note”. This makes melody input shorter and

less error-prone, as most of the constructors will likely be :|.
Melodies are implemented as “snoc” lists, i.e. lists whose head is

at the end. The Melody type keeps additional information in its type

variables (like a vector), and has a constructor for every duration:

data Melody :: PitchMatrix 1 l -> Nat -> Type where
Melody :: Melody (End :-- None) Quarter
(:|) :: (MelConstraints ms (FromPitch p d))

=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p d) d

(:<) :: (MelConstraints ms (FromPitch p Eighth))
=> Melody ms d -> PitchS p
-> Melody (ms +|+ FromPitch p Eighth) Eighth ...

The type keeps track of the “accumulated” music, as well as the

duration of the last note. The Melody constructor initialises the

pitch matrix and sets the default duration to a quarter. The binary

constructor :| takes the melody composed so far (the tail) and a

pitch specifier PitchS (the type of the overloaded pitch literals, such
as c), and returns a newmelodywith the added pitch and unchanged

duration. The other constructors do the same thing, except they

ignore the argument d of the tail and change the duration of the

last note. While the syntax of the constructors might need getting

used to, they allow for quick and intuitive melody input.

Well-Typed Music Does Not Sound Wrong (Experience Report) Haskell’17, September 7-8, 2017, Oxford, UK

4 Music Rendering
Mezzo can export all well-typed compositions to MIDI files. The

principal question is how to reify compositions which exist entirely

on the type-level so that we can create the corresponding values

on the term-level. Recall that users of Mezzo mainly interact with

proxies which contain no term-level information, and types are

erased at runtime. To solve this problem, we make use of type

classes to reify type-level data, inspired by the singletons 3 library.

4.1 Reification
Our aim is to find a primitive representation for all of the musical

types that the user has access to. That is, to find a function which

can convert type-level information into term-level values, such as

integers representing the MIDI number of a note. Our solution is

to define a type class for “primitive” values:

class Primitive (a :: k) where
type Rep a
prim :: proxy a -> Rep a

Primitive is poly-kinded, so it can be used with naturals, pitches,

etc. Its only method, prim, takes the instance type with an arbitrary

type constructor, and returns a representation type of the value,

specified in an associated type family. The primitive representa-

tion for a pitch would be an integer (e.g. its MIDI number), while

for a chord it would be a list of integers (the constituent pitches).

The representation types do not have to be ground data types: for

example, chord types (major, diminished, etc.) are converted into

functions from integers to integer lists, mapping the MIDI code of

the root pitch to the list of codes of the chord pitches.

All we need now is to declare instances of Primitive for our

types: unfortunately, we have to do this mostly by hand, as Haskell

does not have “kind classes” which would let us express that “every

type of this kind is a primitive”. In our case, we declare separate

instances for all of the promoted data constructors of a type:

instance Primitive Oct0 where
type Rep Oct0 = Int ; prim _ = 12 ...

instance Primitive C where
type Rep C = Int ; prim _ = 0 ...

Having done this, reifying compound types is straightforward, as

we can assert a class precondition on the component types:

instance (Primitive pc, Primitive acc, Primitive oct)
=> Primitive (Pitch pc acc oct) where

type Rep (Pitch pc acc oct) = Int
prim _ = prim (PC @pc) + prim (Acc @acc)

+ prim (Oct @oct)

The @pc syntax is possible with the TypeApplications extension,

which provides a short way of instantiating the polymorphic type

variables of a term [4]. The pc type variable is bound to the one in

the instance declaration, and since we assert that pc is an instance

of Primitive, we can get its primitive representation using prim.

4.2 MIDI Exporting
MIDI is a simple, compact standard for music communication, often

used for streaming events from electronic instruments. To render

compositions asMIDI files, we use aMIDI codec package for Haskell

called HCodecs4 by George Giorgidze, which provides lightweight

3 https://hackage.haskell.org/package/singletons
4 https://hackage.haskell.org/package/HCodecs

MIDI import and export capabilities. We only needed to add a type

for MIDI notes (with their MIDI number, start time and duration)

and the functions playNote and playRest to convert notes and

rests into two MIDI events (NoteOn and NoteOff). Thanks to the

algebraic description of Music values, converting Mezzo composi-

tions into MIDI tracks is entirely syntax-directed:

toMidi (Note pit dur) = playNote (prim pit) (prim dur)
toMidi (Rest dur) = playRest (prim dur)
toMidi (m1 :|: m2) = toMidi m1 ++ toMidi m2
toMidi (m1 :-: m2) = toMidi m1 >< toMidi m2

For notes and rests, we use prim to get the integer representation of

the pitch and duration and convert them into a MIDI track with two

events. Sequential composition simply maps to concatenating the

two tracks, while parallel composition uses the library’s merging

operation, denoted here by (><), which interweaves the two lists of
messages according to their timestamps. One of the benefits of the

Haskore system is that the algebraic description maps so elegantly

to common list operations, and all the work of converting proxies

into primitive values is done by the overloaded prim function.
All that is left to do is to attach a header to this track (containing

the tempo, instrument name and key signature) and export it as a

MIDI file, which is done using HCodecs functions. We also have

means of configuring various attributes of the MIDI file, such as

tempo, time signature or track name.

5 Related Work
Formal descriptions of music are frequently used for algorithmic

music composition [8] but have also been applied to analysis and

music information retrieval. Martin Rohrmeier developed a formal

grammar of functional harmony [10] which was then implemented

as a Haskell library, HarmTrace [2], for music analysis and com-

position. This work describes harmonic constructs such as chords

and progressions at the type level and has been one of the ini-

tial inspirations for Mezzo. Albeit its discussion is omitted from

this report for brevity, we have a partial implementation of the

HarmTrace model, providing an EDSL for composing simple chord

progressions indexed by the key of the piece. This enables us to

separate the progression structure from the key and change the

latter independently of the chord schema:

inKey c_maj (ph_VI dom_vii0 ton :+ cadence auth_V7)

While there is substantial research on generation and analysis

of music, little work has been done on checking the correctness

of compositions: the system closest to ours is Chew and Chuan’s

Palestrina Pal [6], a Java program for grammar-checking music

written in the contrapuntal style of Palestrina. There exist similar

commercial programs and composition software plugins such as

Counterpointer 5 and Fux 6
, but these are also specialised to coun-

terpoint and do not offer general purpose composition features.

We are not aware of related libraries for functional languages or

systems that enforce musical rules statically.

Haskell’s type-level features are seeing increasing adoption and

practical use. For example, Augustsson andÅgren describe a statically-

typed wrapper of a dynamic relational algebra library by describing

schemas at the type-level [1]. However, their library does not yet

demonstrate the benefits of TypeInType.

5
http://www.ars-nova.com/cp/

6
https://musescore.org/en/project/fux

https://hackage.haskell.org/package/singletons
https://hackage.haskell.org/package/HCodecs

Haskell’17, September 7-8, 2017, Oxford, UK D. Szamozvancev and M. B. Gale

6 Conclusions
We have described Mezzo, a music composition library which stati-

cally enforces that compositions follow the rules of classical music.

Users can choose from pre-defined rule sets or add their own. Dif-

ferent rule sets can be applied to different parts of a composition.

6.1 Proxies
We chose to use proxies and reification instead of the conventional

approach of programming with singletons. This decision is impor-

tant: instead of trying to mirror the term and type level, we make

use of the term-type separation to model the music in two different

ways. The term-level algebraic representation is very convenient

for composition and recursive traversal, but we need the struc-

tured pitch matrix to perform rule-checking effectively. Moreover,

abstract musical types (e.g. pitches) are converted directly into con-

crete values (e.g. MIDI numbers), so having an abstract term-level

representations of musical values via singletons (or full dependent

types) would bring us no significant benefits.

6.2 Type-Level Computation
Haskell’s type system has many unique features including type

classes, functional dependencies, and type families. Mezzo uses

most of these features and development has been both really enjoy-

able and surprisingly easy: data type promotion, GADTs and type

families work seamlessly together and there is very little mental

overhead needed to think and reason about programs. We would

wish that type families were first-class types so that we could write

higher-order type functions, but conditionals, data types, and re-

cursion still enabled us to express musical rules effectively.

During development, we have encountered a few limitations

and nuisances and some of these are already being addressed. A

frequent type error we saw was related to type family applications

in type class (or family) instances: this was often triggered when

pattern-matching on types whose kind-variables are results of type

family applications (e.g. arithmetic)
7
. For example, this is the reason

why the Vector type’s :-- constructor has an argument of type

Vector (n-1) instead of the more obvious Vector (n+1) in its

return type: otherwise, to pattern-match on an argument of type

Vector, GHC would have to reduce a type family application.

Other causes for unexpected errors were type families, as they

may not reduce as far as we might expect. This made debugging

difficult and was the reason why we implemented the rule system

using type classes instead of type families on constraints: custom

compiler errors would not always get triggered if e.g. a custom type

error occurred as an argument to a type family.

While type-level programming is already painless, we would

have found some additional features helpful. A large part of the rule-

checking system is built using type classes, but we had to explicitly

handle overlapping instances. In normal usage, closed type classes
would not make much sense as the instances rarely overlap, but a

separate construct acting as a closed type predicate could be useful

for type-level programming and verification. Similarly, we often

felt that the lack of “kind classes” or type-class promotion forced

us to write a lot of repetitive code, e.g. enumerating pitch classes.

Kind classes would allow for pretty-printing of types, simplified

implementation of singletons and ways of adapting other term-level

abstractions to the type level.

7
This problem is known and tracked under ticket #12564 on GHC Trac.

6.3 Composition Using Mezzo
When designing Mezzo’s EDSL, our aim was to create a consistent,

intuitive syntax which would be easy to read and write even for

non-programmers. The paper could not give much detail on this

aspect of the library, but we have received encouraging responses

from musicians regarding the language.

The EDSL, rule sets and various modularisation techniques make

Mezzo entirely usable even for large compositions. We have com-

plete, working encodings of famous piano works available in the

package repository, showcasing various composition techniques

that Mezzo supports. For example, in Bach’s Prelude in C Major we
make use of the fact that Mezzo is an embedded DSL by exploiting

the repetitive rhythmic nature of the piece: we wrote a function

that generates an entire bar from the five pitches appearing in it.

GHC is able to infer all of the complex types involved.

Performance was not the main consideration of our library,

though a few optimisations lead to a significant increase in type-

checking speed. Compilation times were slow but not unacceptably

so: the average was on the order of 5-10 seconds for shorter compo-

sitions, but even a complex piece such as Für Elise compiles in under

30 seconds. Albeit this is slower than a fully term-level solution

would be, users save “debugging” time by getting clear descriptions

and locations of musical errors, which could not be achieved as

conveniently with runtime checks.

Overall, Haskell provided everything we were looking for, if not

more: mature and robust type-level computation features, a great

medium for implementing embedded domain-specific languages

and good library and community support.

Acknowledgments
We thank Richard Eisenberg and Simon Peyton Jones for their

technical help, and the anonymous reviewers for their feedback on

earlier versions of this paper. The second author was funded by

EPSRC and the Computer Laboratory’s Industrial Supporters Club.

References
[1] Lennart Augustsson and Mårten Ågren. 2016. Experience report: Types for a

relational algebra library. In Proceedings of the 9th International Symposium on
Haskell. ACM, 127–132.

[2] W. Bas de Haas, José Pedro Magalhães, Frans Wiering, and Remco C. Veltkamp.

2013. Automatic functional harmonic analysis. Computer Music Journal 37, 4
(2013), 37–53.

[3] Richard A Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. Ph.D.
Dissertation. University of Pennsylvania.

[4] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016. Visi-

ble Type Application. In Proceedings of the 25th European Symposium on Program-
ming Languages and Systems - Volume 9632. Springer-Verlag New York, Inc., New

York, NY, USA, 229–254. DOI:http://dx.doi.org/10.1007/978-3-662-49498-1_10
[5] Johann Joseph Fux. 1965. The study of counterpoint from Johann Joseph Fux’s

Gradus ad Parnassum. Number 277. WW Norton & Company.

[6] Cheng Zhi Anna Huang and Elaine Chew. 2005. Palestrina Pal: a grammar

checker for music compositions in the style of Palestrina. In Proceedings of the
5th Conference on Understanding and Creating Music. Citeseer.

[7] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. 2008. Haskore

music notation – An algebra of music. Journal of Functional Programming 6, 03

(Nov 2008), 465–484.

[8] Gerhard Nierhaus. 2009. Algorithmic Composition: Paradigms of Automated Music
Generation. Vol. 1. Springer Verlag Wien.

[9] Chris Okasaki. 2003. Theoretical pearls: Flattening combinators: Surviving

without parentheses. Journal of Functional Programming 13, 4 (July 2003), 815–

822. DOI:http://dx.doi.org/10.1017/S0956796802004483
[10] Martin Rohrmeier. 2011. Towards a generative syntax of tonal harmony. Journal

of Mathematics and Music 5, 1 (2011), 35–53.
[11] Alejandro Serrano and Jurriaan Hage. 2016. Type error diagnosis for embedded

DSLs by two-Stage specialized type rules. In European Symposium on Program-
ming Languages and Systems. Springer, 672–698.

http://dx.doi.org/10.1007/978-3-662-49498-1_10
http://dx.doi.org/10.1017/S0956796802004483

	Abstract
	1 Introduction
	2 Music Model
	2.1 The Music Data Type
	2.2 The Pitch Matrix
	2.3 Intervals
	2.4 Musical Rules
	2.5 Rule Sets

	3 Music Description Language
	3.1 Note and Chord Input
	3.2 Melodies

	4 Music Rendering
	4.1 Reification
	4.2 MIDI Exporting

	5 Related Work
	6 Conclusions
	6.1 Proxies
	6.2 Type-Level Computation
	6.3 Composition Using Mezzo

	Acknowledgments
	References

